On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study
Soil deposits may be subjected to preloading episodes due to different factors such as previous earthquakes, excavations, refilling, compaction, construction of overlying structures, storms under onshore/offshore conditions, among many others. It is well-known that preloading episodes remarkably inf...
- Autores:
-
Duque, J.
Tafili, M.
Mašín, D.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10565
- Acceso en línea:
- https://hdl.handle.net/11323/10565
https://repositorio.cuc.edu.co/
- Palabra clave:
- Constitutive modeling
Cyclic loading
Liquefaction
Preloading history
Sand
Hypoplasticity
Elastoplasticity
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_c235a2890b5d39f669a0185376bb94ca |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10565 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.none.fl_str_mv |
On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study |
title |
On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study |
spellingShingle |
On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study Constitutive modeling Cyclic loading Liquefaction Preloading history Sand Hypoplasticity Elastoplasticity |
title_short |
On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study |
title_full |
On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study |
title_fullStr |
On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study |
title_full_unstemmed |
On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study |
title_sort |
On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study |
dc.creator.fl_str_mv |
Duque, J. Tafili, M. Mašín, D. |
dc.contributor.author.none.fl_str_mv |
Duque, J. Tafili, M. Mašín, D. |
dc.subject.proposal.eng.fl_str_mv |
Constitutive modeling Cyclic loading Liquefaction Preloading history Sand Hypoplasticity Elastoplasticity |
topic |
Constitutive modeling Cyclic loading Liquefaction Preloading history Sand Hypoplasticity Elastoplasticity |
description |
Soil deposits may be subjected to preloading episodes due to different factors such as previous earthquakes, excavations, refilling, compaction, construction of overlying structures, storms under onshore/offshore conditions, among many others. It is well-known that preloading episodes remarkably influence the subsequent soil mechanical behavior and liquefaction resistance. In order to accurately describe the influence of cyclic preloadings, advanced constitutive models which are able to realistically reproduce the soil mechanical behavior are necessary. In this work, a numerical study was carried out to investigate the influence of cyclic preloadings on the liquefaction resistance of sands. The numerical analyses were performed considering three advanced and well established constitutive models, namely: the hypoplastic model for sands by Von Wolffersdorf (1996) with the Intergranular Strain extension by Niemunis and Herle (1997), the same hypoplastic model for sands extended with Intergranular Strain Anisotropy by Fuentes et al. (2020), and the bounding surface plasticity model Sanisand by Dafalias and Manzari (2004). The simulations were performed based on the experimental databases on Zbraslav sand by Duque et al. (2023a,b). Remarks about the model capabilities and limitations on tests with different types of cyclic preloadings and their repercussion on boundary value simulations are given at the end. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-10-31T13:32:44Z |
dc.date.available.none.fl_str_mv |
2023-10-31T13:32:44Z 2025 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
J. Duque, M. Tafili, D. Mašín, On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study, Soil Dynamics and Earthquake Engineering, Volume 172, 2023, 108025, ISSN 0267-7261, https://doi.org/10.1016/j.soildyn.2023.108025 |
dc.identifier.issn.spa.fl_str_mv |
0267-7261 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10565 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.soildyn.2023.108025 |
dc.identifier.eissn.spa.fl_str_mv |
1879-341X |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
J. Duque, M. Tafili, D. Mašín, On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study, Soil Dynamics and Earthquake Engineering, Volume 172, 2023, 108025, ISSN 0267-7261, https://doi.org/10.1016/j.soildyn.2023.108025 0267-7261 10.1016/j.soildyn.2023.108025 1879-341X Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/10565 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Soil Dynamics and Earthquake Engineering |
dc.relation.references.spa.fl_str_mv |
