Discovering similarities in Landsat satellite images using the Kmeans method
This article different ways for the treatment and identification of similarities in satellite images. By means of the systematic review of the literature it is possible to know the different existing forms for the treatment of this type of objects and by means of the implementation that is described...
- Autores:
-
Ariza Colpas, Paola Patricia
Oviedo Carrascal, Ana Isabel
De-La-Hoz-Franco, Emiro
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6227
- Acceso en línea:
- https://hdl.handle.net/11323/6227
https://doi.org/10.1016/j.procs.2020.03.017
https://repositorio.cuc.edu.co/
- Palabra clave:
- Multiclustering
Multimedia
Multimedia multidimensional georreferenced objects
Satellite images
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_c092c364d83f1b08cd00a1a2377fb6f6 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6227 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Discovering similarities in Landsat satellite images using the Kmeans method |
title |
Discovering similarities in Landsat satellite images using the Kmeans method |
spellingShingle |
Discovering similarities in Landsat satellite images using the Kmeans method Multiclustering Multimedia Multimedia multidimensional georreferenced objects Satellite images |
title_short |
Discovering similarities in Landsat satellite images using the Kmeans method |
title_full |
Discovering similarities in Landsat satellite images using the Kmeans method |
title_fullStr |
Discovering similarities in Landsat satellite images using the Kmeans method |
title_full_unstemmed |
Discovering similarities in Landsat satellite images using the Kmeans method |
title_sort |
Discovering similarities in Landsat satellite images using the Kmeans method |
dc.creator.fl_str_mv |
Ariza Colpas, Paola Patricia Oviedo Carrascal, Ana Isabel De-La-Hoz-Franco, Emiro |
dc.contributor.author.spa.fl_str_mv |
Ariza Colpas, Paola Patricia Oviedo Carrascal, Ana Isabel De-La-Hoz-Franco, Emiro |
dc.subject.spa.fl_str_mv |
Multiclustering Multimedia Multimedia multidimensional georreferenced objects Satellite images |
topic |
Multiclustering Multimedia Multimedia multidimensional georreferenced objects Satellite images |
description |
This article different ways for the treatment and identification of similarities in satellite images. By means of the systematic review of the literature it is possible to know the different existing forms for the treatment of this type of objects and by means of the implementation that is described, the operation of the K-means algorithm is shown to help the segmentation and analysis of characteristics associated to the color. In this type of objects, a descriptive analysis of the results thrown by the method is finally carried out. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-20T21:58:57Z |
dc.date.available.none.fl_str_mv |
2020-04-20T21:58:57Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1877-0509 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6227 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.procs.2020.03.017 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1877-0509 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/6227 https://doi.org/10.1016/j.procs.2020.03.017 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Ariza-Colpas, P., Morales-Ortega, R., Piñeres-Melo, M. A., Melendez-Pertuz, F., Serrano-Torné, G., Hernandez-Sanchez, G., ... & CollazosMorales, C. (2019, October). Teleagro: Software Architecture of Georeferencing and Detection of Heat of Cattle. In Workshop on Engineering Applications (pp. 159-166). Springer, Cham. [2] Ariza, P., Pineres, M., Santiago, L., Mercado, N., & De la Hoz, A. (2014, November). Implementation of moprosoft level I and II in software development companies in the colombian caribbean, a commitment to the software product quality region. In 2014 IEEE Central America and Panama Convention (CONCAPAN XXXIV) (pp. 1-5). IEEE. [3] Calabria-Sarmiento, J. C., Ariza-Colpas, P., Pineres-Melo, M., Ayala-Mantilla, C., Urina-Triana, M., Morales-Ortega, R., ... & EcheverriOcampo, I. (2018). Software applications to health sector: A systematic review of literature. [4] Echeverri-Ocampo, I., Urina-Triana, M., Patricia Ariza, P., & Mantilla, M. (2018). El trabajo colaborativo entre ingenieros y personal de la salud para el desarrollo de proyectos en salud digital: una visión al futuro para lograr tener éxito. [5] Jimeno Gonzalez, K. J., Ariza Colpas, P. P., & Piñeres Melo, M. (2017). Gobierno de TI en pymes colombianas.