Long-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland

Abstract: Rainwater harvesting (RWH) for domestic uses is widely regarded as an economic and ecological solution in water conservation and storm management programs. This paper aims at evaluating long-term trends in 20-day cumulative rainfall periods per year in Poland, for assessing its impact on t...

Full description

Autores:
Canales, Fausto
Gwózdziej-Mazur, Joanna
Jadwiszczak, Piotr
Struk-Sokolowska, Joanna
Wartalska, Katarzyna
Wdowikowski, Marcin
Kázmierczak, Bartosz
Canales, Fausto Alfredo
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6805
Acceso en línea:
https://hdl.handle.net/11323/6805
https://repositorio.cuc.edu.co/
Palabra clave:
Rainwater
Rainwater harvesting
Mann-Kendall
Rainfall trends
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_c0c9f60257faff648b8f488a01e1b90f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6805
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Long-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland
title Long-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland
spellingShingle Long-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland
Rainwater
Rainwater harvesting
Mann-Kendall
Rainfall trends
title_short Long-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland
title_full Long-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland
title_fullStr Long-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland
title_full_unstemmed Long-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland
title_sort Long-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland
dc.creator.fl_str_mv Canales, Fausto
Gwózdziej-Mazur, Joanna
Jadwiszczak, Piotr
Struk-Sokolowska, Joanna
Wartalska, Katarzyna
Wdowikowski, Marcin
Kázmierczak, Bartosz
Canales, Fausto Alfredo
dc.contributor.author.spa.fl_str_mv Canales, Fausto
Gwózdziej-Mazur, Joanna
Jadwiszczak, Piotr
Struk-Sokolowska, Joanna
Wartalska, Katarzyna
Wdowikowski, Marcin
Kázmierczak, Bartosz
dc.contributor.author.none.fl_str_mv Canales, Fausto Alfredo
dc.subject.spa.fl_str_mv Rainwater
Rainwater harvesting
Mann-Kendall
Rainfall trends
topic Rainwater
Rainwater harvesting
Mann-Kendall
Rainfall trends
description Abstract: Rainwater harvesting (RWH) for domestic uses is widely regarded as an economic and ecological solution in water conservation and storm management programs. This paper aims at evaluating long-term trends in 20-day cumulative rainfall periods per year in Poland, for assessing its impact on the design and operation conditions for RWH systems and resource availability. The time-series employed corresponds to a set of 50-year long time-series of rainfall (from 1970 to 2019) recorded at 19 synoptic meteorological stations scattered across Poland, one of the European countries with the lowest water availability index. The methods employed for assessing trends were the Mann–Kendall test (M–K) and the Sen’s slope estimator. Most of the datasets exhibit stationary behaviour during the 50-year long period, however, statistically significant downward trends were detected for precipitations in Wrocław and Opole. The findings of this study are valuable assets for integrated water management and sustainable planning in Poland.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-22T19:12:18Z
dc.date.available.none.fl_str_mv 2020-07-22T19:12:18Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2073-4441
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6805
dc.identifier.doi.spa.fl_str_mv doi:10.3390/w12071932
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2073-4441
doi:10.3390/w12071932
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6805
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Gutry-Korycka, M.; Sadurski, A.; Kundzewicz, Z.; Pociask-Karteczka, J.; Skrzypczyk, L.; Pociask-Karteczka, J. Zasoby wodne a ich wykorzystanie. Nauka 2014, 1, 77–98.
2. Olichwer, T. Long-term variability of water resources in mountainous areas: Case Study—Kłodzko region (SW Poland). Carpathian J. Earth Environ. Sci. 2019, 14, 29–38. [CrossRef]
3. Małecki, Z.J.; Goł ˛ebiak, P. Zasoby wodne Polski i ´swiata. Zesz. Nauk. In˙zynieria L ˛adowa Wodna Kształtowaniu Srodowiska ´ 2012, 7, 50–56.
4. Kuczy ´nski, W.; Zuchowicki, W. Ocena aktualnej sytuacji w zaopatrzeniu w wode{ogonek} w Polsce na tle sytuacji w ´swiecie. Rocz. Ochr. Sr. 2011, 12, 419–465.
5. Orli ´nska-Wo´zniak, P.; Wilk, P.; G ˛ebala, J. Water availability in reference to water needs in Poland. Meteorol. Hydrol. Water Manag. 2014, 1, 45–50. [CrossRef]
6. Sucho ˙zebrski, J. Zasoby wodne Polski. In Zarz ˛adzanie Zasobami Wodnymi w Polsce; Global Compact Network Poland: Warsaw, Poland, 2018; pp. 92–96.
7. Panasiuk, D.; Suduk, O.; Skrypchuk, P.; Miłaszewski, R. Comparison of the water footprint in Poland and Ukraine. Ekon. Srodowisko ´ 2018, 4, 112–123.
8. Michalczyk, Z. Odpływ ´sredni, zmienno´s´c w czasie i zró˙znicowanie przestrzenne. In Hydrologia Polski; Jokiel, P., Marszelewski, W., Pociask-Karteczka, J., Eds.; Wydawnictwo Naukowe PWN SA: Warsaw, Poland, 2017; ISBN 978-83-01-19618-9.
9. Hegerl, G.C.; Black, E.; Allan, R.P.; Ingram, W.J.; Polson, D.; Trenberth, K.E.; Chadwick, R.S.; Arkin, P.A.; Sarojini, B.B.; Becker, A.; et al. Challenges in Quantifying Changes in the Global Water Cycle. Bull. Am. Meteorol. Soc. 2015, 96, 1097–1115. [CrossRef]
10. Falloon, P.; Betts, R. Climate impacts on European agriculture and water management in the context of adaptation and mitigation—The importance of an integrated approach. Sci. Total Environ. 2010, 408, 5667–5687. [CrossRef]
11. Kundzewicz, Z.W.; Matczak, P. Climate change regional review: Poland. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 297–311. [CrossRef]
12. Lipi ´nska, D. European Union Water Policy: Key Issues and Challenges. Comp. Econ. Res. Cent. East Eur. 2012, 15, 123–141. [CrossRef]
13. Kutyłowska, M. Forecasting failure rate of water pipes. Water Supply 2019, 19, 264–273. [CrossRef]
14. Piasecki, A.; Jurasz, J.; Ka´zmierczak, B. Forecasting Daily Water Consumption: A Case Study in Torun, Poland. Period. Polytech. Civ. Eng. 2018, 62, 818–824. [CrossRef]
15. Dawidowicz, J.; Czapczuk, A.; Piekarski, J. The Application of Artificial Neural Networks in the Assessment of Pressure Losses in Water Pipes in the Design of Water Distribution Systems. Rocz. Ochr. Srodowiska ´ 2018, 20, 292–308.
16. Ward, S.; Barr, S.; Memon, F.; Butler, D. Rainwater harvesting in the UK: Exploring water-user perceptions. Urban. Water J. 2013, 10, 112–126. [CrossRef]
17. Steffen, J.; Jensen, M.; Pomeroy, C.A.; Burian, S.J. Water Supply and Stormwater Management Benefits of Residential Rainwater Harvesting in U.S. Cities. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 810–824. [CrossRef]
18. Torres, M.N.; Fontecha, J.E.; Zhu, Z.; Walteros, J.L.; Rodríguez, J.P. A participatory approach based on stochastic optimization for the spatial allocation of Sustainable Urban Drainage Systems for rainwater harvesting. Environ. Model. Softw. 2020, 123, 104532. [CrossRef]
19. Deitch, M.J.; Feirer, S.T. Cumulative impacts of residential rainwater harvesting on stormwater discharge through a peri-urban drainage network. J. Environ. Manag. 2019, 243, 127–136. [CrossRef]
20. Teston, A.; Teixeira, C.; Ghisi, E.; Cardoso, E. Impact of Rainwater Harvesting on the Drainage System: Case Study of a Condominium of Houses in Curitiba, Southern Brazil. Water 2018, 10, 1100. [CrossRef]
21. Semaan, M.; Day, S.D.; Garvin, M.; Ramakrishnan, N.; Pearce, A. Optimal sizing of rainwater harvesting systems for domestic water usages: A systematic literature review. Resour. Conserv. Recycl. X 2020, 6, 100033. [CrossRef]
22. Council of the European Union. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption; Council of the European Union: Brussel, Belgium, 1998.
23. European Parliament; Council of the European Union. Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 Concerning the Management of Bathing Water Quality and Eepealing Directive 76/160/EEC; Council of the European Union: Brussel, Belgium, 2006.