[1] Wichtmann T, Fuentes W, Triantafyllidis T. Inspection of three sophisticated constitutive models based on monotonic and cyclic tests on fine sand: Hypoplasticity vs. Sanisand vs. ISA. Soil Dyn Earthq Eng 2019;124:172–83. [2] Duque J, Roháč J, Mašín D, Najser J, Opršal J. The influence of cyclic preloadings on cyclic response of Zbraslav sand. Soil Dyn Earthq Eng 2023;166:107720. [3] Duque J, Roháč J, Mašín D. On the influence of drained cyclic preloadings on the cyclic behaviour of Zbraslav sand. Soil Dyn Earthq Eng 2023;165:107666. [4] Tafili M. On the behaviour of cohesive soils: Constitutive description and experimental observations [Ph.D. thesis], Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology; 2019. [5] Prevost J. A simple plasticity theory for frictional cohesionless soils. Soil Dyn Earthq Eng 1985;4(1):9–17. [6] Elgamal A, Yang Z, Parra E. Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dyn Earthq Eng 2002;22(4):259–71. [7] Yang Z, Elgamal A, Parra E. Computational model for cyclic mobility and associated shear deformation. J Geotech Geoenviron Eng 2003;129(12):1119–27. [8] Dafalias Y, Manzari M. Simple plasticity sand model accounting for fabric change effects. J Eng Mech 2004;130(6):622–34. [9] Niemunis A, Herle I. Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohes-Frict Mater 1997;2(4):279–99. [10] Fuentes W, Wichtmann T, Gil M, Lascarro C. ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis. Acta Geotech 2020;15:1513–31. [11] Liao D, Yang Z. Hypoplastic modeling of anisotropic sand behavior accounting for fabric evolution under monotonic and cyclic loading. Acta Geotech 2021;16:2003–29. [12] Yang M, Taiebat M, Dafalias YF. SANISAND-MSf: a sand plasticity model with memory surface and semifluidised state. Géotechnique 2022;72(3):227–46. [13] Duque J, Yang M, Fuentes W, Mašín D, Taiebat M. Characteristic limitations of advanced plasticity and hypoplasticity models for cyclic loading of sands. Acta Geotech 2022;17:2235–57. [14] Duque J, Yang M, Fuentes W, Mašín D, Taiebat M. Evaluation of four advanced plasticity and hypoplasticity models in simulating cyclic response of sands. In: 16th international conference on computational plasticity. 2022. [15] Duque J, Tafili M, Seidalinov G, Mašín D, Fuentes W. Inspection of four advanced constitutive models for fine-grained soils under monotonic and cyclic loading. Acta Geotech 2022;17:4395–418. [16] Tafili M, Triantafyllidis T. State-dependent dilatancy of soils: experimental evidence and constitutive modeling. In: Recent developments of soil mechanics and geotechnics in theory and practice. Springer; 2020, p. 54–84. [17] Knittel L, Tafili M, Grandas C, Triantafyllidis T. New perspectives on preshearing history in granular soils. Sci Rep 2023;13(4576). [18] Pan K, Cai Y, Yang Z, Pan X. Liquefaction of sand under monotonic and cyclic shear conditions: Impact of drained preloading history. Soil Dyn Earthq Eng 2019;126:105775. [19] Shibata T, Oka F, Ozawa Y. Characteristics of ground deformation due to liquefaction. Soils Found 1996;36(1):65–79. [20] Hyde A, Higuchi T, Yasuhara K. Postcyclic recompression, stiffness, and consolidated cyclic strength of silt. J Geotech Geoenviron Eng 2007;133(4):416–23. [21] Kalving S, Manger E, Hjertager B, Jakobsen J. Wave influenced wind and the effect on offshore wind turbine performance. Energy Procedia 2014;53:202–13. [22] Pérez C, Iglesias D. A review of combined wave and offshore wind energy. Renew Sustain Energy Rev 2015;42:141–53. [23] Tafili M, Grandas Tavera C, Triantafyllidis T, Wichtmann T. On the dilatancy of fine-grained soils. Geotechnics 2021;1(1):192–215. [24] Ochmański M, Mašín D, Duque J, Hong Y, Wang L. Performance of tripod foundations for offshore wind turbines: a numerical study. Géotech Lett 2021;11(3):230–8. [25] Duque J, Roháč J, Mašín D, Najser J. Experimental investigation on Malaysian kaolin under monotonic and cyclic loading: inspection of undrained miner’s rule and drained cyclic preloading. Acta Geotech 2022;17:4953–75. [26] Tafili M, Duque J, Ochmański M, Mašín D, Wichtmann T. Numerical inspection of Miner’s rule and drained cyclic preloading effects on fine-grained soils. Comput Geotech 2023;156:105310. [27] El-Sekelly W, Abdoun T, Dobry R. Liquefaction resistance of a silty sand deposit subjected to preshaking followed by extensive liquefaction. J Geotech Geoenviron Eng 2016;142(4):04015101. [28] El-Sekelly W, Abdoun T, Dobry R. PRESHAKE: a database for centrifuge modeling of the effect of seismic preshaking history on the liquefaction resistance of sands. Earthq Spectr 2016;32(3):1925–40. [29] Alberto Y, Towhata I. New insight in liquefaction after recent earthquakes: Chile, New Zealand and Japan. In: Earthquakes-tectonics, hazard and risk