¿ mito o realidad?. [6] Ariza-Colpas, P., Morales-Ortega, R., Piñeres-Melo, M., De la Hoz-Franco, E., Echeverri-Ocampo, I., & Salas-Navarro, K. (2019, July). Parkinson Disease Analysis Using Supervised and Unsupervised Techniques. In International Conference on Swarm Intelligence (pp. 191-199). Springer, Cham. [7] Ariza-Colpas, P., Piñeres-Melo, M., Barceló-Martinez, E., De la Hoz-Franco, E., Benitez-Agudelo, J., Gelves-Ospina, M., ... & Leon-Jacobus, A. (2019, July). Enkephalon-technological platform to support the diagnosis of alzheimer’s disease through the analysis of resonance images using data mining techniques. In International Conference on Swarm Intelligence (pp. 211-220). Springer, Cham. [8] Ariza-Colpas, P. P., Piñeres-Melo, M. A., Nieto-Bernal, W., & Morales-Ortega, R. (2019, July). WSIA: Web Ontological Search Engine Based on Smart Agents Applied to Scientific Articles. In International Conference on Swarm Intelligence (pp. 338-347). Springer, Cham. [9] Piñeres-Melo, M. A., Ariza-Colpas, P. P., Nieto-Bernal, W., & Morales-Ortega, R. (2019, July). SSwWS: Structural Model of Information Architecture. In International Conference on Swarm Intelligence (pp. 400-410). Springer, Cham. [10] Ariza-Colpas, P., Oviedo-Carrascal, A. I., & De-la-hoz-Franco, E. (2019, July). Using K-Means Algorithm for Description Analysis of Text in RSS News Format. In International Conference on Data Mining and Big Data (pp. 162-169). Springer, Singapore. [11] Koundal, D., Gupta, S., & Singh, S. (2016). Automated delineation of thyroid nodules in ultrasound images using spatial neutrosophic clustering and level set. Applied Soft Computing, 40, 86-97 [12] Alias, H. M., Rekha, K. S., & Anitha, R. (2016). Reveal Difference in Synthetic Aperture Radar Images Implementing Fuzzy Clustering Along With Improved MRF Energy Function and Wavelet Denoising Technique. Procedia Technology, 24, 1325-1332 [13] Ariza-Colpas, P., Morales-Ortega, R., Piñeres-Melo, M. A., Melendez-Pertuz, F., Serrano-Torné, G., Hernandez-Sanchez, G., & MartínezOsorio, H. (2019, September). Teleagro: iot applications for the georeferencing and detection of zeal in cattle. In IFIP International Conference on Computer Information Systems and Industrial Management (pp. 232-239). Springer, Cham. [14] Banerjee, A., & Maji, P. (2016). Rough-probabilistic clustering and hidden Markov random field model for segmentation of HEp-2 cell and brain MR images. Applied Soft Computing [15] Hou, J., Liu, W., Xu, E., & Cui, H. (2016). Towards parameter-independent data clustering and image segmentation. Pattern Recognition, 60, 25-36 [16] Zhang, H., & Dai, G. (2016). Improvement of distributed clustering algorithm based on min-cluster. Optik-International Journal for Light and Electron Optics, 127(8), 3878-3881. [17] Reboul, C. F., Bonnet, F., Elmlund, D., & Elmlund, H. (2016). A Stochastic Hill Climbing Approach for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images. Structure, 24(6), 988-996. [18] Jin, X., & Kim, J. (2016). Video fragment format classification using optimized discriminative subspace clustering. Signal Processing: Image Communication, 40, 26-35. [19] Viloria, A., & Lezama, O. B. P. (2019). An intelligent approach for the design and development of a personalized system of knowledge representation. Procedia Comput. Sci, 151, 1225-1230. [20] Pineda Lezama, O. B., & Reniz, J. (2019). Recommendation of collaborative filtering for a technological surveillance model using MultiDimension Tensor Factorization |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Procedia Computer Science |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d1170ea9-27f2-4537-8d01-703ccce3667e/download https://repositorio.cuc.edu.co/bitstreams/3f822310-981d-4012-80c2-ff55f1bffe35/download https://repositorio.cuc.edu.co/bitstreams/3a8dcdca-d201-4296-a899-2bc5c66340be/download https://repositorio.cuc.edu.co/bitstreams/7456007f-0a7c-44e8-9ecb-d557042c3297/download https://repositorio.cuc.edu.co/bitstreams/a41095b3-720e-4d3e-9e17-ee43444f69ff/download |