24. Jeong, G.Y.; Kim, J.Y.; Seo, J.; Kim, G.M.; Jin, H.C.; Chun, Y. Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis. Atmos. Chem. Phys. 2014, 14, 505–521. [CrossRef]
25. Richon, C.; Dutay, J.-C.; Dulac, F.; Wang, R.; Balkanski, Y. Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea. Biogeosciences 2018, 15, 2499–2524. [CrossRef]
26. Orlovi´c-Leko, P.; Vidovi´c, K.; Cigleneˇcki, I.; Omanovi´c, D.; Sikiri´c, M.D.; Šimuni´c, I. Physico-Chemical Characterization of an Urban Rainwater (Zagreb, Croatia). Atmos. Basel 2020, 11, 144. [CrossRef]
27. Kieber, R.J.; Peake, B.; Willey, J.D.; Avery, G.B. Dissolved organic carbon and organic acids in coastal New Zealand rainwater. Atmos. Environ. 2002, 36, 3557–3563. [CrossRef]
28. Zdeb, M.; Zamorska, J.; Papciak, D.; Sły´s, D. The Quality of Rainwater Collected from Roofs and the Possibility of Its Economic Use. Resources 2020, 9, 12. [CrossRef]
29. Kus, B.; Kandasamy, J.; Vigneswaran, S.; Shon, H.K. Analysis of first flush to improve the water quality in rainwater tanks. Water Sci. Technol. 2010, 61, 421–428. [CrossRef]
30. Song, Y.; Du, X.; Ye, X. Analysis of Potential Risks Associated with Urban Stormwater Quality for Managed Aquifer Recharge. Int. J. Environ. Res. Public Health 2019, 16, 3121. [CrossRef]
31. Willey, J.D.; Kieber, R.J.; Eyman, M.S.; Avery, G.B. Rainwater dissolved organic carbon: Concentrations and global flux. Glob. Biogeochem. Cycles 2000, 14, 139–148. [CrossRef]
32. Helmreich, B.; Horn, H. Opportunities in rainwater harvesting. Desalination 2009, 248, 118–124. [CrossRef]
33. Kaushik, R.; Balasubramanian, R. Assessment of bacterial pathogens in fresh rainwater and airborne particulate matter using Real-Time PCR. Atmos. Environ. 2012, 46, 131–139. [CrossRef]
34. Leong, J.Y.C.; Oh, K.S.; Poh, P.E.; Chong, M.N. Prospects of hybrid rainwater-greywater decentralised system for water recycling and reuse: A review. J. Clean. Prod. 2017, 142, 3014–3027. [CrossRef]
35. Al-Khatib, I.; Arafeh, G.; Al-Qutob, M.; Jodeh, S.; Hasan, A.; Jodeh, D.; van der Valk, M. Health Risk Associated with Some Trace and Some Heavy Metals Content of Harvested Rainwater in Yatta Area, Palestine. Water 2019, 11, 238. [CrossRef]
36. Huston, R.; Chan, Y.C.; Chapman, H.; Gardner, T.; Shaw, G. Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia. Water Res. 2012, 46, 1121–1132. [CrossRef] [PubMed]
37. Mendez, C.B.; Klenzendorf, J.B.; Afshar, B.R.; Simmons, M.T.; Barrett, M.E.; Kinney, K.A.; Kirisits, M.J. The effect of roofing material on the quality of harvested rainwater. Water Res. 2011, 45, 2049–2059. [CrossRef] [PubMed]
38. Gikas, G.D.; Tsihrintzis, V.A. Effect of first-flush device, roofing material, and antecedent dry days on water quality of harvested rainwater. Environ. Sci. Pollut. Res. 2017, 24, 21997–22006. [CrossRef] [PubMed]
39. Sneyers, R. On the Statistical Analysis of Series of Observations. WMO Technical Note No.143; World Meteorological Organization: Geneva, Switzerland, 1990.
40. Coombes, P.J.; Barry, M.E. The effect of selection of time steps and average assumptions on the continuous simulation of rainwater harvesting strategies. Water Sci. Technol. 2007, 55, 125–133. [CrossRef] [PubMed]
41. IMGW Polish Institute of Meteorology and Water Management—National Research Institute (IMGW). Available online: https://www.imgw.pl/instytut/imgw-pib (accessed on 2 January 2020).
42. Pi ´nskwar, I.; Chory ´nski, A.; Graczyk, D.; Kundzewicz, Z.W. Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990. Theor. Appl. Climatol. 2018, 135, 773–787. [CrossRef]
43. Lupikasza, E. Spatial and temporal variability of extreme precipitation in Poland in the period 1951–2006. Int. J. Climatol. 2010, 30, 991–1007. [CrossRef]
44. Ka´zmierczak, B.; Wdowikowski, M.; Gwo´zdziej-Mazur, J. Trends in daily changes of precipitation on the example of Wrocław. Ekon. Sr. 2019, 1, 142–151.
45. Urban, G.; Richterová, D.; Kliegrová, S.; Zusková, I. Durability of snow cover and its long-term variability in the Western Sudetes Mountains. Theor. Appl. Climatol. 2019, 137, 2681–2695. [CrossRef]
46. Struk-Sokołowska, J.; Gwo ´zdziej-Mazur, J.; Jadwiszczak, P.; Butarewicz, A.; Ofman, P.; Wdowikowski, M.; Ka ´zmierczak, B. The Quality of Stored Rainwater for Washing Purposes. Water 2020, 12, 252. [CrossRef]
47. Ndehedehe, C.E.; Ferreira, V.G. Assessing land water storage dynamics over South America. J. Hydrol. 2020, 580, 124339. [CrossRef]
48. Sharma, S.; Mujumdar, P.P. On the relationship of daily rainfall extremes and local mean temperature. J. Hydrol. 2019, 572, 179–191. [CrossRef]
49. Ali, R.; Ismael, A.; Heryansyah, A.; Nawaz, N. Long Term Historic Changes in the Flow of Lesser Zab River, Iraq. Hydrology 2019, 6, 22. [CrossRef]
50. Langat, P.; Kumar, L.; Koech, R. Temporal Variability and Trends of Rainfall and Streamflow in Tana River Basin, Kenya. Sustainability 2017, 9, 1963. [CrossRef]
51. Arrieta-Castro, M.; Donado-Rodríguez, A.; Acuña, G.J.; Canales, F.A.; Teegavarapu, R.S.V.; Ka ´zmierczak, B. Analysis of Streamflow Variability and Trends in the Meta River, Colombia. Water 2020, 12, 1451. [CrossRef]
52. Jaiswal, R.K.; Lohani, A.K.; Tiwari, H.L. Statistical Analysis for Change Detection and Trend Assessment in Climatological Parameters. Environ. Process. 2015, 2, 729–749. [CrossRef]
53. Wijngaard, J.B.; Klein Tank, A.M.G.; Können, G.P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol. 2003, 23, 679–692. [CrossRef]
54. Ledvinka, O.; Lamacova, A. Detection of field significant long-term monotonic trends in spring yields. Stoch. Environ. Res. Risk Assess. 2015, 29, 1463–1484. [CrossRef]
55. Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [CrossRef]
56. Onyutha, C. Statistical Uncertainty in Hydrometeorological Trend Analyses. Adv. Meteorol. 2016, 2016, 8701617. [CrossRef]
57. Wagesho, N.; Goel, N.K.; Jain, M.K. Investigation of non-stationarity in hydro-climatic variables at Rift Valley lakes basin of Ethiopia. J. Hydrol. 2012, 444–445, 113–133. [CrossRef]
58. Makki, A.A.; Stewart, R.A.; Panuwatwanich, K.; Beal, C. Revealing the determinants of shower water end use consumption: Enabling better targeted urban water conservation strategies. J. Clean. Prod. 2013, 60, 129–146. [CrossRef]
59. Lee, M.; Tansel, B.; Balbin, M. Influence of residential water use efficiency measures on household water demand: A four year longitudinal study. Resour. Conserv. Recycl. 2011, 56, 1–6. [CrossRef]
60. Lee, M.; Tansel, B. Water conservation quantities vs customer opinion and satisfaction with water efficient appliances in Miami, Florida. J. Environ. Manag. 2013, 128, 683–689. [CrossRef] [PubMed]
61. Polish Geological Institute Groundwater Resources in Poland. Available online: https://www.pgi.gov.pl/en/ phs/tasks/8862-groundwater-resources-in-poland.html (accessed on 6 June 2020).
62. Witkowski, A.J.; Kowalczyk, A.; Rubin, H.; Rubin, K. Groundwater quality and migration of pollutants in the multi-aquifer system of the former chemical works “Tarnowskie Góry” area. Polish Geol. Inst. Spec. Pap. 2008, 24, 123–130.
63. Montcoudiol, N.; Isherwood, C.; Gunning, A.; Kelly, T.; Younger, P.L. Shale gas impacts on groundwater resources: Understanding the behavior of a shallow aquifer around a fracking site in Poland. Energy Procedia 2017, 125, 106–115. [CrossRef]
64. Jakóbczyk-Karpierz, S.; Sl´ ósarczyk, K.; Sitek, S. Tracing multiple sources of groundwater pollution in a complex carbonate aquifer (Tarnowskie Góry, southern Poland) using hydrogeochemical tracers, TCE, PCE, SF6 and CFCs. Appl. Geochem. 2020, 118. [CrossRef]
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Water
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/2f0e6282-344c-4baf-88e4-18922d132e98/download
https://repositorio.cuc.edu.co/bitstreams/a9e05315-b12c-4e27-8eeb-670e72c623d0/download
https://repositorio.cuc.edu.co/bitstreams/6dfa320d-c974-4efd-a06b-2600f4251791/download
https://repositorio.cuc.edu.co/bitstreams/a6839ca1-35fb-4e00-b1d6-63c8a9857a2b/download
https://repositorio.cuc.edu.co/bitstreams/0da965bb-3853-45e0-bb1c-e750b3e76213/download
bitstream.checksum.fl_str_mv a7077993c79ab28e54e717872f68c14b
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
2b0f9a6c62f689810160e7191760c281
cc1203153403d0199fa89e410630a989
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166859758764032
spelling Canales, FaustoGwózdziej-Mazur, JoannaJadwiszczak, PiotrStruk-Sokolowska, JoannaWartalska, KatarzynaWdowikowski, MarcinKázmierczak, BartoszCanales, Fausto Alfredovirtual::588-12020-07-22T19:12:18Z2020-07-22T19:12:18Z20202073-4441https://hdl.handle.net/11323/6805doi:10.3390/w12071932Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Abstract: Rainwater harvesting (RWH) for domestic uses is widely regarded as an economic and ecological solution in water conservation and storm management programs. This paper aims at evaluating long-term trends in 20-day cumulative rainfall periods per year in Poland, for assessing its impact on the design and operation conditions for RWH systems and resource availability. The time-series employed corresponds to a set of 50-year long time-series of rainfall (from 1970 to 2019) recorded at 19 synoptic meteorological stations scattered across Poland, one of the European countries with the lowest water availability index. The methods employed for assessing trends were the Mann–Kendall test (M–K) and the Sen’s slope estimator. Most of the datasets exhibit stationary behaviour during the 50-year long period, however, statistically significant downward trends were detected for precipitations in Wrocław and Opole. The findings of this study are valuable assets for integrated water management and sustainable planning in Poland.Canales, Fausto-will be generated-orcid-0000-0002-6858-1855-600Gwózdziej-Mazur, JoannaJadwiszczak, Piotr-will be generated-orcid-0000-0003-3896-2056-600Struk-Sokolowska, Joanna-will be generated-orcid-0000-0003-2321-0310-600Wartalska, Katarzyna-will be generated-orcid-0000-0002-5855-3607-600Wdowikowski, Marcin-will be generated-orcid-0000-0003-2693-0946-600Kázmierczak, BartoszengWaterCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2RainwaterRainwater harvestingMann-KendallRainfall trendsLong-term trends in 20-day cumulative precipitation for residential rainwater harvesting in PolandArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Gutry-Korycka, M.; Sadurski, A.; Kundzewicz, Z.; Pociask-Karteczka, J.; Skrzypczyk, L.; Pociask-Karteczka, J. Zasoby wodne a ich wykorzystanie. Nauka 2014, 1, 77–98.2. Olichwer, T. Long-term variability of water resources in mountainous areas: Case Study—Kłodzko region (SW Poland). Carpathian J. Earth Environ. Sci. 2019, 14, 29–38. [CrossRef]3. Małecki, Z.J.; Goł ˛ebiak, P. Zasoby wodne Polski i ´swiata. Zesz. Nauk. In˙zynieria L ˛adowa Wodna Kształtowaniu Srodowiska ´ 2012, 7, 50–56.4. Kuczy ´nski, W.; Zuchowicki, W. Ocena aktualnej sytuacji w zaopatrzeniu w wode{ogonek} w Polsce na tle sytuacji w ´swiecie. Rocz. Ochr. Sr. 2011, 12, 419–465.5. Orli ´nska-Wo´zniak, P.; Wilk, P.; G ˛ebala, J. Water availability in reference to water needs in Poland. Meteorol. Hydrol. Water Manag. 2014, 1, 45–50. [CrossRef]6. Sucho ˙zebrski, J. Zasoby wodne Polski. In Zarz ˛adzanie Zasobami Wodnymi w Polsce; Global Compact Network Poland: Warsaw, Poland, 2018; pp. 92–96.7. Panasiuk, D.; Suduk, O.; Skrypchuk, P.; Miłaszewski, R. Comparison of the water footprint in Poland and Ukraine. Ekon. Srodowisko ´ 2018, 4, 112–123.8. Michalczyk, Z. Odpływ ´sredni, zmienno´s´c w czasie i zró˙znicowanie przestrzenne. In Hydrologia Polski; Jokiel, P., Marszelewski, W., Pociask-Karteczka, J., Eds.; Wydawnictwo Naukowe PWN SA: Warsaw, Poland, 2017; ISBN 978-83-01-19618-9.9. Hegerl, G.C.; Black, E.; Allan, R.P.; Ingram, W.J.; Polson, D.; Trenberth, K.E.; Chadwick, R.S.; Arkin, P.A.; Sarojini, B.B.; Becker, A.; et al. Challenges in Quantifying Changes in the Global Water Cycle. Bull. Am. Meteorol. Soc. 2015, 96, 1097–1115. [CrossRef]10. Falloon, P.; Betts, R. Climate impacts on European agriculture and water management in the context of adaptation and mitigation—The importance of an integrated approach. Sci. Total Environ. 2010, 408, 5667–5687. [CrossRef]11. Kundzewicz, Z.W.; Matczak, P. Climate change regional review: Poland. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 297–311. [CrossRef]12. Lipi ´nska, D. European Union Water Policy: Key Issues and Challenges. Comp. Econ. Res. Cent. East Eur. 2012, 15, 123–141. [CrossRef]13. Kutyłowska, M. Forecasting failure rate of water pipes. Water Supply 2019, 19, 264–273. [CrossRef]14. Piasecki, A.; Jurasz, J.; Ka´zmierczak, B. Forecasting Daily Water Consumption: A Case Study in Torun, Poland. Period. Polytech. Civ. Eng. 2018, 62, 818–824. [CrossRef]15. Dawidowicz, J.; Czapczuk, A.; Piekarski, J. The Application of Artificial Neural Networks in the Assessment of Pressure Losses in Water Pipes in the Design of Water Distribution Systems. Rocz. Ochr. Srodowiska ´ 2018, 20, 292–308.16. Ward, S.; Barr, S.; Memon, F.; Butler, D. Rainwater harvesting in the UK: Exploring water-user perceptions. Urban. Water J. 2013, 10, 112–126. [CrossRef]17. Steffen, J.; Jensen, M.; Pomeroy, C.A.; Burian, S.J. Water Supply and Stormwater Management Benefits of Residential Rainwater Harvesting in U.S. Cities. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 810–824. [CrossRef]18. Torres, M.N.; Fontecha, J.E.; Zhu, Z.; Walteros, J.L.; Rodríguez, J.P. A participatory approach based on stochastic optimization for the spatial allocation of Sustainable Urban Drainage Systems for rainwater harvesting. Environ. Model. Softw. 2020, 123, 104532. [CrossRef]19. Deitch, M.J.; Feirer, S.T. Cumulative impacts of residential rainwater harvesting on stormwater discharge through a peri-urban drainage network. J. Environ. Manag. 2019, 243, 127–136. [CrossRef]20. Teston, A.; Teixeira, C.; Ghisi, E.; Cardoso, E. Impact of Rainwater Harvesting on the Drainage System: Case Study of a Condominium of Houses in Curitiba, Southern Brazil. Water 2018, 10, 1100. [CrossRef]21. Semaan, M.; Day, S.D.; Garvin, M.; Ramakrishnan, N.; Pearce, A. Optimal sizing of rainwater harvesting systems for domestic water usages: A systematic literature review. Resour. Conserv. Recycl. X 2020, 6, 100033. [CrossRef]22. Council of the European Union. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption; Council of the European Union: Brussel, Belgium, 1998.23. European Parliament; Council of the European Union. Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 Concerning the Management of Bathing Water Quality and Eepealing Directive 76/160/EEC; Council of the European Union: Brussel, Belgium, 2006.24. Jeong, G.Y.; Kim, J.Y.; Seo, J.; Kim, G.M.; Jin, H.C.; Chun, Y. Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis. Atmos. Chem. Phys. 2014, 14, 505–521. [CrossRef]25. Richon, C.; Dutay, J.-C.; Dulac, F.; Wang, R.; Balkanski, Y. Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea. Biogeosciences 2018, 15, 2499–2524. [CrossRef]26. Orlovi´c-Leko, P.; Vidovi´c, K.; Cigleneˇcki, I.; Omanovi´c, D.; Sikiri´c, M.D.; Šimuni´c, I. Physico-Chemical Characterization of an Urban Rainwater (Zagreb, Croatia). Atmos. Basel 2020, 11, 144. [CrossRef]27. Kieber, R.J.; Peake, B.; Willey, J.D.; Avery, G.B. Dissolved organic carbon and organic acids in coastal New Zealand rainwater. Atmos. Environ. 2002, 36, 3557–3563. [CrossRef]28. Zdeb, M.; Zamorska, J.; Papciak, D.; Sły´s, D. The Quality of Rainwater Collected from Roofs and the Possibility of Its Economic Use. Resources 2020, 9, 12. [CrossRef]29. Kus, B.; Kandasamy, J.; Vigneswaran, S.; Shon, H.K. Analysis of first flush to improve the water quality in rainwater tanks. Water Sci. Technol. 2010, 61, 421–428. [CrossRef]30. Song, Y.; Du, X.; Ye, X. Analysis of Potential Risks Associated with Urban Stormwater Quality for Managed Aquifer Recharge. Int. J. Environ. Res. Public Health 2019, 16, 3121. [CrossRef]31. Willey, J.D.; Kieber, R.J.; Eyman, M.S.; Avery, G.B. Rainwater dissolved organic carbon: Concentrations and global flux. Glob. Biogeochem. Cycles 2000, 14, 139–148. [CrossRef]32. Helmreich, B.; Horn, H. Opportunities in rainwater harvesting. Desalination 2009, 248, 118–124. [CrossRef]33. Kaushik, R.; Balasubramanian, R. Assessment of bacterial pathogens in fresh rainwater and airborne particulate matter using Real-Time PCR. Atmos. Environ. 2012, 46, 131–139. [CrossRef]34. Leong, J.Y.C.; Oh, K.S.; Poh, P.E.; Chong, M.N. Prospects of hybrid rainwater-greywater decentralised system for water recycling and reuse: A review. J. Clean. Prod. 2017, 142, 3014–3027. [CrossRef]35. Al-Khatib, I.; Arafeh, G.; Al-Qutob, M.; Jodeh, S.; Hasan, A.; Jodeh, D.; van der Valk, M. Health Risk Associated with Some Trace and Some Heavy Metals Content of Harvested Rainwater in Yatta Area, Palestine. Water 2019, 11, 238. [CrossRef]36. Huston, R.; Chan, Y.C.; Chapman, H.; Gardner, T.; Shaw, G. Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia. Water Res. 2012, 46, 1121–1132. [CrossRef] [PubMed]37. Mendez, C.B.; Klenzendorf, J.B.; Afshar, B.R.; Simmons, M.T.; Barrett, M.E.; Kinney, K.A.; Kirisits, M.J. The effect of roofing material on the quality of harvested rainwater. Water Res. 2011, 45, 2049–2059. [CrossRef] [PubMed]38. Gikas, G.D.; Tsihrintzis, V.A. Effect of first-flush device, roofing material, and antecedent dry days on water quality of harvested rainwater. Environ. Sci. Pollut. Res. 2017, 24, 21997–22006. [CrossRef] [PubMed]39. Sneyers, R. On the Statistical Analysis of Series of Observations. WMO Technical Note No.143; World Meteorological Organization: Geneva, Switzerland, 1990.40. Coombes, P.J.; Barry, M.E. The effect of selection of time steps and average assumptions on the continuous simulation of rainwater harvesting strategies. Water Sci. Technol. 2007, 55, 125–133. [CrossRef] [PubMed]41. IMGW Polish Institute of Meteorology and Water Management—National Research Institute (IMGW). Available online: https://www.imgw.pl/instytut/imgw-pib (accessed on 2 January 2020).42. Pi ´nskwar, I.; Chory ´nski, A.; Graczyk, D.; Kundzewicz, Z.W. Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990. Theor. Appl. Climatol. 2018, 135, 773–787. [CrossRef]43. Lupikasza, E. Spatial and temporal variability of extreme precipitation in Poland in the period 1951–2006. Int. J. Climatol. 2010, 30, 991–1007. [CrossRef]44. Ka´zmierczak, B.; Wdowikowski, M.; Gwo´zdziej-Mazur, J. Trends in daily changes of precipitation on the example of Wrocław. Ekon. Sr. 2019, 1, 142–151.45. Urban, G.; Richterová, D.; Kliegrová, S.; Zusková, I. Durability of snow cover and its long-term variability in the Western Sudetes Mountains. Theor. Appl. Climatol. 2019, 137, 2681–2695. [CrossRef]46. Struk-Sokołowska, J.; Gwo ´zdziej-Mazur, J.; Jadwiszczak, P.; Butarewicz, A.; Ofman, P.; Wdowikowski, M.; Ka ´zmierczak, B. The Quality of Stored Rainwater for Washing Purposes. Water 2020, 12, 252. [CrossRef]47. Ndehedehe, C.E.; Ferreira, V.G. Assessing land water storage dynamics over South America. J. Hydrol. 2020, 580, 124339. [CrossRef]48. Sharma, S.; Mujumdar, P.P. On the relationship of daily rainfall extremes and local mean temperature. J. Hydrol. 2019, 572, 179–191. [CrossRef]49. Ali, R.; Ismael, A.; Heryansyah, A.; Nawaz, N. Long Term Historic Changes in the Flow of Lesser Zab River, Iraq. Hydrology 2019, 6, 22. [CrossRef]50. Langat, P.; Kumar, L.; Koech, R. Temporal Variability and Trends of Rainfall and Streamflow in Tana River Basin, Kenya. Sustainability 2017, 9, 1963. [CrossRef]51. Arrieta-Castro, M.; Donado-Rodríguez, A.; Acuña, G.J.; Canales, F.A.; Teegavarapu, R.S.V.; Ka ´zmierczak, B. Analysis of Streamflow Variability and Trends in the Meta River, Colombia. Water 2020, 12, 1451. [CrossRef]52. Jaiswal, R.K.; Lohani, A.K.; Tiwari, H.L. Statistical Analysis for Change Detection and Trend Assessment in Climatological Parameters. Environ. Process. 2015, 2, 729–749. [CrossRef]53. Wijngaard, J.B.; Klein Tank, A.M.G.; Können, G.P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol. 2003, 23, 679–692. [CrossRef]54. Ledvinka, O.; Lamacova, A. Detection of field significant long-term monotonic trends in spring yields. Stoch. Environ. Res. Risk Assess. 2015, 29, 1463–1484. [CrossRef]55. Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [CrossRef]56. Onyutha, C. Statistical Uncertainty in Hydrometeorological Trend Analyses. Adv. Meteorol. 2016, 2016, 8701617. [CrossRef]57. Wagesho, N.; Goel, N.K.; Jain, M.K. Investigation of non-stationarity in hydro-climatic variables at Rift Valley lakes basin of Ethiopia. J. Hydrol. 2012, 444–445, 113–133. [CrossRef]58. Makki, A.A.; Stewart, R.A.; Panuwatwanich, K.; Beal, C. Revealing the determinants of shower water end use consumption: Enabling better targeted urban water conservation strategies. J. Clean. Prod. 2013, 60, 129–146. [CrossRef]59. Lee, M.; Tansel, B.; Balbin, M. Influence of residential water use efficiency measures on household water demand: A four year longitudinal study. Resour. Conserv. Recycl. 2011, 56, 1–6. [CrossRef]60. Lee, M.; Tansel, B. Water conservation quantities vs customer opinion and satisfaction with water efficient appliances in Miami, Florida. J. Environ. Manag. 2013, 128, 683–689. [CrossRef] [PubMed]61. Polish Geological Institute Groundwater Resources in Poland. Available online: https://www.pgi.gov.pl/en/ phs/tasks/8862-groundwater-resources-in-poland.html (accessed on 6 June 2020).62. Witkowski, A.J.; Kowalczyk, A.; Rubin, H.; Rubin, K. Groundwater quality and migration of pollutants in the multi-aquifer system of the former chemical works “Tarnowskie Góry” area. Polish Geol. Inst. Spec. Pap. 2008, 24, 123–130.63. Montcoudiol, N.; Isherwood, C.; Gunning, A.; Kelly, T.; Younger, P.L. Shale gas impacts on groundwater resources: Understanding the behavior of a shallow aquifer around a fracking site in Poland. Energy Procedia 2017, 125, 106–115. [CrossRef]64. Jakóbczyk-Karpierz, S.; Sl´ ósarczyk, K.; Sitek, S. Tracing multiple sources of groundwater pollution in a complex carbonate aquifer (Tarnowskie Góry, southern Poland) using hydrogeochemical tracers, TCE, PCE, SF6 and CFCs. Appl. Geochem. 2020, 118. [CrossRef]Publication48a40323-4c39-4859-bb1c-eeeb97a2c4dfvirtual::588-148a40323-4c39-4859-bb1c-eeeb97a2c4dfvirtual::588-1https://scholar.google.com.pr/citations?user=mBTX4IAAAAAJ&hl=esvirtual::588-10000-0002-6858-1855virtual::588-1ORIGINALLong-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland.pdfLong-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland.pdfapplication/pdf1793222https://repositorio.cuc.edu.co/bitstreams/2f0e6282-344c-4baf-88e4-18922d132e98/downloada7077993c79ab28e54e717872f68c14bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a9e05315-b12c-4e27-8eeb-670e72c623d0/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/6dfa320d-c974-4efd-a06b-2600f4251791/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILLong-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland.pdf.jpgLong-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland.pdf.jpgimage/jpeg66809https://repositorio.cuc.edu.co/bitstreams/a6839ca1-35fb-4e00-b1d6-63c8a9857a2b/download2b0f9a6c62f689810160e7191760c281MD54TEXTLong-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland.pdf.txtLong-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland.pdf.txttext/plain77612https://repositorio.cuc.edu.co/bitstreams/0da965bb-3853-45e0-bb1c-e750b3e76213/downloadcc1203153403d0199fa89e410630a989MD5511323/6805oai:repositorio.cuc.edu.co:11323/68052025-02-20 17:56:15.851http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==