mitigation. IntechOpen; 2017. [30] Teparaksa J, Koseki J. Effect of past history on liquefaction resistance of level ground in shaking table test. Géotech Lett 2018;8(4):256–61. [31] Wang J, Salam S, Xiao M. The effect of shaking history on liquefaction resistance of sand deposit using shake table testing. In: Geo-congress 2019: Earthquake engineering and soil dynamics. VA: American Society of Civil Engineers Reston; 2019, p. 285–93. [32] Ishihara K. Soil behaviour in earthquake geotechnics. New York: Oxford University Press; 1996. [33] Ishihara K, Okada S. Effects of stress history on cyclic behavior of sand. Soils Found 1978;18(4):31–45. [34] Ishihara K, Okada S. Effects of large preshearing on cyclic behavior of sand. Soils Found 1982;22(3):109–25. [35] Oda M, Kawamoto K, Suzuki K, Fujimori H, Sato M. Microstructural interpretation on reliquefaction of saturated granular soils under cyclic loading. J Geotech Geoenviron Eng 2001;127(5):416–23. [36] Vaid Y, Thomas J. Liquefaction and postliquefaction behavior of sand. J Geotech Eng 1995;121(2):163–73. [37] Sivathayalan S, Yazdi M. Influence of strain history on postliquefaction deformation characteristics of sands. J Geotech Geoenviron Eng 2014;140(3):04013019. [38] Doanh T, Ibraim E, Matiotti R. Undrained instability of very loose hostun sand in triaxial compression and extension. Part 1: experimental observations. Mech Cohes-Frict Mater 1997;2(1):47–70. [39] Dubujet P, Doanh T. Undrained instability of very loose hostun sand in triaxial compression and extension. Part 2: theoretical analysis using an elastoplasticity model. Mech Cohes-Frict Mater 1997;2(1):71–92. [40] Doanh T, Dubujet P, Touron G. Exploring the undrained induced anisotropy of Hostun RF loose sand. Acta Geotech 2010;5(4):239–56. [41] Gajo A, Piffer L. The effects of preloading history on the undrained behaviour of saturated loose sand. Soils Found 1999;39(6):43–53. [42] Finge Z, Doanh T, Dubujet P. Undrained anisotropy of Hostun RF loose sand: new experimental investigations. Can Geotech J 2006;43(11):1195–212. [43] Doanh T, Finge Z, Boucq S. Effects of previous deviatoric strain histories on the undrained behaviour of Hostun RF loose sand. Geotech. Geol. Eng. 2012;30(4):697–712. [44] Fuentes W, Mašín D, Duque J. Constitutive model for monotonic and cyclic loading on anisotropic clays. Géotechnique 2021;71(8):657–73. [45] Stallebrass S. Modelling the effect of recent stress history on the deformation of overconsolidated soils [Ph.D. thesis], London, UK: University of London; 1990. [46] Duque J, Mašín D, Fuentes W. Hypoplastic model for clays with stiffness anisotropy. In: IACMAG 2021: Challenges and innovations in geomechanics. 2021, p. 414–21. [47] Afifi S, Richart J. Stress-history effects on shear modulus of soils. Soils Found 1973;13(1):77–95. [48] Atkinson J, Richardson D, Stallebrass S. Effect of recent stress history on the stiffness of overconsolidated soil. Géotechnique 1990;40(4):531–40. [49] Stallebrass S, Taylor R. The development and evaluation of a constitutive model for the prediction of ground movements in overconsolidated clay. Géotechnique 1997;47(2):235–53. [50] Wolffersdorff V. A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohes-Frict Mater 1996;1(3):251–71. [51] Wegener D, Herle I. Prediction of permanent soil deformations due to cyclic shearing with a hypoplastic constitutive model. Geotechnik 2014;37(2):113–22. [52] Duque J, Mašín D, Fuentes W. Improvement to the intergranular strain model for larger numbers of repetitive cycles. Acta Geotech 2020;15:3593–604. [53] Taiebat M, Dafalias Y. SANISAND: simple anisotropic sand plasticity model. Int J Numer Anal Methods Geomech 2008;32(8):915–48. [54] Liu H, Abell J, Diambra A, Pisanò F. Modelling the cyclic ratcheting of sands through memory-enhanced bounding surface plasticity. Géotechnique 2019;69(9):783–800. [55] Niemunis A. Incremental driver, user’s manual. Germany: University of Karlsruhe KIT; 2008, https://soilmodels.com/idriver. [56] Herle I, Gudehus G. Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech Cohes-Frict Mater 1999;4(5):461–86. [57] Machaček J, Staubach P, Tavera CEG, Wichtmann T, Zachert H. On the automatic parameter calibration of a hypoplastic soil model. Acta Geotech 2022;1–21. [58] Yang Z, Liao D, Xu T. A hypoplastic model for granular soils incorporating anisotropic critical state theory. Int J Numer Anal Methods Geomech 2020;44(6):723–48. [59] Liao D, Yang Z. Hypoplastic modeling of anisotropic sand behavior accounting for fabric evolution under monotonic and cyclic loading. Acta Geotech 2021;16(7):2003–29. [60] Barrero A, Taiebat M, Dafalias Y. Modeling cyclic shearing of sands in the semifluidized state. Int J Numer Anal Methods Geomech 2020;44(3):371–88. [61] Ghionna V, Porcino D. Liquefaction resistance of undisturbed and reconstituted samples of a natural coarse sand from undrained cyclic triaxial tests. J Geotech Geoenviron Eng 2006;132(2):194–202. [62] Hyodo M, Hyde A, Aramaki N. Liquefaction of crushable soils. Géotechnique 1998;48(4):527–43. [63] Yang J, Sze H. Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions. Géotechnique 2011;61(1):59–73. [64] Yang J, Sze H. Cyclic strength of sand under sustained shear stress. J Geotech Geoenviron Eng 2011;137(12):1275–85. [65] Fuentes W, Gil M, Duque J. Dynamic simulation of the sudden settlement of a mine waste dump under earthquake loading. Int J Min Reclam Environ 2019;33(6):425–43. [66] Sharma S, Ismail M. Monotonic and cyclic behavior of two calcareous soils of different origins. J Geotech Geoenviron Eng 2006;132(12):1581–91. [67] Wijewickreme D, Sriskandakumar S, Byrne P. Cyclic loading response of loose air-pluviated Fraser River sand for validation of numerical models simulating centrifuge tests. Can Geotech J 2005;42(2):550–61. [68] Vaid Y, Chung E, Kuerbis R. Preshearing and undrained response of sand. Soils Found 1989;29(4):49–61. [69] Vaid Y, Chern J. Effect of static shear on resistance to liquefaction. Soils Found 1983;23(1):47–60. [70] Oda M, Kawamoto K, Suzuki K, Fujimori H, Sato M. Microstructural interpretation on reliquefaction of saturated granular soils under cyclic loading. J Geotech Geoenviron Eng 2001;127(5):416–23. [71] Yasuda S, Tohno I. Sites of reliquefaction caused by the 1983 Nihonkai-Chubu earthquake. Soils Found 1988;28(2):61–72. [72] Lai Y, Wang L, Hong Y, He B. Centrifuge modeling of the cyclic lateral behavior of large-diameter monopiles in soft clay: Effects of episodic cycling and reconsolidation. Ocean Eng 2020;200:1–17. [73] El-Sekelly W, Mercado V, Abdoun T, Dobry R, Sepúlveda A. Contraction and pore pressure behavior of a silty sand deposit subjected to an extended shaking history. Soil Dyn Earthq Eng 2018;114:215–24. [74] Porcino D, Caridi G. Pre- and post-liquefaction response of sand in cyclic simple shear. In: Geo-Denver 2007: New peaks in geotechnics. 2007, p. 1–10. [75] Porcino D, Marciano‘ V, Ghionna V. Influence of cyclic pre-shearing on undrained behaviour of carbonate sand in simple shear tests. Geomech Geoengin 2009;4(2):151–61. [76] Yamada S, Takamori T, Sato K. Effects on reliquefaction resistance produced by changes in anisotropy during liquefaction. Soils Found 2010;50(1):9–25. [77] Knittel L, Tafili M, Tavera CG, Triantafyllidis T. New perspectives on preshearing history in granular soils. Sci Rep Nat 2023. [78] Duque J, Ochmański M, Mašín D, Hong Y, Wang L. On the behavior of monopiles subjected to multiple episodes of cyclic loading and reconsolidation in cohesive soils. Comput Geotech 2021;134. [79] Duque J, Ochmański M, Mašín D. On the influence of multiple episodes of cyclic loading and reconsolidation on the behavior of monopiles embedded in finegrained soils. In: IACMAG 2022: Challenges and innovations in geomechanics. 2022, p. 95–101. [80] Wichtmann T, Niemunis A, Triantafyllidis T, Poblete M. Correlation of cyclic preloading with the liquefaction resistance. Soil Dyn Earthq Eng 2005;25(12):923–32. [81] Wichtmann T, Triantafyllidis T. Monotonic and cyclic tests on kaolin: a database for the development, calibration and verification of constitutive models for cohesive soils with focus to cyclic loading. Acta Geotech 2018;13(5):1103–28. [82] Andersen K. Cyclic soil parameters for offshore foundation design. In: Frontiers in offshore geotechnics III: Proceedings of the 3rd international symposium on frontiers in offshore geotechnics. 2015, p. 5–82. [83] Liu H, Diambra A, Abell J, Pisanò F. Memory-enhanced plasticity modeling of sand behavior under undrained cyclic loading. J Geotech Geoenviron Eng 2020;146(11):04020122. [84] Wang L, Wang H, Zhu B, Hong Y. Comparison of monotonic and cyclic lateral response between monopod and tripod bucket foundations in medium dense sand. Ocean Eng 2018;155:88–105. [85] Hong Y, Koo C, Zhou C, Ng C, Wang L. Small strain path-dependent stiffness of Toyoura sand: Laboratory measurement and numerical implementation. Int J Geomech 2017;17(1):04016036. [86] Pradhan T, Tatsuoka F, Sato Y. Experimental stress-dilatancy relations of sand subjected to cyclic loading. Soils Found 1989;29(1):45–64. [87] Liao D, Yang Z, Wang S, Wu W. Hypoplastic model with fabric change effect and semifluidized state for post-liquefaction cyclic behavior of sand. Int J Numer Anal Methods Geomech 2022;46(17):3154–77. |
dc.relation.citationendpage.spa.fl_str_mv |
18 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
172 |
dc.rights.eng.fl_str_mv |
© 2023 Elsevier Ltd. All rights reserved. |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2023 Elsevier Ltd. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
18 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier BV |
dc.publisher.place.spa.fl_str_mv |
United Kingdom |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0267726123002701 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/7173ae65-b210-4825-8123-3dd25d8267fd/download https://repositorio.cuc.edu.co/bitstreams/d34f72fb-aa6e-4185-8b44-d7dd09638325/download https://repositorio.cuc.edu.co/bitstreams/fbf7551c-296e-4265-98c1-bc3ade674c93/download https://repositorio.cuc.edu.co/bitstreams/1faa1d8a-f5b6-43e5-8152-89c7582782cc/download |
bitstream.checksum.fl_str_mv |
be96c8d8c27de490b1923df5b2fbf3c2 2f9959eaf5b71fae44bbf9ec84150c7a cca5c403d1f58c7366eaed3b08fd2ead a134ed7f46cabeee16d826b065611f95 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760849758453760 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2023 Elsevier Ltd. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfDuque, J.Tafili, M.Mašín, D.2023-10-31T13:32:44Z20252023-10-31T13:32:44Z2023J. Duque, M. Tafili, D. Mašín, On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study, Soil Dynamics and Earthquake Engineering, Volume 172, 2023, 108025, ISSN 0267-7261, https://doi.org/10.1016/j.soildyn.2023.1080250267-7261https://hdl.handle.net/11323/1056510.1016/j.soildyn.2023.1080251879-341XCorporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Soil deposits may be subjected to preloading episodes due to different factors such as previous earthquakes, excavations, refilling, compaction, construction of overlying structures, storms under onshore/offshore conditions, among many others. It is well-known that preloading episodes remarkably influence the subsequent soil mechanical behavior and liquefaction resistance. In order to accurately describe the influence of cyclic preloadings, advanced constitutive models which are able to realistically reproduce the soil mechanical behavior are necessary. In this work, a numerical study was carried out to investigate the influence of cyclic preloadings on the liquefaction resistance of sands. The numerical analyses were performed considering three advanced and well established constitutive models, namely: the hypoplastic model for sands by Von Wolffersdorf (1996) with the Intergranular Strain extension by Niemunis and Herle (1997), the same hypoplastic model for sands extended with Intergranular Strain Anisotropy by Fuentes et al. (2020), and the bounding surface plasticity model Sanisand by Dafalias and Manzari (2004). The simulations were performed based on the experimental databases on Zbraslav sand by Duque et al. (2023a,b). Remarks about the model capabilities and limitations on tests with different types of cyclic preloadings and their repercussion on boundary value simulations are given at the end.18 páginasapplication/pdfengElsevier BVUnited Kingdomhttps://www.sciencedirect.com/science/article/pii/S0267726123002701On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical studyArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Soil Dynamics and Earthquake Engineering[1] Wichtmann T, Fuentes W, Triantafyllidis T. Inspection of three sophisticated constitutive models based on monotonic and cyclic tests on fine sand: Hypoplasticity vs. Sanisand vs. ISA. Soil Dyn Earthq Eng 2019;124:172–83.[2] Duque J, Roháč J, Mašín D, Najser J, Opršal J. The influence of cyclic preloadings on cyclic response of Zbraslav sand. Soil Dyn Earthq Eng 2023;166:107720.[3] Duque J, Roháč J, Mašín D. On the influence of drained cyclic preloadings on the cyclic behaviour of Zbraslav sand. Soil Dyn Earthq Eng 2023;165:107666.[4] Tafili M. On the behaviour of cohesive soils: Constitutive description and experimental observations [Ph.D. thesis], Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology; 2019.[5] Prevost J. A simple plasticity theory for frictional cohesionless soils. Soil Dyn Earthq Eng 1985;4(1):9–17.[6] Elgamal A, Yang Z, Parra E. Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dyn Earthq Eng 2002;22(4):259–71.[7] Yang Z, Elgamal A, Parra E. Computational model for cyclic mobility and associated shear deformation. J Geotech Geoenviron Eng 2003;129(12):1119–27.[8] Dafalias Y, Manzari M. Simple plasticity sand model accounting for fabric change effects. J Eng Mech 2004;130(6):622–34.[9] Niemunis A, Herle I. Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohes-Frict Mater 1997;2(4):279–99.[10] Fuentes W, Wichtmann T, Gil M, Lascarro C. ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis. Acta Geotech 2020;15:1513–31.[11] Liao D, Yang Z. Hypoplastic modeling of anisotropic sand behavior accounting for fabric evolution under monotonic and cyclic loading. Acta Geotech 2021;16:2003–29.[12] Yang M, Taiebat M, Dafalias YF. SANISAND-MSf: a sand plasticity model with memory surface and semifluidised state. Géotechnique 2022;72(3):227–46.[13] Duque J, Yang M, Fuentes W, Mašín D, Taiebat M. Characteristic limitations of advanced plasticity and hypoplasticity models for cyclic loading of sands. Acta Geotech 2022;17:2235–57.[14] Duque J, Yang M, Fuentes W, Mašín D, Taiebat M. Evaluation of four advanced plasticity and hypoplasticity models in simulating cyclic response of sands. In: 16th international conference on computational plasticity. 2022.[15] Duque J, Tafili M, Seidalinov G, Mašín D, Fuentes W. Inspection of four advanced constitutive models for fine-grained soils under monotonic and cyclic loading. Acta Geotech 2022;17:4395–418.[16] Tafili M, Triantafyllidis T. State-dependent dilatancy of soils: experimental evidence and constitutive modeling. In: Recent developments of soil mechanics and geotechnics in theory and practice. Springer; 2020, p. 54–84.[17] Knittel L, Tafili M, Grandas C, Triantafyllidis T. New perspectives on preshearing history in granular soils. Sci Rep 2023;13(4576).[18] Pan K, Cai Y, Yang Z, Pan X. Liquefaction of sand under monotonic and cyclic shear conditions: Impact of drained preloading history. Soil Dyn Earthq Eng 2019;126:105775.[19] Shibata T, Oka F, Ozawa Y. Characteristics of ground deformation due to liquefaction. Soils Found 1996;36(1):65–79.[20] Hyde A, Higuchi T, Yasuhara K. Postcyclic recompression, stiffness, and consolidated cyclic strength of silt. J Geotech Geoenviron Eng 2007;133(4):416–23.[21] Kalving S, Manger E, Hjertager B, Jakobsen J. Wave influenced wind and the effect on offshore wind turbine performance. Energy Procedia 2014;53:202–13.[22] Pérez C, Iglesias D. A review of combined wave and offshore wind energy. Renew Sustain Energy Rev 2015;42:141–53.[23] Tafili M, Grandas Tavera C, Triantafyllidis T, Wichtmann T. On the dilatancy of fine-grained soils. Geotechnics 2021;1(1):192–215.[24] Ochmański M, Mašín D, Duque J, Hong Y, Wang L. Performance of tripod foundations for offshore wind turbines: a numerical study. Géotech Lett 2021;11(3):230–8.[25] Duque J, Roháč J, Mašín D, Najser J. Experimental investigation on Malaysian kaolin under monotonic and cyclic loading: inspection of undrained miner’s rule and drained cyclic preloading. Acta Geotech 2022;17:4953–75.[26] Tafili M, Duque J, Ochmański M, Mašín D, Wichtmann T. Numerical inspection of Miner’s rule and drained cyclic preloading effects on fine-grained soils. Comput Geotech 2023;156:105310.[27] El-Sekelly W, Abdoun T, Dobry R. Liquefaction resistance of a silty sand deposit subjected to preshaking followed by extensive liquefaction. J Geotech Geoenviron Eng 2016;142(4):04015101.[28] El-Sekelly W, Abdoun T, Dobry R. PRESHAKE: a database for centrifuge modeling of the effect of seismic preshaking history on the liquefaction resistance of sands. Earthq Spectr 2016;32(3):1925–40.[29] Alberto Y, Towhata I. New insight in liquefaction after recent earthquakes: Chile, New Zealand and Japan. In: Earthquakes-tectonics, hazard and risk mitigation. IntechOpen; 2017.[30] Teparaksa J, Koseki J. Effect of past history on liquefaction resistance of level ground in shaking table test. Géotech Lett 2018;8(4):256–61.[31] Wang J, Salam S, Xiao M. The effect of shaking history on liquefaction resistance of sand deposit using shake table testing. In: Geo-congress 2019: Earthquake engineering and soil dynamics. VA: American Society of Civil Engineers Reston; 2019, p. 285–93.[32] Ishihara K. Soil behaviour in earthquake geotechnics. New York: Oxford University Press; 1996.[33] Ishihara K, Okada S. Effects of stress history on cyclic behavior of sand. Soils Found 1978;18(4):31–45.[34] Ishihara K, Okada S. Effects of large preshearing on cyclic behavior of sand. Soils Found 1982;22(3):109–25.[35] Oda M, Kawamoto K, Suzuki K, Fujimori H, Sato M. Microstructural interpretation on reliquefaction of saturated granular soils under cyclic loading. J Geotech Geoenviron Eng 2001;127(5):416–23.[36] Vaid Y, Thomas J. Liquefaction and postliquefaction behavior of sand. J Geotech Eng 1995;121(2):163–73.[37] Sivathayalan S, Yazdi M. Influence of strain history on postliquefaction deformation characteristics of sands. J Geotech Geoenviron Eng 2014;140(3):04013019.[38] Doanh T, Ibraim E, Matiotti R. Undrained instability of very loose hostun sand in triaxial compression and extension. Part 1: experimental observations. Mech Cohes-Frict Mater 1997;2(1):47–70.