bitstream.checksum.fl_str_mv |
fe95b9356478592a1338a464dd5962d7 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 de0ea877f5a8c805ac326f695f6a64eb c0f350c8cd266d9ecce0b66668dbd1ee |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760669010165760 |
spelling |
Ariza Colpas, Paola PatriciaOviedo Carrascal, Ana IsabelDe-La-Hoz-Franco, Emiro2020-04-20T21:58:57Z2020-04-20T21:58:57Z20201877-0509https://hdl.handle.net/11323/6227https://doi.org/10.1016/j.procs.2020.03.017Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This article different ways for the treatment and identification of similarities in satellite images. By means of the systematic review of the literature it is possible to know the different existing forms for the treatment of this type of objects and by means of the implementation that is described, the operation of the K-means algorithm is shown to help the segmentation and analysis of characteristics associated to the color. In this type of objects, a descriptive analysis of the results thrown by the method is finally carried out.Ariza Colpas, Paola Patricia-will be generated-orcid-0000-0003-4503-5461-600Oviedo Carrascal, Ana Isabel-will be generated-orcid-0000-0002-7105-7819-600De-La-Hoz-Franco, Emiro-will be generated-orcid-0000-0002-4926-7414-600engProcedia Computer ScienceCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2MulticlusteringMultimediaMultimedia multidimensional georreferenced objectsSatellite imagesDiscovering similarities in Landsat satellite images using the Kmeans methodArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Ariza-Colpas, P., Morales-Ortega, R., Piñeres-Melo, M. A., Melendez-Pertuz, F., Serrano-Torné, G., Hernandez-Sanchez, G., ... & CollazosMorales, C. (2019, October). Teleagro: Software Architecture of Georeferencing and Detection of Heat of Cattle. In Workshop on Engineering Applications (pp. 159-166). Springer, Cham.[2] Ariza, P., Pineres, M., Santiago, L., Mercado, N., & De la Hoz, A. (2014, November). Implementation of moprosoft level I and II in software development companies in the colombian caribbean, a commitment to the software product quality region. In 2014 IEEE Central America and Panama Convention (CONCAPAN XXXIV) (pp. 1-5). IEEE.[3] Calabria-Sarmiento, J. C., Ariza-Colpas, P., Pineres-Melo, M., Ayala-Mantilla, C., Urina-Triana, M., Morales-Ortega, R., ... & EcheverriOcampo, I. (2018). Software applications to health sector: A systematic review of literature.[4] Echeverri-Ocampo, I., Urina-Triana, M., Patricia Ariza, P., & Mantilla, M. (2018). El trabajo colaborativo entre ingenieros y personal de la salud para el desarrollo de proyectos en salud digital: una visión al futuro para lograr tener éxito.[5] Jimeno Gonzalez, K. J., Ariza Colpas, P. P., & Piñeres Melo, M. (2017). Gobierno de TI en pymes colombianas.¿ mito o realidad?.[6] Ariza-Colpas, P., Morales-Ortega, R., Piñeres-Melo, M., De la Hoz-Franco, E., Echeverri-Ocampo, I., & Salas-Navarro, K. (2019, July). Parkinson Disease Analysis Using Supervised and Unsupervised Techniques. In International Conference on Swarm Intelligence (pp. 191-199). Springer, Cham.[7] Ariza-Colpas, P., Piñeres-Melo, M., Barceló-Martinez, E., De la Hoz-Franco, E., Benitez-Agudelo, J., Gelves-Ospina, M., ... & Leon-Jacobus, A. (2019, July). Enkephalon-technological platform to support the diagnosis of alzheimer’s disease through the analysis of resonance images using data mining techniques. In International Conference on Swarm Intelligence (pp. 211-220). Springer, Cham.[8] Ariza-Colpas, P. P., Piñeres-Melo, M. A., Nieto-Bernal, W., & Morales-Ortega, R. (2019, July). WSIA: Web Ontological Search Engine Based on Smart Agents Applied to Scientific Articles. In International Conference on Swarm Intelligence (pp. 338-347). Springer, Cham.[9] Piñeres-Melo, M. A., Ariza-Colpas, P. P., Nieto-Bernal, W., & Morales-Ortega, R. (2019, July). SSwWS: Structural Model of Information Architecture. In International Conference on Swarm Intelligence (pp. 400-410). Springer, Cham.[10] Ariza-Colpas, P., Oviedo-Carrascal, A. I., & De-la-hoz-Franco, E. (2019, July). Using K-Means Algorithm for Description Analysis of Text in RSS News Format. In International Conference on Data Mining and Big Data (pp. 162-169). Springer, Singapore.[11] Koundal, D., Gupta, S., & Singh, S. (2016). Automated delineation of thyroid nodules in ultrasound images using spatial neutrosophic clustering and level set. Applied Soft Computing, 40, 86-97[12] Alias, H. M., Rekha, K. S., & Anitha, R. (2016). Reveal Difference in Synthetic Aperture Radar Images Implementing Fuzzy Clustering Along With Improved MRF Energy Function and Wavelet Denoising Technique. Procedia Technology, 24, 1325-1332[13] Ariza-Colpas, P., Morales-Ortega, R., Piñeres-Melo, M. A., Melendez-Pertuz, F., Serrano-Torné, G., Hernandez-Sanchez, G., & MartínezOsorio, H. (2019, September). Teleagro: iot applications for the georeferencing and detection of zeal in cattle. In IFIP International Conference on Computer Information Systems and Industrial Management (pp. 232-239). Springer, Cham.[14] Banerjee, A., & Maji, P. (2016). Rough-probabilistic clustering and hidden Markov random field model for segmentation of HEp-2 cell and brain MR images. Applied Soft Computing[15] Hou, J., Liu, W., Xu, E., & Cui, H. (2016). Towards parameter-independent data clustering and image segmentation. Pattern Recognition, 60, 25-36[16] Zhang, H., & Dai, G. (2016). Improvement of distributed clustering algorithm based on min-cluster. Optik-International Journal for Light and Electron Optics, 127(8), 3878-3881.[17] Reboul, C. F., Bonnet, F., Elmlund, D., & Elmlund, H. (2016). A Stochastic Hill Climbing Approach for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images. Structure, 24(6), 988-996.[18] Jin, X., & Kim, J. (2016). Video fragment format classification using optimized discriminative subspace clustering. Signal Processing: Image Communication, 40, 26-35.[19] Viloria, A., & Lezama, O. B. P. (2019). An intelligent approach for the design and development of a personalized system of knowledge representation. Procedia Comput. Sci, 151, 1225-1230.[20] Pineda Lezama, O. B., & Reniz, J. (2019). Recommendation of collaborative filtering for a technological surveillance model using MultiDimension Tensor FactorizationPublicationORIGINALDiscovering similarities in Landsat satellite images using the K-means method.pdfDiscovering similarities in Landsat satellite images using the K-means method.pdfapplication/pdf685289https://repositorio.cuc.edu.co/bitstreams/d1170ea9-27f2-4537-8d01-703ccce3667e/downloadfe95b9356478592a1338a464dd5962d7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/3f822310-981d-4012-80c2-ff55f1bffe35/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/3a8dcdca-d201-4296-a899-2bc5c66340be/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILDiscovering similarities in Landsat satellite images using the K-means method.pdf.jpgDiscovering similarities in Landsat satellite images using the K-means method.pdf.jpgimage/jpeg40294https://repositorio.cuc.edu.co/bitstreams/7456007f-0a7c-44e8-9ecb-d557042c3297/downloadde0ea877f5a8c805ac326f695f6a64ebMD54TEXTDiscovering similarities in Landsat satellite images using the K-means method.pdf.txtDiscovering similarities in Landsat satellite images using the K-means method.pdf.txttext/plain45382https://repositorio.cuc.edu.co/bitstreams/a41095b3-720e-4d3e-9e17-ee43444f69ff/downloadc0f350c8cd266d9ecce0b66668dbd1eeMD5511323/6227oai:repositorio.cuc.edu.co:11323/62272024-09-16 16:40:02.052http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |