Genetic system for project support with the sequencing problem

One of the main problems faced by manufacturing companies in the production sequencing, also called scheduling, which consists of identifying the best way to order the production program on the machines for improving efficiency. This paper presents the integration of a simulation model with an optim...

Full description

Autores:
Viloria, Amelec
Varela, Noel
Herazo-Beltran, Carlos
Pineda Lezama, Omar Bonerge
Mercado, Alberto
Martinez Ventura, Jairo
Hernandez Palma, Hugo
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7704
Acceso en línea:
https://hdl.handle.net/11323/7704
https://doi.org/10.1007/978-981-15-7234-0_93
https://repositorio.cuc.edu.co/
Palabra clave:
Simulation
Programming
Dynamic sequencing
Job shop
Stochastic demand
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_c0d94d1849b80e1bf432e3c4b4305ad1
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7704
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Genetic system for project support with the sequencing problem
title Genetic system for project support with the sequencing problem
spellingShingle Genetic system for project support with the sequencing problem
Simulation
Programming
Dynamic sequencing
Job shop
Stochastic demand
title_short Genetic system for project support with the sequencing problem
title_full Genetic system for project support with the sequencing problem
title_fullStr Genetic system for project support with the sequencing problem
title_full_unstemmed Genetic system for project support with the sequencing problem
title_sort Genetic system for project support with the sequencing problem
dc.creator.fl_str_mv Viloria, Amelec
Varela, Noel
Herazo-Beltran, Carlos
Pineda Lezama, Omar Bonerge
Mercado, Alberto
Martinez Ventura, Jairo
Hernandez Palma, Hugo
dc.contributor.author.spa.fl_str_mv Viloria, Amelec
Varela, Noel
Herazo-Beltran, Carlos
Pineda Lezama, Omar Bonerge
Mercado, Alberto
Martinez Ventura, Jairo
Hernandez Palma, Hugo
dc.subject.spa.fl_str_mv Simulation
Programming
Dynamic sequencing
Job shop
Stochastic demand
topic Simulation
Programming
Dynamic sequencing
Job shop
Stochastic demand
description One of the main problems faced by manufacturing companies in the production sequencing, also called scheduling, which consists of identifying the best way to order the production program on the machines for improving efficiency. This paper presents the integration of a simulation model with an optimization method to solve the problem of dynamic programming with stochastic demand.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-01-15T21:46:36Z
dc.date.available.none.fl_str_mv 2021-01-15T21:46:36Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7704
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-981-15-7234-0_93
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7704
https://doi.org/10.1007/978-981-15-7234-0_93
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Iassinovski S, Artiba A, Bachelet V (2003) Integration of simulation and optimization for solving complex decision-making problems. Int J Prod Econ 85(1): 3–10.
2. Hamid M, Hamid M, Musavi M, Azadeh A (2019) Scheduling elective patients based on sequence-dependent setup times in an open-heart surgical department using an optimization and simulation approach. Simulation 95(12):1141–1164
3. Zhang B, Yi L-X, Xiao S (2005) Study of stochastic job shop dynamic scheduling. In: Proceedings of the fourth international conference on machine learning and cybernetics, Guangzhou, China, pp 18–21
4. Zhang B, Xu L, Zhang J (2020) A multi-objective cellular genetic algorithm for energy-oriented balancing and sequencing problem of mixed-model assembly line. J Clean Prod 244:118845
5. Banks J (2000) Introduction to simulation. In: Proceedings of the winter simulation conference, Orlando, FL, USA
6. Mohammadi A, Asadi H, Mohamed S, Nelson K, Nahavandi S (2018) Optimizing model predictive control horizons using genetic algorithm for motion cueing algorithm. Expert Syst Appl 92:73–81
7. Keshanchi B, Souri A, Navimipour NJ (2017) An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testing. J Syst Softw 124:1–21
8. Silva EB, Costa MG, Silva MFS (2014) Simulation study of dispatching rules in stochastic job shop dynamic scheduling. World J Modell Simul 10(3):231–240.
9. Mosadegh H, Ghomi SF, Süer GA (2020) Stochastic mixed-model assembly line sequencing problem: Mathematical modeling and Q-learning based simulated annealing hyper-heuristics. Eur J Oper Res 282(2):530–544
10. Leal F, Costa RFS, Montevechi JAB (2011) A practical guide for operational validation of discrete simulation models. Pesquisa Operacional 31(1):57–77.
11. Kelton WD, Sadowski RP, Sadowski DA (2000) Simulation with ARENA, 2nd edn. McGraw Hill, Boston, USA, pp 385–396. ISBN: 978-0071122399
12. Mitchell TM (1997) Machine learning, 1st edn. McGraw-Hill, New York, USA, pp 249–273.
13. Wall M (1996) GALIB: A C++ library of genetic algorithm components. Mechanical Engineering Departament, Massachussetts Institute of Technology.
14. Seghir F, Khababa A (2018) A hybrid approach using genetic and fruit fly optimization algorithms for QoS-aware cloud service composition. J Intell Manuf 29(8):1773–1792
15. Rauf M, Guan Z, Sarfraz S, Mumtaz J, Shehab E, Jahanzaib M, Hanif M (2020) A smart algorithm for multi-criteria optimization of model sequencing problem in assembly lines. Robot Comput Integr Manuf 61:101844
16. Kumar M, Khatak P (2020) Development of a discretization methodology for 2.5 D milling toolpath optimization using genetic algorithm. In: Advances in computing and intelligent systems. Springer, Singapore, pp 93–104
17. Rajagopalan A, Modale DR, Senthilkumar R (2020) Optimal scheduling of tasks in cloud computing using hybrid firefly-genetic algorithm. In: Advances in decision sciences, image processing, security and computer vision. Springer, Cham, pp 678–687
18. Rekha PM, Dakshayini M (2019) Efficient task allocation approach using genetic algorithm for cloud environment. Cluster Comput 22(4):1241–1251
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Advances in Intelligent Systems and Computing
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-15-7234-0_93
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/1cc7fe11-f336-429e-b731-bdda29d3cc0f/download
https://repositorio.cuc.edu.co/bitstreams/df220b6a-96ef-4fe7-bccb-ef38c66bbb46/download
https://repositorio.cuc.edu.co/bitstreams/8f4a5225-7ae3-47d9-8eed-71675d41149a/download
https://repositorio.cuc.edu.co/bitstreams/fc6fe0d1-d522-4d9f-9c10-4c2ad5705568/download
https://repositorio.cuc.edu.co/bitstreams/57052c62-2169-4a9b-9042-506a4ad6db8f/download
bitstream.checksum.fl_str_mv fc29550dfde240ead3804e7d31af7a12
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
a448d3af953971ebf846e3b7e3c51fe3
ac821773e1202fa567f003cf1c3cc854
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760737760051200
spelling Viloria, AmelecVarela, NoelHerazo-Beltran, CarlosPineda Lezama, Omar BonergeMercado, AlbertoMartinez Ventura, JairoHernandez Palma, Hugo2021-01-15T21:46:36Z2021-01-15T21:46:36Z2021https://hdl.handle.net/11323/7704https://doi.org/10.1007/978-981-15-7234-0_93Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/One of the main problems faced by manufacturing companies in the production sequencing, also called scheduling, which consists of identifying the best way to order the production program on the machines for improving efficiency. This paper presents the integration of a simulation model with an optimization method to solve the problem of dynamic programming with stochastic demand.Viloria, AmelecVarela, NoelHerazo-Beltran, CarlosPineda Lezama, Omar BonergeMercado, AlbertoMartinez Ventura, JairoHernandez Palma, Hugoapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Advances in Intelligent Systems and Computinghttps://link.springer.com/chapter/10.1007/978-981-15-7234-0_93SimulationProgrammingDynamic sequencingJob shopStochastic demandGenetic system for project support with the sequencing problemArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Iassinovski S, Artiba A, Bachelet V (2003) Integration of simulation and optimization for solving complex decision-making problems. Int J Prod Econ 85(1): 3–10.2. Hamid M, Hamid M, Musavi M, Azadeh A (2019) Scheduling elective patients based on sequence-dependent setup times in an open-heart surgical department using an optimization and simulation approach. Simulation 95(12):1141–11643. Zhang B, Yi L-X, Xiao S (2005) Study of stochastic job shop dynamic scheduling. In: Proceedings of the fourth international conference on machine learning and cybernetics, Guangzhou, China, pp 18–214. Zhang B, Xu L, Zhang J (2020) A multi-objective cellular genetic algorithm for energy-oriented balancing and sequencing problem of mixed-model assembly line. J Clean Prod 244:1188455. Banks J (2000) Introduction to simulation. In: Proceedings of the winter simulation conference, Orlando, FL, USA6. Mohammadi A, Asadi H, Mohamed S, Nelson K, Nahavandi S (2018) Optimizing model predictive control horizons using genetic algorithm for motion cueing algorithm. Expert Syst Appl 92:73–817. Keshanchi B, Souri A, Navimipour NJ (2017) An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testing. J Syst Softw 124:1–218. Silva EB, Costa MG, Silva MFS (2014) Simulation study of dispatching rules in stochastic job shop dynamic scheduling. World J Modell Simul 10(3):231–240.9. Mosadegh H, Ghomi SF, Süer GA (2020) Stochastic mixed-model assembly line sequencing problem: Mathematical modeling and Q-learning based simulated annealing hyper-heuristics. Eur J Oper Res 282(2):530–54410. Leal F, Costa RFS, Montevechi JAB (2011) A practical guide for operational validation of discrete simulation models. Pesquisa Operacional 31(1):57–77.11. Kelton WD, Sadowski RP, Sadowski DA (2000) Simulation with ARENA, 2nd edn. McGraw Hill, Boston, USA, pp 385–396. ISBN: 978-007112239912. Mitchell TM (1997) Machine learning, 1st edn. McGraw-Hill, New York, USA, pp 249–273.13. Wall M (1996) GALIB: A C++ library of genetic algorithm components. Mechanical Engineering Departament, Massachussetts Institute of Technology.14. Seghir F, Khababa A (2018) A hybrid approach using genetic and fruit fly optimization algorithms for QoS-aware cloud service composition. J Intell Manuf 29(8):1773–179215. Rauf M, Guan Z, Sarfraz S, Mumtaz J, Shehab E, Jahanzaib M, Hanif M (2020) A smart algorithm for multi-criteria optimization of model sequencing problem in assembly lines. Robot Comput Integr Manuf 61:10184416. Kumar M, Khatak P (2020) Development of a discretization methodology for 2.5 D milling toolpath optimization using genetic algorithm. In: Advances in computing and intelligent systems. Springer, Singapore, pp 93–10417. Rajagopalan A, Modale DR, Senthilkumar R (2020) Optimal scheduling of tasks in cloud computing using hybrid firefly-genetic algorithm. In: Advances in decision sciences, image processing, security and computer vision. Springer, Cham, pp 678–68718. Rekha PM, Dakshayini M (2019) Efficient task allocation approach using genetic algorithm for cloud environment. Cluster Comput 22(4):1241–1251PublicationORIGINALGenetic System for Project Support with the Sequencing Problem.pdfGenetic System for Project Support with the Sequencing Problem.pdfapplication/pdf91852https://repositorio.cuc.edu.co/bitstreams/1cc7fe11-f336-429e-b731-bdda29d3cc0f/downloadfc29550dfde240ead3804e7d31af7a12MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/df220b6a-96ef-4fe7-bccb-ef38c66bbb46/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8f4a5225-7ae3-47d9-8eed-71675d41149a/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILGenetic System for Project Support with the Sequencing Problem.pdf.jpgGenetic System for Project Support with the Sequencing Problem.pdf.jpgimage/jpeg24887https://repositorio.cuc.edu.co/bitstreams/fc6fe0d1-d522-4d9f-9c10-4c2ad5705568/downloada448d3af953971ebf846e3b7e3c51fe3MD54TEXTGenetic System for Project Support with the Sequencing Problem.pdf.txtGenetic System for Project Support with the Sequencing Problem.pdf.txttext/plain714https://repositorio.cuc.edu.co/bitstreams/57052c62-2169-4a9b-9042-506a4ad6db8f/downloadac821773e1202fa567f003cf1c3cc854MD5511323/7704oai:repositorio.cuc.edu.co:11323/77042024-09-17 10:53:47.495http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==