[39] Dubujet P, Doanh T. Undrained instability of very loose hostun sand in triaxial compression and extension. Part 2: theoretical analysis using an elastoplasticity model. Mech Cohes-Frict Mater 1997;2(1):71–92.[40] Doanh T, Dubujet P, Touron G. Exploring the undrained induced anisotropy of Hostun RF loose sand. Acta Geotech 2010;5(4):239–56.[41] Gajo A, Piffer L. The effects of preloading history on the undrained behaviour of saturated loose sand. Soils Found 1999;39(6):43–53.[42] Finge Z, Doanh T, Dubujet P. Undrained anisotropy of Hostun RF loose sand: new experimental investigations. Can Geotech J 2006;43(11):1195–212.[43] Doanh T, Finge Z, Boucq S. Effects of previous deviatoric strain histories on the undrained behaviour of Hostun RF loose sand. Geotech. Geol. Eng. 2012;30(4):697–712.[44] Fuentes W, Mašín D, Duque J. Constitutive model for monotonic and cyclic loading on anisotropic clays. Géotechnique 2021;71(8):657–73.[45] Stallebrass S. Modelling the effect of recent stress history on the deformation of overconsolidated soils [Ph.D. thesis], London, UK: University of London; 1990.[46] Duque J, Mašín D, Fuentes W. Hypoplastic model for clays with stiffness anisotropy. In: IACMAG 2021: Challenges and innovations in geomechanics. 2021, p. 414–21.[47] Afifi S, Richart J. Stress-history effects on shear modulus of soils. Soils Found 1973;13(1):77–95.[48] Atkinson J, Richardson D, Stallebrass S. Effect of recent stress history on the stiffness of overconsolidated soil. Géotechnique 1990;40(4):531–40.[49] Stallebrass S, Taylor R. The development and evaluation of a constitutive model for the prediction of ground movements in overconsolidated clay. Géotechnique 1997;47(2):235–53.[50] Wolffersdorff V. A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohes-Frict Mater 1996;1(3):251–71.[51] Wegener D, Herle I. Prediction of permanent soil deformations due to cyclic shearing with a hypoplastic constitutive model. Geotechnik 2014;37(2):113–22.[52] Duque J, Mašín D, Fuentes W. Improvement to the intergranular strain model for larger numbers of repetitive cycles. Acta Geotech 2020;15:3593–604.[53] Taiebat M, Dafalias Y. SANISAND: simple anisotropic sand plasticity model. Int J Numer Anal Methods Geomech 2008;32(8):915–48.[54] Liu H, Abell J, Diambra A, Pisanò F. Modelling the cyclic ratcheting of sands through memory-enhanced bounding surface plasticity. Géotechnique 2019;69(9):783–800.[55] Niemunis A. Incremental driver, user’s manual. Germany: University of Karlsruhe KIT; 2008, https://soilmodels.com/idriver.[56] Herle I, Gudehus G. Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech Cohes-Frict Mater 1999;4(5):461–86.[57] Machaček J, Staubach P, Tavera CEG, Wichtmann T, Zachert H. On the automatic parameter calibration of a hypoplastic soil model. Acta Geotech 2022;1–21.[58] Yang Z, Liao D, Xu T. A hypoplastic model for granular soils incorporating anisotropic critical state theory. Int J Numer Anal Methods Geomech 2020;44(6):723–48.[59] Liao D, Yang Z. Hypoplastic modeling of anisotropic sand behavior accounting for fabric evolution under monotonic and cyclic loading. Acta Geotech 2021;16(7):2003–29.[60] Barrero A, Taiebat M, Dafalias Y. Modeling cyclic shearing of sands in the semifluidized state. Int J Numer Anal Methods Geomech 2020;44(3):371–88.[61] Ghionna V, Porcino D. Liquefaction resistance of undisturbed and reconstituted samples of a natural coarse sand from undrained cyclic triaxial tests. J Geotech Geoenviron Eng 2006;132(2):194–202.[62] Hyodo M, Hyde A, Aramaki N. Liquefaction of crushable soils. Géotechnique 1998;48(4):527–43.[63] Yang J, Sze H. Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions. Géotechnique 2011;61(1):59–73.[64] Yang J, Sze H. Cyclic strength of sand under sustained shear stress. J Geotech Geoenviron Eng 2011;137(12):1275–85.[65] Fuentes W, Gil M, Duque J. Dynamic simulation of the sudden settlement of a mine waste dump under earthquake loading. Int J Min Reclam Environ 2019;33(6):425–43.[66] Sharma S, Ismail M. Monotonic and cyclic behavior of two calcareous soils of different origins. J Geotech Geoenviron Eng 2006;132(12):1581–91.[67] Wijewickreme D, Sriskandakumar S, Byrne P. Cyclic loading response of loose air-pluviated Fraser River sand for validation of numerical models simulating centrifuge tests. Can Geotech J 2005;42(2):550–61.[68] Vaid Y, Chung E, Kuerbis R. Preshearing and undrained response of sand. Soils Found 1989;29(4):49–61.[69] Vaid Y, Chern J. Effect of static shear on resistance to liquefaction. Soils Found 1983;23(1):47–60.[70] Oda M, Kawamoto K, Suzuki K, Fujimori H, Sato M. Microstructural interpretation on reliquefaction of saturated granular soils under cyclic loading. J Geotech Geoenviron Eng 2001;127(5):416–23.[71] Yasuda S, Tohno I. Sites of reliquefaction caused by the 1983 Nihonkai-Chubu earthquake. Soils Found 1988;28(2):61–72.[72] Lai Y, Wang L, Hong Y, He B. Centrifuge modeling of the cyclic lateral behavior of large-diameter monopiles in soft clay: Effects of episodic cycling and reconsolidation. Ocean Eng 2020;200:1–17.[73] El-Sekelly W, Mercado V, Abdoun T, Dobry R, Sepúlveda A. Contraction and pore pressure behavior of a silty sand deposit subjected to an extended shaking history. Soil Dyn Earthq Eng 2018;114:215–24.[74] Porcino D, Caridi G. Pre- and post-liquefaction response of sand in cyclic simple shear. In: Geo-Denver 2007: New peaks in geotechnics. 2007, p. 1–10.[75] Porcino D, Marciano‘ V, Ghionna V. Influence of cyclic pre-shearing on undrained behaviour of carbonate sand in simple shear tests. Geomech Geoengin 2009;4(2):151–61.[76] Yamada S, Takamori T, Sato K. Effects on reliquefaction resistance produced by changes in anisotropy during liquefaction. Soils Found 2010;50(1):9–25.[77] Knittel L, Tafili M, Tavera CG, Triantafyllidis T. New perspectives on preshearing history in granular soils. Sci Rep Nat 2023.[78] Duque J, Ochmański M, Mašín D, Hong Y, Wang L. On the behavior of monopiles subjected to multiple episodes of cyclic loading and reconsolidation in cohesive soils. Comput Geotech 2021;134.[79] Duque J, Ochmański M, Mašín D. On the influence of multiple episodes of cyclic loading and reconsolidation on the behavior of monopiles embedded in finegrained soils. In: IACMAG 2022: Challenges and innovations in geomechanics. 2022, p. 95–101.[80] Wichtmann T, Niemunis A, Triantafyllidis T, Poblete M. Correlation of cyclic preloading with the liquefaction resistance. Soil Dyn Earthq Eng 2005;25(12):923–32.[81] Wichtmann T, Triantafyllidis T. Monotonic and cyclic tests on kaolin: a database for the development, calibration and verification of constitutive models for cohesive soils with focus to cyclic loading. Acta Geotech 2018;13(5):1103–28.[82] Andersen K. Cyclic soil parameters for offshore foundation design. In: Frontiers in offshore geotechnics III: Proceedings of the 3rd international symposium on frontiers in offshore geotechnics. 2015, p. 5–82.[83] Liu H, Diambra A, Abell J, Pisanò F. Memory-enhanced plasticity modeling of sand behavior under undrained cyclic loading. J Geotech Geoenviron Eng 2020;146(11):04020122.[84] Wang L, Wang H, Zhu B, Hong Y. Comparison of monotonic and cyclic lateral response between monopod and tripod bucket foundations in medium dense sand. Ocean Eng 2018;155:88–105.[85] Hong Y, Koo C, Zhou C, Ng C, Wang L. Small strain path-dependent stiffness of Toyoura sand: Laboratory measurement and numerical implementation. Int J Geomech 2017;17(1):04016036.[86] Pradhan T, Tatsuoka F, Sato Y. Experimental stress-dilatancy relations of sand subjected to cyclic loading. Soils Found 1989;29(1):45–64.[87] Liao D, Yang Z, Wang S, Wu W. Hypoplastic model with fabric change effect and semifluidized state for post-liquefaction cyclic behavior of sand. Int J Numer Anal Methods Geomech 2022;46(17):3154–77.181172Constitutive modelingCyclic loadingLiquefactionPreloading historySandHypoplasticityElastoplasticityPublicationORIGINALOn the influence of cyclic preloadings on the liquefaction resistance of sands.pdfOn the influence of cyclic preloadings on the liquefaction resistance of sands.pdfArtículosapplication/pdf23561786https://repositorio.cuc.edu.co/bitstreams/7173ae65-b210-4825-8123-3dd25d8267fd/downloadbe96c8d8c27de490b1923df5b2fbf3c2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/d34f72fb-aa6e-4185-8b44-d7dd09638325/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTOn the influence of cyclic preloadings on the liquefaction resistance of sands.pdf.txtOn the influence of cyclic preloadings on the liquefaction resistance of sands.pdf.txtExtracted texttext/plain82112https://repositorio.cuc.edu.co/bitstreams/fbf7551c-296e-4265-98c1-bc3ade674c93/downloadcca5c403d1f58c7366eaed3b08fd2eadMD53THUMBNAILOn the influence of cyclic preloadings on the liquefaction resistance of sands.pdf.jpgOn the influence of cyclic preloadings on the liquefaction resistance of sands.pdf.jpgGenerated Thumbnailimage/jpeg15169https://repositorio.cuc.edu.co/bitstreams/1faa1d8a-f5b6-43e5-8152-89c7582782cc/downloada134ed7f46cabeee16d826b065611f95MD5411323/10565oai:repositorio.cuc.edu.co:11323/105652024-09-17 14:10:44.567https://creativecommons.org/licenses/by-nc-nd/4.0/© 2023 Elsevier Ltd. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |