Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water

Bisphenol A (BPA) is a diphenylmethane derivative often used as a building block of polycarbonate in the production of plastic and plastic additives. Different sectors of the chemical industry release daily high concentrations of BPA in treatment plants, leading to polluting the environment. Due to...

Full description

Autores:
Ahmad, Tauqir
Saood Manzar, Mohammad
georgin, jordana
Dison S.P., Franco
Khan, Sardaraz
Meili, Lucas
Ullah, Nisar
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10456
Acceso en línea:
https://hdl.handle.net/11323/10456
https://repositorio.cuc.edu.co/
Palabra clave:
Bisphenol A
Adsorption
Decontamination
Composites
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_c05a9aba2852e7e055dec43e3020117e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10456
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water
title Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water
spellingShingle Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water
Bisphenol A
Adsorption
Decontamination
Composites
title_short Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water
title_full Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water
title_fullStr Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water
title_full_unstemmed Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water
title_sort Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water
dc.creator.fl_str_mv Ahmad, Tauqir
Saood Manzar, Mohammad
georgin, jordana
Dison S.P., Franco
Khan, Sardaraz
Meili, Lucas
Ullah, Nisar
dc.contributor.author.none.fl_str_mv Ahmad, Tauqir
Saood Manzar, Mohammad
georgin, jordana
Dison S.P., Franco
Khan, Sardaraz
Meili, Lucas
Ullah, Nisar
dc.subject.proposal.eng.fl_str_mv Bisphenol A
Adsorption
Decontamination
Composites
topic Bisphenol A
Adsorption
Decontamination
Composites
description Bisphenol A (BPA) is a diphenylmethane derivative often used as a building block of polycarbonate in the production of plastic and plastic additives. Different sectors of the chemical industry release daily high concentrations of BPA in treatment plants, leading to polluting the environment. Due to chemical characteristics, BPA is considered highly toxic to animals and humans health. Adsorption is considered one of the promising techniques for the removal of BPA from water. In this study, we report the synthesis of a new polyamine-isocyanurate-based hyper crosslinked resin (ICYAN-PA) for the adsorptive removal of BPA from aqueous solution. The porous resin showed good thermal stability with a surface marked by smooth porous layers covered by particles of different sizes. The resin exhibited optimum removal of BPA at pH 5, with an adsorption capacity of 260 mg g−1. The isothermal studies suggested that adsorption was favored with increasing temperature (318 K). The Koble-Corrigan model was more adequate to represent the isothermal data. Moreover, the adsorption process was favorable, spontaneous, and endothermic (ΔH0 = 50.9 kJ mol−1). Furthermore, the magnitude of ΔH° was compatible with physical adsorption. The kinetic profiles indicated that the adsorption equilibrium was attained in <180 min of contact time, and the pseudo-first order model best represented the kinetic data. Given the relatively fast kinetics and high thermal stability (Td < 220 °C), ICYAN-PA holds a promise in the decontamination of effluents containing BPA.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-07T16:33:17Z
dc.date.available.none.fl_str_mv 2023-09-07T16:33:17Z
2025
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Tauqir Ahmad, Mohammad Saood Manzar, Jordana Georgin, Dison S.P. Franco, Sardaraz Khan, Lucas Meili, Nisar Ullah, Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water, Journal of Water Process Engineering, Volume 53, 2023, 103623, ISSN 2214-7144, https://doi.org/10.1016/j.jwpe.2023.103623
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10456
dc.identifier.doi.none.fl_str_mv 10.1016/j.jwpe.2023.103623
dc.identifier.eissn.spa.fl_str_mv 2214-7144
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Tauqir Ahmad, Mohammad Saood Manzar, Jordana Georgin, Dison S.P. Franco, Sardaraz Khan, Lucas Meili, Nisar Ullah, Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water, Journal of Water Process Engineering, Volume 53, 2023, 103623, ISSN 2214-7144, https://doi.org/10.1016/j.jwpe.2023.103623
10.1016/j.jwpe.2023.103623
2214-7144
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10456
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Water Process Engineering
dc.relation.references.spa.fl_str_mv [1] A. Waheed, N. Baig, N. Ullah, W. Falath, Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: a review of recent advances, J. Environ. Manag. 287 (Jun. 2021), https://doi.org/10.1016/j.jenvman.2021.112360.
[2] T. Ahmad, S. Khan, T. Rasheed, N. Ullah, Graphitic carbon nitride nanosheets as promising candidates for the detection of hazardous contaminants of environmental and biological concern in aqueous matrices, Microchim. Acta 189 (11) (Oct. 2022) 1–28, https://doi.org/10.1007/s00604-022-05516-x.
[3] M. Saood Manzar, et al., Comparative adsorption of Eriochrome Black T and Tetracycline by NaOH-modified steel dust: kinetic and process modeling, Sep. Purif. Technol. 287 (Apr. 2022), 120559, https://doi.org/10.1016/j. seppur.2022.120559.
[4] T. Ahmad, A. Waheed, S. Abdel-Azeim, S. Khan, N. Ullah, Three new turn-on fluorescent sensors for the selective detection of Zn2+: synthesis, properties and DFT studies, Arab. J. Chem. 15 (8) (Aug. 2022), 104002, https://doi.org/10.1016/ j.arabjc.2022.104002.
[5] A. Waheed, T. Ahmad, M. Haroon, N. Ullah, A highly sensitive and selective fluorescent sensor for Zinc(II) ions based on a 1,2,3-triazolyl-functionalized 2,2’- dipicolylamine (DPA), ChemistrySelect 5 (17) (May 2020) 5300–5305, https://doi. org/10.1002/slct.202000928.
[6] T. Ahmad, S. Abdel-Azeim, S. Khan, N. Ullah, Turn-on fluorescent sensors for nanomolar detection of zinc ions: synthesis, properties and DFT studies, J. Taiwan Inst. Chem. Eng. 139 (Oct. 2022), 104507, https://doi.org/10.1016/j. jtice.2022.104507.
[7] T. Ahmad, M. Mansha, I.W. Kazi, A. Waheed, N. Ullah, Synthesis of 3,5-diaminobenzoic acid containing crosslinked porous polyamine resin as a new adsorbent for efficient removal of cationic and anionic dyes from aqueous solutions, J. Water Process Eng. 43 (Oct. 2021), 102304, https://doi.org/10.1016/j. jwpe.2021.102304.
[8] A. Waheed, et al., Ultrahigh and efficient removal of Methyl orange, Eriochrom Black T and acid Blue 92 by triazine based cross-linked polyamine resin: synthesis, isotherm and kinetic studies, Colloids Surf.A Physicochem. Eng. Asp. 607 (Dec. 2020), 125472, https://doi.org/10.1016/j.colsurfa.2020.125472.
[9] K. Miserli, D. Kogola, I. Paraschoudi, I. Konstantinou, Activation of persulfate by biochar for the degradation of phenolic compounds in aqueous systems, Chem. Eng. J. Adv. 9 (Mar. 2022), 100201, https://doi.org/10.1016/j.ceja.2021.100201.
[10] T. Rasheed, S. Khan, T. Ahmad, N. Ullah, Covalent organic frameworks-based membranes as promising modalities from preparation to separation applications: an overview, Chem. Rec. 22 (8) (May 2022), e202200062, https://doi.org/ 10.1002/tcr.202200062.
[11] Z. Masood, et al., Analysis of physicochemical parameters of water and sediments collected from Rawal Dam Islamabad, Am. J. Toxicol. Sci. 7 (3) (2015) 123–128, https://doi.org/10.5829/idosi.aejts.2015.7.3.94220.
[12] S.T. Kadhum, G.Y. Alkindi, T.M. Albayati, Determination of chemical oxygen demand for phenolic compounds from oil refinery wastewater implementing different methods, Desalin. Water Treat. 231 (2021) 44–53, https://doi.org/ 10.5004/dwt.2021.27443.
[13] F. Liguori, C. Moreno-Marrodan, P. Barbaro, Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis, Chem. Soc. Rev. 49 (17) (Sep. 2020) 6329–6363, https://doi.org/10.1039/d0cs00179a.
[14] J. Heo, Y. Yoon, G. Lee, Y. Kim, J. Han, C.M. Park, Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite, Bioresour. Technol. 281 (Jun. 2019) 179–187, https://doi.org/ 10.1016/j.biortech.2019.02.091.
[15] A. Careghini, A.F. Mastorgio, S. Saponaro, E. Sezenna, Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review, Environ. Sci. Pollut. Res. 22 (8) (Apr. 2015) 5711–5741, https://doi.org/10.1007/s11356-014-3974-5.
[16] O.E. Ohore, Z. Songhe, Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems. A review, Sci. Afr. 5 (Sep. 2019), e00135, https://doi.org/10.1016/j.sciaf.2019.e00135.
[17] J. Xing, S. Zhang, M. Zhang, J. Hou, A critical review of presence, removal and potential impacts of endocrine disruptors bisphenol A, Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol. 254 (Apr. 2022), 109275, https://doi.org/10.1016/j. cbpc.2022.109275.
[18] H. He, et al., Urinary bisphenol A and its interaction with CYP17A1 rs743572 are associated with breast cancer risk, Chemosphere 286 (Jan. 2022), 131880, https:// doi.org/10.1016/j.chemosphere.2021.131880.
[19] J.I. Kim, Y.A. Lee, C.H. Shin, Y.C. Hong, B.N. Kim, Y.H. Lim, Association of bisphenol A, bisphenol F, and bisphenol S with ADHD symptoms in children, Environ. Int. 161 (Mar. 2022), 107093, https://doi.org/10.1016/j. envint.2022.107093.
[20] M. Li, et al., One-step construction of Ti-In bimetallic MOFs to improve synergistic effect of adsorption and photocatalytic degradation of bisphenol A, Sep. Purif. Technol. 298 (Oct. 2022), https://doi.org/10.1016/j.seppur.2022.121658.
[21] J. Sharma, I.M. Mishra, V. Kumar, Degradation and mineralization of bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/ S2O82- oxidation systems, J. Environ. Manag. 156 (Jun. 2015) 266–275, https:// doi.org/10.1016/j.jenvman.2015.03.048.
[22] M. Bourgin, et al., Chlorination of bisphenol A: non-targeted screening for the identification of transformation products and assessment of estrogenicity in generated water, Chemosphere 93 (11) (Nov. 2013) 2814–2822, https://doi.org/ 10.1016/j.chemosphere.2013.09.080.
[23] N.S. Ali, K.R. Kalash, A.N. Ahmed, T.M. Albayati, Performance of a solar photocatalysis reactor as pretreatment for wastewater via UV, UV/TiO 2, and UV/ H 2 O 2 to control membrane fouling, Sci. Rep. 0123456789 (2022) 1–10, https:// doi.org/10.1038/s41598-022-20984-0.
[24] P. Shao, et al., Defect-rich porous carbon with anti-interference capability for adsorption of bisphenol a via long-range hydrophobic interaction synergized with short-range dispersion force, J. Hazard. Mater. 403 (Feb. 2021), 123705, https:// doi.org/10.1016/j.jhazmat.2020.123705.
[25] M. Yegane badi, A. Azari, A. Esrafili, E. Ahmadi, M. Gholami, Performance evaluation of magnetized multiwall carbon nanotubes by iron oxide nanoparticles in removing fluoride from aqueous solution, J. Maz. Univ. Med. Sci. 25 (124) (2015).
[26] R. RezaeiKalantary, A. JonidiJafari, B. Kakavandi, S. Nasseri, A. Ameri, A. Azari, Adsorption and magnetic separation of lead from synthetic wastewater using carbon/iron oxide nanoparticles composite, J. Maz. Univ.Med. Sci. 24 (113) (2014).
[27] M.A. Zazouli, A. Azari, S. Dehghan, R.S. Malekkolae, Adsorption of methylene blue from aqueous solution onto activated carbons developed from eucalyptus bark and Crataegus oxyacantha core, Water Sci. Technol. 74 (9) (2016) 2021–2035, https:// doi.org/10.2166/wst.2016.287.
[28] M. Guo, et al., Carbon nanotube-grafted chitosan and its adsorption capacity for phenol in aqueous solution, Sci. Total Environ. 682 (2019) 340–347, https://doi. org/10.1016/j.scitotenv.2019.05.148.
[29] J. Jaafari, et al., Journal of industrial and engineering chemistry adsorption of p -cresol on Al 2 O 3 coated multi-walled carbon nanotubes: response surface methodology and isotherm study, J. Ind. Eng. Chem. 57 (2018) 396–404, https:// doi.org/10.1016/j.jiec.2017.08.048.
[30] T.M. Albayati, A.M. Doyle, PURIFICATION OF ANILINE AND NITROSUBSTITUTED ANILINE CONTAMINANTS FROM AQUEOUS SOLUTION USING BETA ZEOLITE vol. 23, no. 1, 2014.
[31] S. Rovani, J.J. Santos, S.N. Guilhen, P. Corio, D.A. Fungaro, Fast, efficient and clean adsorption of bisphenol-A using renewable mesoporous silica nanoparticles from sugarcane waste ash, RSC Adv. 10 (46) (Jul. 2020) 27706–27712, https://doi. org/10.1039/d0ra05198e.
[32] A. Azari, et al., Efficiency of magnitized graphene oxide nanoparticles in removal of 2,4-dichlorophenol from aqueous solution, J. Maz. Univ. Med. Sci. 26 (144) (2017) 265–281.
[33] B. Li, J. Ma, L. Zhou, Y. Qiu, Magnetic microsphere to remove tetracycline from water: adsorption, H2O2 oxidation and regeneration, Chem. Eng. J. 330 (Dec. 2017) 191–201, https://doi.org/10.1016/j.cej.2017.07.054.
[34] M. Mansha, et al., Ultrahigh removal of methyl orange, acid blue-92 and malachite green by a novel triazine-based polyamine resin: synthesis, isotherm and kinetic studies, Int. J. Environ. Anal. Chem. (2020), https://doi.org/10.1080/ 03067319.2020.1858072.
[35] M. Mansha, A. Waheed, T. Ahmad, I.W. Kazi, N. Ullah, Synthesis of a novel polysuccinimide based resin for the ultrahigh removal of anionic azo dyes from aqueous solution, Environ. Res. 184 (2020), https://doi.org/10.1016/j. envres.2020.109337.
[36] T. Ahmad, M.S. Manzar, S.U. Khan, I.W. Kazi, N.D. Mu’azu, N. Ullah, Synthesis and adsorptive performance of a novel triazine core-containing resin for the ultrahigh removal of malachite green from water, Arab. J. Sci. Eng. (2022), https://doi.org/ 10.1007/s13369-022-07015-w.
[37] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (9) (1918) 1361–1403, https://doi.org/10.1021/ ja02242a004.
[38] H. Freundlich, Über die adsorption in Losungen, ¨ <sb:contribution><sb:title>Z. Phys.</sb:title></sb:contribution><sb:host><sb:issue><sb:series><sb: title>Chem.</sb:title></sb:series></sb:issue></sb:host> 57U (1) (1907), https://doi.org/10.1515/zpch-1907-5723.
[39] M.M. Dubinin, et al., Development of concepts of the volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents - communication 4. Differential heats and entropies of adsorption, Bull. Acad. Sci. USSR Div. Chem. Sci. 20 (1) (Jan. 1971) 17–22, https://doi.org/10.1007/BF00849310.
[40] R.A. Koble, T.E. Corrigan, Adsorption isotherms for pure hydrocarbons, Ind. Eng. Chem. 44 (2) (Feb. 1952) 383–387, https://doi.org/10.1021/ie50506a049.
[41] H.N. Tran, E.C. Lima, R.-S. Juang, J.-C. Bollinger, H.-P. Chao, Thermodynamic parameters of liquid–phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: a comparison study, J. Environ. Chem. Eng. 9 (6) (Dec. 2021), 106674, https://doi.org/10.1016/j. jece.2021.106674.
[42] S.Y. Lagergren, Zur Theorie der sogenannten Adsorption, 1898.
[43] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (5) (1999) 451–465, https://doi.org/10.1016/S0032-9592(98) 00112-5.
[44] M. Avrami, Kinetics of phase change. I: general theory, J. Chem. Phys. 7 (12) (1939) 1103–1112, https://doi.org/10.1063/1.1750380.
[45] E. Glueckauf, Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography, Trans. Faraday Soc. 51 (3851) (1955) 1540–1551, https://doi.org/10.1039/TF9555101540.
[46] D.S.P. Franco, J. Georgin, E.C. Lima, L.F.O. Silva, Advances made in removing paraquat herbicide by adsorption technology: a review, J. Water Process Eng. 49 (June) (2022), 102988, https://doi.org/10.1016/j.jwpe.2022.102988.
[47] J. Wang, Y. Wu, Y. Cao, G. Li, Y. Liao, Influence of surface roughness on contact angle hysteresis and spreading work, Colloid Polym. Sci. 298 (8) (Aug. 2020) 1107–1112, https://doi.org/10.1007/s00396-020-04680-x.
[48] W. Guo, et al., Selective adsorption and separation of BPA from aqueous solution using novel molecularly imprinted polymers based on kaolinite/Fe3O4 composites, Chem. Eng. J. 171 (2) (2011) 603–611, https://doi.org/10.1016/j. cej.2011.04.036.
[49] H. Ding, Z. Zhang, Y. Li, L. Ding, D. Sun, Z. Dong, Fabrication of novel Fe/mn/N codoped biochar and its enhanced adsorption for bisphenol A based on π – π electron donor-acceptor, Bioresour. Technol. (2022), 128018, https://doi.org/10.1016/j. biortech.2022.128018.
[50] L. Yi, et al., Enhanced adsorption of bisphenol A, tylosin, and tetracycline from aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-π and π-π electron-donor-acceptor (EDA) interactions, Sci. Total Environ. 719 (Jun. 2020), 137389, https://doi.org/10.1016/j.scitotenv.2020.137389.
[51] Z. Sun, L. Zhao, C. Liu, Y. Zhen, J. Ma, Fast adsorption of BPA with high capacity based on Π-Π electron donor-acceptor and hydrophobicity mechanism using an insitu sp2 C dominant N-doped carbon, Chem. Eng. J. 381 (August 2019) (2020) 122510, https://doi.org/10.1016/j.cej.2019.122510.
[52] A. Chen, Y. Xie, X. Wei, B. Chen, J. Pang, One-step preparation of sodium alginatebased porous carbon for the adsorption of bisphenol a in water, J. Chem. Eng. Data 66 (2) (Feb. 2021) 1101–1109, https://doi.org/10.1021/acs.jced.0c00894.
[53] Y. Sun, et al., Facile synthesis of Fe-modified lignin-based biochar for ultra-fast adsorption of methylene blue: selective adsorption and mechanism studies, Bioresour. Technol. 344 (PA) (2022), 126186, https://doi.org/10.1016/j. biortech.2021.126186.
[54] S.B. Johnson, G.V. Franks, P.J. Scales, T.W. Healy, in: II . The Shear Yield Stress of Concentrated Suspensions no. 20, 1999, pp. 2844–2853.
[55] R. Sprycha, Electrical double layer at alumina/electrolyte interface. I. Surface charge and zeta potential, J. Colloid Interface Sci. 127 (1) (1989) 1–11, https:// doi.org/10.1016/0021-9797(89)90002-7.
[56] J.M. Borah, S. Mahiuddin, N. Sarma, D.F. Parsons, B.W. Ninham, Specific ion effects on adsorption at the solid/electrolyte interface: a probe into the concentration limit, Langmuir 27 (14) (2011) 8710–8717, https://doi.org/ 10.1021/la2006277.
[57] J. Liu, B. Zhou, H. Zhang, J. Ma, B. Mu, W. Zhang, A novel biochar modified by chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution, Bioresour. Technol. 294 (August) (2019), 122152, https://doi.org/10.1016/j. biortech.2019.122152.
[58] Z. Fang, et al., The adsorption mechanisms of oriental plane tree biochar toward bisphenol S: a combined thermodynamic evidence, spectroscopic analysis and theoretical calculations, Environ. Pollut. 310 (July) (2022), 119819, https://doi. org/10.1016/j.envpol.2022.119819.
[59] W. Shi, et al., Wheat straw derived biochar with hierarchically porous structure for bisphenol A removal: preparation, characterization, and adsorption properties, Sep. Purif. Technol. 289 (February) (2022), 120796, https://doi.org/10.1016/j. seppur.2022.120796.
[60] M.B. de Farias, M.G.C. Silva, M.G.A. Vieira, Adsorption of bisphenol a from aqueous solution onto organoclay: experimental design, kinetic, equilibrium and thermodynamic study, Powder Technol. 395 (Jan. 2022) 695–707, https://doi. org/10.1016/j.powtec.2021.10.021.
[61] T.J. Al-Musawi, N. Mengelizadeh, F. Ganji, C. Wang, D. Balarak, Preparation of multi-walled carbon nanotubes coated with CoFe2O4 nanoparticles and their adsorption performance for bisphenol A compound, Adv. Powder Technol. 33 (2) (2022), 103438, https://doi.org/10.1016/j.apt.2022.103438.
[62] S. Yousefinia, M.R. Sohrabi, F. Motiee, M. Davallo, The efficient removal of bisphenol A from aqueous solution using an assembled nanocomposite of zerovalent iron nanoparticles/graphene oxide/copper: adsorption isotherms, kinetic, and thermodynamic studies, J. Contam. Hydrol. 243 (September) (2021), 103906, https://doi.org/10.1016/j.jconhyd.2021.103906.
[63] E.C. Lima, et al., Adsorption of Cu(II) on Araucaria angustifolia wastes: determination of the optimal conditions by statistic design of experiments, J. Hazard. Mater. 140 (1–2) (2007) 211–220, https://doi.org/10.1016/j. jhazmat.2006.06.073.
[64] I. Ali, Z.A. Al-Othman, A. Alwarthan, Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water, J. Mol. Liq. 219 (2016) 858–864, https://doi.org/10.1016/j.molliq.2016.04.031.
[65] D.S.P. Franco, J.L.S. Fagundes, J. Georgin, N.P.G. Salau, G.L. Dotto, A mass transfer study considering intraparticle diffusion and axial dispersion for fixed-bed adsorption of crystal violet on pecan pericarp (Carya illinoensis), Chem. Eng. J. 397 (April) (Oct. 2020), 125423, https://doi.org/10.1016/j.cej.2020.125423.
[66] J. Georgin, D.S.P. Franco, M.S. Netto, D. Allasia, M.L.S. Oliveira, G.L. Dotto, Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to uptake crystal violet from colored effluents: alternative kinetic approaches, Environ. Sci. Pollut. Res. 27 (20) (Jul. 2020) 25727–25739, https://doi.org/ 10.1007/s11356-020-08854-6.
[67] J. Kwon, B. Lee, Bisphenol a adsorption using reduced graphene oxide prepared by physical and chemical reduction methods, Chem. Eng. Res. Des. 104 (2015) 519–529, https://doi.org/10.1016/j.cherd.2015.09.007.
[68] M.A. Martín-Lara, M. Calero, A. Ronda, I. I´ anez-Rodríguez, ˜ C. Escudero, Adsorptive behavior of an activated carbon for bisphenol A removal in single and binary (bisphenol A-heavy metal) solutions, Water (Switzerland) 12 (8) (2020), https:// doi.org/10.3390/W12082150.
[69] F. Dalanta, T.D. Kusworo, Synergistic adsorption and photocatalytic properties of AC/TiO2/CeO2 composite for phenol and ammonia–nitrogen compound degradations from petroleum refinery wastewater, Chem. Eng. J. 434 (January) (2022), 134687, https://doi.org/10.1016/j.cej.2022.134687.
[70] S.M. Niknam, M. Kashaninejad, I. Escudero, M.T. Sanz, S. Beltran, ´ J.M. Benito, Valorization of olive mill solid residue through ultrasound-assisted extraction and phenolics recovery by adsorption process, J. Clean. Prod. 316 (July) (2021), https://doi.org/10.1016/j.jclepro.2021.128340.
[71] Z. Wang, C. Wang, J. Yuan, C. Zhang, Adsorption characteristics of adsorbent resins and antioxidant capacity for enrichment of phenolics from two-phase olive waste, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1040 (2017) 38–46, https://doi. org/10.1016/j.jchromb.2016.11.023.
[72] Y. Yang, Y. Sik, K. Kim, E.E. Kwon, Y. Fai, Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/ sewage treatment plants: a review, Sci. Total Environ. 596–597 (2017) 303–320, https://doi.org/10.1016/j.scitotenv.2017.04.102.
[73] J. Georgin, et al., Efficient removal of naproxen from aqueous solution by highly porous activated carbon produced from Grapetree (Plinia cauliflora) fruit peels, J. Environ Chem. Eng. 9 (6) (2021), https://doi.org/10.1016/j.jece.2021.106820.
[74] P.T. Hernandes, D.S.P. Franco, J. Georgin, N.P.G. Salau, G.L. Dotto, Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium, J. Environ. Chem. Eng. 10 (3) (2022), 107408, https://doi. org/10.1016/j.jece.2022.107408.
[75] J. Georgin, et al., Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water, J. Environ Chem. Eng. 10 (1) (2022), https://doi.org/10.1016/j. jece.2021.107006.
[76] Y. Jeong, et al., Development of modified mesoporous carbon (CMK-3) for improved adsorption of bisphenol-A, Chemosphere 238 (Jan. 2020), 124559, https://doi.org/10.1016/J.CHEMOSPHERE.2019.124559.
[77] M.Y. Lee, et al., Aqueous adsorption of bisphenol A over a porphyrinic porous organic polymer, Chemosphere 265 (Feb. 2021), 129161, https://doi.org/ 10.1016/j.chemosphere.2020.129161.
[78] X. Zhong, Z. Lu, W. Liang, B. Hu, The magnetic covalent organic framework as a platform for high-performance extraction of Cr(VI) and bisphenol a from aqueous solution, J. Hazard. Mater. 393 (Jul. 2020), 122353, https://doi.org/10.1016/J. JHAZMAT.2020.122353.
[79] H. Huang, C. Zhao, Y. Ji, R. Nie, P. Zhou, H. Zhang, Preparation, characterization and application of p-tert-butyl-calix[4]arene-SBA-15 mesoporous silica molecular sieves, J. Hazard. Mater. 178 (1–3) (Jun. 2010) 680–685, https://doi.org/ 10.1016/j.jhazmat.2010.01.140.
[80] F. Marrakchi, F. Fazeli Zafar, M. Wei, S. Wang, Cross-linked FeCl3-activated seaweed carbon/MCM-41/alginate hydrogel composite for effective biosorption of bisphenol A plasticizer and basic dye from aqueous solution, Bioresour. Technol. 331 (Jul. 2021), 125046, https://doi.org/10.1016/j.biortech.2021.125046.
[81] W. Libbrecht, et al., Tuning the pore geometry of ordered mesoporous carbons for enhanced adsorption of bisphenol-A, Materials (Basel) 8 (4) (2015) 1652–1665, https://doi.org/10.3390/ma8041652.
[82] Q. Li, et al., Enhanced adsorption of bisphenol a from aqueous solution with 2- vinylpyridine functionalized magnetic nanoparticles, Polymers (Basel) 10 (10) (Oct. 2018) 1136, https://doi.org/10.3390/polym10101136.
[83] M.H. Dehghani, R.R. Karri, M. Alimohammadi, S. Nazmara, A. Zarei, Z. Saeedi, Insights into endocrine-disrupting bisphenol-A adsorption from pharmaceutical effluent by chitosan immobilized nanoscale zero-valent iron nanoparticles, J. Mol. Liq. 311 (Aug. 2020), 113317, https://doi.org/10.1016/j.molliq.2020.113317.
[84] F. Marrakchi, F.Fazeli Zafar, M. Wei, C. Yuan, B. Cao, S. Wang, N-doped mesoporous H3PO4–pyrocarbon from seaweed and melamine for batch adsorption of the endocrine disruptor bisphenol A, J. Mol. Liq. 345 (Jan. 2022) 117040, https://doi.org/10.1016/j.molliq.2021.117040.
dc.relation.citationendpage.spa.fl_str_mv 12
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 53
dc.rights.eng.fl_str_mv © 2023 Elsevier Ltd. All rights reserved.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2023 Elsevier Ltd. All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier Ltd.
dc.publisher.place.spa.fl_str_mv United Kingdom
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S221471442300140X
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/c267ed44-72c9-4941-851e-f60829fd1836/download
https://repositorio.cuc.edu.co/bitstreams/447dc9f2-f6a9-4130-997e-e820f8cd73c7/download
https://repositorio.cuc.edu.co/bitstreams/f6e065c6-7f6a-4242-b46a-3381daea5ea2/download
https://repositorio.cuc.edu.co/bitstreams/30e3a120-1261-471e-bbe0-9e289e2522f2/download
bitstream.checksum.fl_str_mv ef412f75ccd55038edd6623431eacf95
2f9959eaf5b71fae44bbf9ec84150c7a
ee5ba61912db67cc87037314bc4ac46b
94c81e0343d379c7a3e1f346e37632d1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760727481909248
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2023 Elsevier Ltd. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfAhmad, TauqirSaood Manzar, Mohammadgeorgin, jordanaDison S.P., FrancoKhan, SardarazMeili, LucasUllah, Nisar2023-09-07T16:33:17Z20252023-09-07T16:33:17Z2023Tauqir Ahmad, Mohammad Saood Manzar, Jordana Georgin, Dison S.P. Franco, Sardaraz Khan, Lucas Meili, Nisar Ullah, Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water, Journal of Water Process Engineering, Volume 53, 2023, 103623, ISSN 2214-7144, https://doi.org/10.1016/j.jwpe.2023.103623https://hdl.handle.net/11323/1045610.1016/j.jwpe.2023.1036232214-7144Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Bisphenol A (BPA) is a diphenylmethane derivative often used as a building block of polycarbonate in the production of plastic and plastic additives. Different sectors of the chemical industry release daily high concentrations of BPA in treatment plants, leading to polluting the environment. Due to chemical characteristics, BPA is considered highly toxic to animals and humans health. Adsorption is considered one of the promising techniques for the removal of BPA from water. In this study, we report the synthesis of a new polyamine-isocyanurate-based hyper crosslinked resin (ICYAN-PA) for the adsorptive removal of BPA from aqueous solution. The porous resin showed good thermal stability with a surface marked by smooth porous layers covered by particles of different sizes. The resin exhibited optimum removal of BPA at pH 5, with an adsorption capacity of 260 mg g−1. The isothermal studies suggested that adsorption was favored with increasing temperature (318 K). The Koble-Corrigan model was more adequate to represent the isothermal data. Moreover, the adsorption process was favorable, spontaneous, and endothermic (ΔH0 = 50.9 kJ mol−1). Furthermore, the magnitude of ΔH° was compatible with physical adsorption. The kinetic profiles indicated that the adsorption equilibrium was attained in <180 min of contact time, and the pseudo-first order model best represented the kinetic data. Given the relatively fast kinetics and high thermal stability (Td < 220 °C), ICYAN-PA holds a promise in the decontamination of effluents containing BPA.12 páginasapplication/pdfengElsevier Ltd.United Kingdomhttps://www.sciencedirect.com/science/article/pii/S221471442300140XDevelopment of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from waterArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Water Process Engineering[1] A. Waheed, N. Baig, N. Ullah, W. Falath, Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: a review of recent advances, J. Environ. Manag. 287 (Jun. 2021), https://doi.org/10.1016/j.jenvman.2021.112360.[2] T. Ahmad, S. Khan, T. Rasheed, N. Ullah, Graphitic carbon nitride nanosheets as promising candidates for the detection of hazardous contaminants of environmental and biological concern in aqueous matrices, Microchim. Acta 189 (11) (Oct. 2022) 1–28, https://doi.org/10.1007/s00604-022-05516-x.[3] M. Saood Manzar, et al., Comparative adsorption of Eriochrome Black T and Tetracycline by NaOH-modified steel dust: kinetic and process modeling, Sep. Purif. Technol. 287 (Apr. 2022), 120559, https://doi.org/10.1016/j. seppur.2022.120559.[4] T. Ahmad, A. Waheed, S. Abdel-Azeim, S. Khan, N. Ullah, Three new turn-on fluorescent sensors for the selective detection of Zn2+: synthesis, properties and DFT studies, Arab. J. Chem. 15 (8) (Aug. 2022), 104002, https://doi.org/10.1016/ j.arabjc.2022.104002.[5] A. Waheed, T. Ahmad, M. Haroon, N. Ullah, A highly sensitive and selective fluorescent sensor for Zinc(II) ions based on a 1,2,3-triazolyl-functionalized 2,2’- dipicolylamine (DPA), ChemistrySelect 5 (17) (May 2020) 5300–5305, https://doi. org/10.1002/slct.202000928.[6] T. Ahmad, S. Abdel-Azeim, S. Khan, N. Ullah, Turn-on fluorescent sensors for nanomolar detection of zinc ions: synthesis, properties and DFT studies, J. Taiwan Inst. Chem. Eng. 139 (Oct. 2022), 104507, https://doi.org/10.1016/j. jtice.2022.104507.[7] T. Ahmad, M. Mansha, I.W. Kazi, A. Waheed, N. Ullah, Synthesis of 3,5-diaminobenzoic acid containing crosslinked porous polyamine resin as a new adsorbent for efficient removal of cationic and anionic dyes from aqueous solutions, J. Water Process Eng. 43 (Oct. 2021), 102304, https://doi.org/10.1016/j. jwpe.2021.102304.[8] A. Waheed, et al., Ultrahigh and efficient removal of Methyl orange, Eriochrom Black T and acid Blue 92 by triazine based cross-linked polyamine resin: synthesis, isotherm and kinetic studies, Colloids Surf.A Physicochem. Eng. Asp. 607 (Dec. 2020), 125472, https://doi.org/10.1016/j.colsurfa.2020.125472.[9] K. Miserli, D. Kogola, I. Paraschoudi, I. Konstantinou, Activation of persulfate by biochar for the degradation of phenolic compounds in aqueous systems, Chem. Eng. J. Adv. 9 (Mar. 2022), 100201, https://doi.org/10.1016/j.ceja.2021.100201.[10] T. Rasheed, S. Khan, T. Ahmad, N. Ullah, Covalent organic frameworks-based membranes as promising modalities from preparation to separation applications: an overview, Chem. Rec. 22 (8) (May 2022), e202200062, https://doi.org/ 10.1002/tcr.202200062.[11] Z. Masood, et al., Analysis of physicochemical parameters of water and sediments collected from Rawal Dam Islamabad, Am. J. Toxicol. Sci. 7 (3) (2015) 123–128, https://doi.org/10.5829/idosi.aejts.2015.7.3.94220.[12] S.T. Kadhum, G.Y. Alkindi, T.M. Albayati, Determination of chemical oxygen demand for phenolic compounds from oil refinery wastewater implementing different methods, Desalin. Water Treat. 231 (2021) 44–53, https://doi.org/ 10.5004/dwt.2021.27443.[13] F. Liguori, C. Moreno-Marrodan, P. Barbaro, Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis, Chem. Soc. Rev. 49 (17) (Sep. 2020) 6329–6363, https://doi.org/10.1039/d0cs00179a.[14] J. Heo, Y. Yoon, G. Lee, Y. Kim, J. Han, C.M. Park, Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite, Bioresour. Technol. 281 (Jun. 2019) 179–187, https://doi.org/ 10.1016/j.biortech.2019.02.091.[15] A. Careghini, A.F. Mastorgio, S. Saponaro, E. Sezenna, Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review, Environ. Sci. Pollut. Res. 22 (8) (Apr. 2015) 5711–5741, https://doi.org/10.1007/s11356-014-3974-5.[16] O.E. Ohore, Z. Songhe, Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems. A review, Sci. Afr. 5 (Sep. 2019), e00135, https://doi.org/10.1016/j.sciaf.2019.e00135.[17] J. Xing, S. Zhang, M. Zhang, J. Hou, A critical review of presence, removal and potential impacts of endocrine disruptors bisphenol A, Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol. 254 (Apr. 2022), 109275, https://doi.org/10.1016/j. cbpc.2022.109275.[18] H. He, et al., Urinary bisphenol A and its interaction with CYP17A1 rs743572 are associated with breast cancer risk, Chemosphere 286 (Jan. 2022), 131880, https:// doi.org/10.1016/j.chemosphere.2021.131880.[19] J.I. Kim, Y.A. Lee, C.H. Shin, Y.C. Hong, B.N. Kim, Y.H. Lim, Association of bisphenol A, bisphenol F, and bisphenol S with ADHD symptoms in children, Environ. Int. 161 (Mar. 2022), 107093, https://doi.org/10.1016/j. envint.2022.107093.[20] M. Li, et al., One-step construction of Ti-In bimetallic MOFs to improve synergistic effect of adsorption and photocatalytic degradation of bisphenol A, Sep. Purif. Technol. 298 (Oct. 2022), https://doi.org/10.1016/j.seppur.2022.121658.[21] J. Sharma, I.M. Mishra, V. Kumar, Degradation and mineralization of bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/ S2O82- oxidation systems, J. Environ. Manag. 156 (Jun. 2015) 266–275, https:// doi.org/10.1016/j.jenvman.2015.03.048.[22] M. Bourgin, et al., Chlorination of bisphenol A: non-targeted screening for the identification of transformation products and assessment of estrogenicity in generated water, Chemosphere 93 (11) (Nov. 2013) 2814–2822, https://doi.org/ 10.1016/j.chemosphere.2013.09.080.[23] N.S. Ali, K.R. Kalash, A.N. Ahmed, T.M. Albayati, Performance of a solar photocatalysis reactor as pretreatment for wastewater via UV, UV/TiO 2, and UV/ H 2 O 2 to control membrane fouling, Sci. Rep. 0123456789 (2022) 1–10, https:// doi.org/10.1038/s41598-022-20984-0.[24] P. Shao, et al., Defect-rich porous carbon with anti-interference capability for adsorption of bisphenol a via long-range hydrophobic interaction synergized with short-range dispersion force, J. Hazard. Mater. 403 (Feb. 2021), 123705, https:// doi.org/10.1016/j.jhazmat.2020.123705.[25] M. Yegane badi, A. Azari, A. Esrafili, E. Ahmadi, M. Gholami, Performance evaluation of magnetized multiwall carbon nanotubes by iron oxide nanoparticles in removing fluoride from aqueous solution, J. Maz. Univ. Med. Sci. 25 (124) (2015).[26] R. RezaeiKalantary, A. JonidiJafari, B. Kakavandi, S. Nasseri, A. Ameri, A. Azari, Adsorption and magnetic separation of lead from synthetic wastewater using carbon/iron oxide nanoparticles composite, J. Maz. Univ.Med. Sci. 24 (113) (2014).[27] M.A. Zazouli, A. Azari, S. Dehghan, R.S. Malekkolae, Adsorption of methylene blue from aqueous solution onto activated carbons developed from eucalyptus bark and Crataegus oxyacantha core, Water Sci. Technol. 74 (9) (2016) 2021–2035, https:// doi.org/10.2166/wst.2016.287.[28] M. Guo, et al., Carbon nanotube-grafted chitosan and its adsorption capacity for phenol in aqueous solution, Sci. Total Environ. 682 (2019) 340–347, https://doi. org/10.1016/j.scitotenv.2019.05.148.[29] J. Jaafari, et al., Journal of industrial and engineering chemistry adsorption of p -cresol on Al 2 O 3 coated multi-walled carbon nanotubes: response surface methodology and isotherm study, J. Ind. Eng. Chem. 57 (2018) 396–404, https:// doi.org/10.1016/j.jiec.2017.08.048.[30] T.M. Albayati, A.M. Doyle, PURIFICATION OF ANILINE AND NITROSUBSTITUTED ANILINE CONTAMINANTS FROM AQUEOUS SOLUTION USING BETA ZEOLITE vol. 23, no. 1, 2014.[31] S. Rovani, J.J. Santos, S.N. Guilhen, P. Corio, D.A. Fungaro, Fast, efficient and clean adsorption of bisphenol-A using renewable mesoporous silica nanoparticles from sugarcane waste ash, RSC Adv. 10 (46) (Jul. 2020) 27706–27712, https://doi. org/10.1039/d0ra05198e.[32] A. Azari, et al., Efficiency of magnitized graphene oxide nanoparticles in removal of 2,4-dichlorophenol from aqueous solution, J. Maz. Univ. Med. Sci. 26 (144) (2017) 265–281.[33] B. Li, J. Ma, L. Zhou, Y. Qiu, Magnetic microsphere to remove tetracycline from water: adsorption, H2O2 oxidation and regeneration, Chem. Eng. J. 330 (Dec. 2017) 191–201, https://doi.org/10.1016/j.cej.2017.07.054.[34] M. Mansha, et al., Ultrahigh removal of methyl orange, acid blue-92 and malachite green by a novel triazine-based polyamine resin: synthesis, isotherm and kinetic studies, Int. J. Environ. Anal. Chem. (2020), https://doi.org/10.1080/ 03067319.2020.1858072.[35] M. Mansha, A. Waheed, T. Ahmad, I.W. Kazi, N. Ullah, Synthesis of a novel polysuccinimide based resin for the ultrahigh removal of anionic azo dyes from aqueous solution, Environ. Res. 184 (2020), https://doi.org/10.1016/j. envres.2020.109337.[36] T. Ahmad, M.S. Manzar, S.U. Khan, I.W. Kazi, N.D. Mu’azu, N. Ullah, Synthesis and adsorptive performance of a novel triazine core-containing resin for the ultrahigh removal of malachite green from water, Arab. J. Sci. Eng. (2022), https://doi.org/ 10.1007/s13369-022-07015-w.[37] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (9) (1918) 1361–1403, https://doi.org/10.1021/ ja02242a004.[38] H. Freundlich, Über die adsorption in Losungen, ¨ <sb:contribution><sb:title>Z. Phys.</sb:title></sb:contribution><sb:host><sb:issue><sb:series><sb: title>Chem.</sb:title></sb:series></sb:issue></sb:host> 57U (1) (1907), https://doi.org/10.1515/zpch-1907-5723.[39] M.M. Dubinin, et al., Development of concepts of the volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents - communication 4. Differential heats and entropies of adsorption, Bull. Acad. Sci. USSR Div. Chem. Sci. 20 (1) (Jan. 1971) 17–22, https://doi.org/10.1007/BF00849310.[40] R.A. Koble, T.E. Corrigan, Adsorption isotherms for pure hydrocarbons, Ind. Eng. Chem. 44 (2) (Feb. 1952) 383–387, https://doi.org/10.1021/ie50506a049.[41] H.N. Tran, E.C. Lima, R.-S. Juang, J.-C. Bollinger, H.-P. Chao, Thermodynamic parameters of liquid–phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: a comparison study, J. Environ. Chem. Eng. 9 (6) (Dec. 2021), 106674, https://doi.org/10.1016/j. jece.2021.106674.[42] S.Y. Lagergren, Zur Theorie der sogenannten Adsorption, 1898.[43] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (5) (1999) 451–465, https://doi.org/10.1016/S0032-9592(98) 00112-5.[44] M. Avrami, Kinetics of phase change. I: general theory, J. Chem. Phys. 7 (12) (1939) 1103–1112, https://doi.org/10.1063/1.1750380.[45] E. Glueckauf, Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography, Trans. Faraday Soc. 51 (3851) (1955) 1540–1551, https://doi.org/10.1039/TF9555101540.[46] D.S.P. Franco, J. Georgin, E.C. Lima, L.F.O. Silva, Advances made in removing paraquat herbicide by adsorption technology: a review, J. Water Process Eng. 49 (June) (2022), 102988, https://doi.org/10.1016/j.jwpe.2022.102988.[47] J. Wang, Y. Wu, Y. Cao, G. Li, Y. Liao, Influence of surface roughness on contact angle hysteresis and spreading work, Colloid Polym. Sci. 298 (8) (Aug. 2020) 1107–1112, https://doi.org/10.1007/s00396-020-04680-x.[48] W. Guo, et al., Selective adsorption and separation of BPA from aqueous solution using novel molecularly imprinted polymers based on kaolinite/Fe3O4 composites, Chem. Eng. J. 171 (2) (2011) 603–611, https://doi.org/10.1016/j. cej.2011.04.036.[49] H. Ding, Z. Zhang, Y. Li, L. Ding, D. Sun, Z. Dong, Fabrication of novel Fe/mn/N codoped biochar and its enhanced adsorption for bisphenol A based on π – π electron donor-acceptor, Bioresour. Technol. (2022), 128018, https://doi.org/10.1016/j. biortech.2022.128018.[50] L. Yi, et al., Enhanced adsorption of bisphenol A, tylosin, and tetracycline from aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-π and π-π electron-donor-acceptor (EDA) interactions, Sci. Total Environ. 719 (Jun. 2020), 137389, https://doi.org/10.1016/j.scitotenv.2020.137389.[51] Z. Sun, L. Zhao, C. Liu, Y. Zhen, J. Ma, Fast adsorption of BPA with high capacity based on Π-Π electron donor-acceptor and hydrophobicity mechanism using an insitu sp2 C dominant N-doped carbon, Chem. Eng. J. 381 (August 2019) (2020) 122510, https://doi.org/10.1016/j.cej.2019.122510.[52] A. Chen, Y. Xie, X. Wei, B. Chen, J. Pang, One-step preparation of sodium alginatebased porous carbon for the adsorption of bisphenol a in water, J. Chem. Eng. Data 66 (2) (Feb. 2021) 1101–1109, https://doi.org/10.1021/acs.jced.0c00894.[53] Y. Sun, et al., Facile synthesis of Fe-modified lignin-based biochar for ultra-fast adsorption of methylene blue: selective adsorption and mechanism studies, Bioresour. Technol. 344 (PA) (2022), 126186, https://doi.org/10.1016/j. biortech.2021.126186.[54] S.B. Johnson, G.V. Franks, P.J. Scales, T.W. Healy, in: II . The Shear Yield Stress of Concentrated Suspensions no. 20, 1999, pp. 2844–2853.[55] R. Sprycha, Electrical double layer at alumina/electrolyte interface. I. Surface charge and zeta potential, J. Colloid Interface Sci. 127 (1) (1989) 1–11, https:// doi.org/10.1016/0021-9797(89)90002-7.[56] J.M. Borah, S. Mahiuddin, N. Sarma, D.F. Parsons, B.W. Ninham, Specific ion effects on adsorption at the solid/electrolyte interface: a probe into the concentration limit, Langmuir 27 (14) (2011) 8710–8717, https://doi.org/ 10.1021/la2006277.[57] J. Liu, B. Zhou, H. Zhang, J. Ma, B. Mu, W. Zhang, A novel biochar modified by chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution, Bioresour. Technol. 294 (August) (2019), 122152, https://doi.org/10.1016/j. biortech.2019.122152.[58] Z. Fang, et al., The adsorption mechanisms of oriental plane tree biochar toward bisphenol S: a combined thermodynamic evidence, spectroscopic analysis and theoretical calculations, Environ. Pollut. 310 (July) (2022), 119819, https://doi. org/10.1016/j.envpol.2022.119819.[59] W. Shi, et al., Wheat straw derived biochar with hierarchically porous structure for bisphenol A removal: preparation, characterization, and adsorption properties, Sep. Purif. Technol. 289 (February) (2022), 120796, https://doi.org/10.1016/j. seppur.2022.120796.[60] M.B. de Farias, M.G.C. Silva, M.G.A. Vieira, Adsorption of bisphenol a from aqueous solution onto organoclay: experimental design, kinetic, equilibrium and thermodynamic study, Powder Technol. 395 (Jan. 2022) 695–707, https://doi. org/10.1016/j.powtec.2021.10.021.[61] T.J. Al-Musawi, N. Mengelizadeh, F. Ganji, C. Wang, D. Balarak, Preparation of multi-walled carbon nanotubes coated with CoFe2O4 nanoparticles and their adsorption performance for bisphenol A compound, Adv. Powder Technol. 33 (2) (2022), 103438, https://doi.org/10.1016/j.apt.2022.103438.[62] S. Yousefinia, M.R. Sohrabi, F. Motiee, M. Davallo, The efficient removal of bisphenol A from aqueous solution using an assembled nanocomposite of zerovalent iron nanoparticles/graphene oxide/copper: adsorption isotherms, kinetic, and thermodynamic studies, J. Contam. Hydrol. 243 (September) (2021), 103906, https://doi.org/10.1016/j.jconhyd.2021.103906.[63] E.C. Lima, et al., Adsorption of Cu(II) on Araucaria angustifolia wastes: determination of the optimal conditions by statistic design of experiments, J. Hazard. Mater. 140 (1–2) (2007) 211–220, https://doi.org/10.1016/j. jhazmat.2006.06.073.[64] I. Ali, Z.A. Al-Othman, A. Alwarthan, Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water, J. Mol. Liq. 219 (2016) 858–864, https://doi.org/10.1016/j.molliq.2016.04.031.[65] D.S.P. Franco, J.L.S. Fagundes, J. Georgin, N.P.G. Salau, G.L. Dotto, A mass transfer study considering intraparticle diffusion and axial dispersion for fixed-bed adsorption of crystal violet on pecan pericarp (Carya illinoensis), Chem. Eng. J. 397 (April) (Oct. 2020), 125423, https://doi.org/10.1016/j.cej.2020.125423.[66] J. Georgin, D.S.P. Franco, M.S. Netto, D. Allasia, M.L.S. Oliveira, G.L. Dotto, Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to uptake crystal violet from colored effluents: alternative kinetic approaches, Environ. Sci. Pollut. Res. 27 (20) (Jul. 2020) 25727–25739, https://doi.org/ 10.1007/s11356-020-08854-6.[67] J. Kwon, B. Lee, Bisphenol a adsorption using reduced graphene oxide prepared by physical and chemical reduction methods, Chem. Eng. Res. Des. 104 (2015) 519–529, https://doi.org/10.1016/j.cherd.2015.09.007.[68] M.A. Martín-Lara, M. Calero, A. Ronda, I. I´ anez-Rodríguez, ˜ C. Escudero, Adsorptive behavior of an activated carbon for bisphenol A removal in single and binary (bisphenol A-heavy metal) solutions, Water (Switzerland) 12 (8) (2020), https:// doi.org/10.3390/W12082150.[69] F. Dalanta, T.D. Kusworo, Synergistic adsorption and photocatalytic properties of AC/TiO2/CeO2 composite for phenol and ammonia–nitrogen compound degradations from petroleum refinery wastewater, Chem. Eng. J. 434 (January) (2022), 134687, https://doi.org/10.1016/j.cej.2022.134687.[70] S.M. Niknam, M. Kashaninejad, I. Escudero, M.T. Sanz, S. Beltran, ´ J.M. Benito, Valorization of olive mill solid residue through ultrasound-assisted extraction and phenolics recovery by adsorption process, J. Clean. Prod. 316 (July) (2021), https://doi.org/10.1016/j.jclepro.2021.128340.[71] Z. Wang, C. Wang, J. Yuan, C. Zhang, Adsorption characteristics of adsorbent resins and antioxidant capacity for enrichment of phenolics from two-phase olive waste, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1040 (2017) 38–46, https://doi. org/10.1016/j.jchromb.2016.11.023.[72] Y. Yang, Y. Sik, K. Kim, E.E. Kwon, Y. Fai, Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/ sewage treatment plants: a review, Sci. Total Environ. 596–597 (2017) 303–320, https://doi.org/10.1016/j.scitotenv.2017.04.102.[73] J. Georgin, et al., Efficient removal of naproxen from aqueous solution by highly porous activated carbon produced from Grapetree (Plinia cauliflora) fruit peels, J. Environ Chem. Eng. 9 (6) (2021), https://doi.org/10.1016/j.jece.2021.106820.[74] P.T. Hernandes, D.S.P. Franco, J. Georgin, N.P.G. Salau, G.L. Dotto, Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium, J. Environ. Chem. Eng. 10 (3) (2022), 107408, https://doi. org/10.1016/j.jece.2022.107408.[75] J. Georgin, et al., Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water, J. Environ Chem. Eng. 10 (1) (2022), https://doi.org/10.1016/j. jece.2021.107006.[76] Y. Jeong, et al., Development of modified mesoporous carbon (CMK-3) for improved adsorption of bisphenol-A, Chemosphere 238 (Jan. 2020), 124559, https://doi.org/10.1016/J.CHEMOSPHERE.2019.124559.[77] M.Y. Lee, et al., Aqueous adsorption of bisphenol A over a porphyrinic porous organic polymer, Chemosphere 265 (Feb. 2021), 129161, https://doi.org/ 10.1016/j.chemosphere.2020.129161.[78] X. Zhong, Z. Lu, W. Liang, B. Hu, The magnetic covalent organic framework as a platform for high-performance extraction of Cr(VI) and bisphenol a from aqueous solution, J. Hazard. Mater. 393 (Jul. 2020), 122353, https://doi.org/10.1016/J. JHAZMAT.2020.122353.[79] H. Huang, C. Zhao, Y. Ji, R. Nie, P. Zhou, H. Zhang, Preparation, characterization and application of p-tert-butyl-calix[4]arene-SBA-15 mesoporous silica molecular sieves, J. Hazard. Mater. 178 (1–3) (Jun. 2010) 680–685, https://doi.org/ 10.1016/j.jhazmat.2010.01.140.[80] F. Marrakchi, F. Fazeli Zafar, M. Wei, S. Wang, Cross-linked FeCl3-activated seaweed carbon/MCM-41/alginate hydrogel composite for effective biosorption of bisphenol A plasticizer and basic dye from aqueous solution, Bioresour. Technol. 331 (Jul. 2021), 125046, https://doi.org/10.1016/j.biortech.2021.125046.[81] W. Libbrecht, et al., Tuning the pore geometry of ordered mesoporous carbons for enhanced adsorption of bisphenol-A, Materials (Basel) 8 (4) (2015) 1652–1665, https://doi.org/10.3390/ma8041652.[82] Q. Li, et al., Enhanced adsorption of bisphenol a from aqueous solution with 2- vinylpyridine functionalized magnetic nanoparticles, Polymers (Basel) 10 (10) (Oct. 2018) 1136, https://doi.org/10.3390/polym10101136.[83] M.H. Dehghani, R.R. Karri, M. Alimohammadi, S. Nazmara, A. Zarei, Z. Saeedi, Insights into endocrine-disrupting bisphenol-A adsorption from pharmaceutical effluent by chitosan immobilized nanoscale zero-valent iron nanoparticles, J. Mol. Liq. 311 (Aug. 2020), 113317, https://doi.org/10.1016/j.molliq.2020.113317.[84] F. Marrakchi, F.Fazeli Zafar, M. Wei, C. Yuan, B. Cao, S. Wang, N-doped mesoporous H3PO4–pyrocarbon from seaweed and melamine for batch adsorption of the endocrine disruptor bisphenol A, J. Mol. Liq. 345 (Jan. 2022) 117040, https://doi.org/10.1016/j.molliq.2021.117040.12153Bisphenol AAdsorptionDecontaminationCompositesPublicationORIGINALDevelopment of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water.pdfDevelopment of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water.pdfArtículosapplication/pdf5773133https://repositorio.cuc.edu.co/bitstreams/c267ed44-72c9-4941-851e-f60829fd1836/downloadef412f75ccd55038edd6623431eacf95MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/447dc9f2-f6a9-4130-997e-e820f8cd73c7/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTDevelopment of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water.pdf.txtDevelopment of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water.pdf.txtExtracted texttext/plain63067https://repositorio.cuc.edu.co/bitstreams/f6e065c6-7f6a-4242-b46a-3381daea5ea2/downloadee5ba61912db67cc87037314bc4ac46bMD53THUMBNAILDevelopment of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water.pdf.jpgDevelopment of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water.pdf.jpgGenerated Thumbnailimage/jpeg14411https://repositorio.cuc.edu.co/bitstreams/30e3a120-1261-471e-bbe0-9e289e2522f2/download94c81e0343d379c7a3e1f346e37632d1MD5411323/10456oai:repositorio.cuc.edu.co:11323/104562024-09-17 10:50:29.204https://creativecommons.org/licenses/by-nc-nd/4.0/© 2023 Elsevier Ltd. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=