Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film
This paper reports the application of an advanced multilayer model to study the adsorption of food dyes FD&C blue No. 2, acid red 18, FD&C red No. 2, and FD&C yellow 5 from aqueous solutions with a chitosan film. These dyes' adsorption mechanisms were discussed and analyzed at 298–3...
- Autores:
-
Sellaoui, Lotfi
Dhaouadi, Fatma
Li, Zichao
Cadaval Jr, Tito R. S.
Igansi, Andrei V.
Pinto, Luiz A. A.
Dotto, Guilherme Luiz
Bonilla-Petriciolet, Adrian
Pinto, Diana
Chen, Zhuqi
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8351
- Acceso en línea:
- https://hdl.handle.net/11323/8351
https://doi.org/10.1016/j.jece.2021.105516
https://repositorio.cuc.edu.co/
- Palabra clave:
- Adsorption
Food dyes
Chitosan film
Multilayer model
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_bf7c790283f34d51926bee7c4e52db57 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8351 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film |
title |
Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film |
spellingShingle |
Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film Adsorption Food dyes Chitosan film Multilayer model |
title_short |
Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film |
title_full |
Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film |
title_fullStr |
Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film |
title_full_unstemmed |
Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film |
title_sort |
Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film |
dc.creator.fl_str_mv |
Sellaoui, Lotfi Dhaouadi, Fatma Li, Zichao Cadaval Jr, Tito R. S. Igansi, Andrei V. Pinto, Luiz A. A. Dotto, Guilherme Luiz Bonilla-Petriciolet, Adrian Pinto, Diana Chen, Zhuqi |
dc.contributor.author.spa.fl_str_mv |
Sellaoui, Lotfi Dhaouadi, Fatma Li, Zichao Cadaval Jr, Tito R. S. Igansi, Andrei V. Pinto, Luiz A. A. Dotto, Guilherme Luiz Bonilla-Petriciolet, Adrian Pinto, Diana Chen, Zhuqi |
dc.subject.eng.fl_str_mv |
Adsorption Food dyes Chitosan film Multilayer model |
topic |
Adsorption Food dyes Chitosan film Multilayer model |
description |
This paper reports the application of an advanced multilayer model to study the adsorption of food dyes FD&C blue No. 2, acid red 18, FD&C red No. 2, and FD&C yellow 5 from aqueous solutions with a chitosan film. These dyes' adsorption mechanisms were discussed and analyzed at 298–328 K and pH 4–7 via statistical physics calculations. Physicochemical parameters were utilized to explain the dye adsorption at the molecular scale. Modeling results showed dye aggregation phenomena where each functional group of chitosan film adsorbed several dye molecules simultaneously at different tested temperatures. Aqueous solution temperature reduced the dye adsorption capacities, attributed to the exothermic nature of dye removal. The chitosan film was more effective for the adsorption of dye FD&C yellow 5. The estimated adsorption energies for dye-chitosan film and dye-dye interactions confirmed an exothermic physisorption associated with van der Waals forces and hydrogen bonding. This study's results contributed to expanding the knowledge on the adsorption mechanisms of dye molecules using biopolymers like chitosan. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-03T18:39:50Z |
dc.date.available.none.fl_str_mv |
2021-06-03T18:39:50Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.embargoEnd.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2213-3437 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8351 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.jece.2021.105516 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2213-3437 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8351 https://doi.org/10.1016/j.jece.2021.105516 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] H.A.M. Saleh, I. Mantasha, K.M.A. Qasem, M. Shahid, M.N. Akhtar, M.A. AlDamen, M. Ahmad A two dimensional Co(II) metal–organic framework with bey topology for excellent dye adsorption and separation: Exploring kinetics and mechanism of adsorption Inorg. Chim. Acta, 512 (2020), Article 119900, 10.1016/j.ica.2020.119900 [2] B. Adhikari, G. Palui, A. Banerjee Self-assembling tripeptide based hydrogels and their use in removal of dyes from waste-water Soft Matter, 5 (2009), p. 3452, 10.1039/b905985g [3] J.-W. Lee, S.-P. Choi, R. Thiruvenkatachari, W.-G. Shim, H. Moon Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dyes Water Res., 40 (2006), pp. 435-444, 10.1016/j.watres.2005.11.034 [4] M.G. Buonomenna, A. Gordano, G. Golemme, E. Drioli Preparation, characterization and use of PEEKWC nanofiltration membranes for removal of Azur B dye from aqueous media React. Funct. Polym., 69 (2009), pp. 259-263, 10.1016/j.reactfunctpolym.2009.01.004 [5] M.H. Farzana, S. Meenakshi Exploitation of zinc oxide impregnated chitosan beads for the photocatalytic decolorization of an azo dye Int. J. Biol. Macromol., 72 (2015), pp. 900-910, 10.1016/j.ijbiomac.2014.09.038 [6] S. Sadri Moghaddam, M.R. Alavi Moghaddam, M. Arami Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology J. Hazar. Mat., 175 (2010), pp. 651-657, 10.1016/j.jhazmat.2009.10.058 [7] P. Sirajudheen, S. Meenakshi Encapsulation of Zn–Fe layered double hydroxide on activated carbon and its litheness in tuning anionic and rhoda dyes through adsorption mechanism Asia Pac J. Chem. Eng., 15 (2020), 10.1002/apj.2479 [8] M.S. Khalili, K. Zare, O. Moradi, M. Sillanpää Preparation and characterization of MWCNT–COOH–cellulose–MgO NP nanocomposite as adsorbent for removal of methylene blue from aqueous solutions: isotherm, thermodynamic and kinetic studies J. Nanostruct. Chem., 8 (2018), pp. 103-121, 10.1007/s40097-018-0258-5 [9] F. Dhaouadi, L. Sellaoui, G.L. Dotto, A. Bonilla-Petriciolet, A. Erto, A.B. Lamine Adsorption of methylene blue on comminuted raw avocado seeds: interpretation of the effect of salts via physical monolayer model J. Mol. Liq., 305 (2020), Article 112815, 10.1016/j.molliq.2020.112815 [10] B. Shi, G. Li, D. Wang, C. Feng, H. Tang Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species J. Hazar. Mat., 143 (2007), pp. 567-574, 10.1016/j.jhazmat.2006.09.076 [11] Z.-L. Cheng, Y. Li, Z. Liu Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO2/Al2O3 ratio Ecotoxicol. Environ. Saf., 148 (2018), pp. 585-592, 10.1016/j.ecoenv.2017.11.005 [12] N.F. Cardoso, E.C. Lima, B. Royer, M.V. Bach, G.L. Dotto, L.A.A. Pinto, T. Calvete Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents J. Hazar. Mat., 241–242 (2012), pp. 146-153, 10.1016/j.jhazmat.2012.09.026 [13] N. Sakkayawong, P. Thiravetyan, W. Nakbanpote Adsorption mechanism of synthetic reactive dye wastewater by chitosan J. Colloid Interface Sci., 286 (2005), pp. 36-42, 10.1016/j.jcis.2005.01.020 [14] G. McKay, M.S. Otterburn, A.G. Sweeney Surface mass transfer processes during colour removal from effluent using silica Water Res., 15 (1981), pp. 327-331, 10.1016/0043-1354(81)90036-1 [15] H.D. Utomo, R.Y.N. Phoon, Z. Shen, L.H. Ng, Z.B. Lim Removal of methylene blue using chemically modified sugarcane bagasse Nat. Resour., 06 (2015), pp. 209-220, 10.4236/nr.2015.64019 [16] G. Akkaya, İ. Uzun, F. Güzel Kinetics of the adsorption of reactive dyes by chitin Dyes Pigments, 73 (2007), pp. 168-177, 10.1016/j.dyepig.2005.11.005 [17] M. Khnifira, W. Boumya, M. Abdennouri, M. Sadiq, M. Achak, G. Serdaroğlu, S. Kaya, S. Şimşek, N. Barka A combined molecular dynamic simulation, DFT calculations, and experimental study of the eriochrome black T dye adsorption onto chitosan in aqueous solutions J. Biol. Macromol., 166 (2021), pp. 707-721, 10.1016/j.ijbiomac.2020.10.228 [18] Z.M. Şenol, N. Gürsoy, S. Şimşek, A. Özer, N. Karakuş Removal of food dyes from aqueous solution by chitosan-vermiculite beads J. Biol. Macromol., 148 (2020), pp. 635-646, 10.1016/j.ijbiomac.2020.01.166 [19] G.L. Dotto, R. Ocampo-Pérez, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto Adsorption rate of Reactive Black 5 on chitosan based materials: geometry and swelling effects Adsorption, 22 (2016), pp. 973-983, 10.1007/s10450-016-9804-y [20] E. Águila-Almanza, S.S. Low, H. Hernández-Cocoletzi, A. Atonal-Sandoval, E. Rubio-Rosas, J. Violante-González, P.L. Show Facile and green approach in managing sand crab carapace biowaste for obtention of high deacetylation percentage chitosan J. Environ. Chem. Eng., 9 (2021), Article 105229, 10.1016/j.jece.2021.105229 [21] G. Cavallaro, S. Micciulla, L. Chiappisi, G. Lazzara Chitosan-based smart hybrid materials: a physico-chemical perspective J. Mater. Chem. B, 9 (2021), pp. 594-611, 10.1039/D0TB01865A [22] R. Chanajaree, M. Sriuttha, V.S. Lee, K. Wittayanarakul Thermodynamics and kinetics of cationic/anionic dyes adsorption on cross-linked chitosan J. Mol. Liq., 322 (2021), Article 114507, 10.1016/j.molliq.2020.114507 [23] S. Hussain, M. Kamran, S.A. Khan, K. Shaheen, Z. Shah, H. Suo, Q. Khan, A.B. Shah, W.U. Rehman, Y.O. Al-Ghamdi, U. Ghani Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films J. Biol. Macromol., 168 (2021), pp. 383-394, 10.1016/j.ijbiomac.2020.12.054 [24] F. Marrakchi, B.H. Hameed, E.H. Hummadi Mesoporous biohybrid epichlorohydrin crosslinked chitosan/carbon–clay adsorbent for effective cationic and anionic dyes adsorption Int. J. Biol. Macromol., 163 (2020), pp. 1079-1086, 10.1016/j.ijbiomac.2020.07.032 [25] T.V. Rêgo, T.R.S. Cadaval, G.L. Dotto, L.A.A. Pinto Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan films J. Colloid Interface Sci., 411 (2013), pp. 27-33, 10.1016/j.jcis.2013.08.051 [26] Z. Li, G.L. Dotto, A. Bajahzar, L. Sellaoui, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet Adsorption of indium (III) from aqueous solution on raw, ultrasound- and supercritical-modified chitin: experimental and theoretical análisis Chem. Eng. J., 373 (2019), pp. 1247-1253, 10.1016/j.cej.2019.05.134 [27] G.L. Dotto, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption Chem. Eng. J., 214 (2013), pp. 8-16, 10.1016/j.cej.2012.10.027 [28] T.R.S. Cadaval, G.L. Dotto, L.A.A. Pinto Equilibrium isotherms, thermodynamics, and kinetic studies for the adsorption of food azo dyes onto chitosan films Chem. Eng. Commun., 202 (2015), pp. 1316-1323, 10.1080/00986445.2014.934449 [29] L. Sellaoui, Z. Li, M. Badawi, G.L. Dotto, A. Bonilla-Petriciolet, Z. Chen Origin of the outstanding performance of Zn Al and Mg Fe layered double hydroxides in the adsorption of 2-nitrophenol: a statistical physics assessment J. Mol. Liq., 314 (2020), Article 113572, 10.1016/j.molliq.2020.113572 [30] P. Hua, L. Sellaoui, D. Franco, M.S. Netto, G. Luiz Dotto, A. Bajahzar, H. Belmabrouk, A. Bonilla-Petriciolet, Z. Li Adsorption of acid green and procion red on a magnetic geopolymer based adsorbent: experiments, characterization and theoretical treatment Chem. Eng. J., 383 (2020), Article 123113, 10.1016/j.cej.2019.123113 [31] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A. Ben Lamine Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon Fluid. Phase. Equilib., 387 (2015), pp. 103-110, 10.1016/j.fluid.2014.12.018 [32] F. Dhaouadi, L. Sellaoui, B. Chávez-González, H. Elizabeth Reynel-Ávila, L.L. Diaz-Muñoz, D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, E.C. Lima, J.C. Tapia-Picazo, A.B. Lamine Application of a heterogeneous physical model for the adsorption of Cd2+, Ni2+, Zn2+ and Cu2+ ions on flamboyant pods functionalized with citric acid Chem. Eng. J. (2020), Article 127975, 10.1016/j.cej.2020.127975 [33] F. Dhaouadi, L. Sellaoui, M. Badawi, H.E. Reynel-Ávila, D.I. Mendoza-Castillo, J.E. Jaime-Leal, A. Bonilla-Petriciolet, A.B. Lamine Statistical physics interpretation of the adsorption mechanism of Pb2+, Cd2+ and Ni2+ on chicken feathers J. Mol. Liq., 319 (2020), Article 114168, 10.1016/j.molliq.2020.114168 [34] F. Dhaouadi, L. Sellaoui, H.E. Reynel-Ávila, V. Landín-Sandoval, D.I. Mendoza-Castillo, J.E. Jaime-Leal, E.C. Lima, A. Bonilla-Petriciolet, A.B. Lamine Adsorption mechanism of Zn2+, Ni2+, Cd2+, and Cu2+ ions by carbon-based adsorbents: interpretation of the adsorption isotherms via physical modelling Environ. Sci. Pollut. Res. (2021), 10.1007/s11356-021-12832-x [35] L. Sellaoui, B.B. Saha, S. Wjihi, A.B. Lamine Physicochemical parameters interpretation for adsorption equilibrium of ethanol on metal organic framework: application of the multilayer model with saturation J. Mol. Liq., 233 (2017), pp. 537-542, 10.1016/j.molliq.2016.07.017 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Journal of Environmental Chemical Engineering |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
sciencedirect.com/science/article/pii/S2213343721004930?via%3Dihub |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/4378741f-5d8c-47da-84d0-9b04d93a512a/download https://repositorio.cuc.edu.co/bitstreams/2a7097bc-46c5-45a4-8f66-7f9ff26ada8c/download https://repositorio.cuc.edu.co/bitstreams/013b9827-964c-466e-be13-44f998505ba0/download https://repositorio.cuc.edu.co/bitstreams/bdf31686-6aa0-4e99-ae5d-784134f153e6/download https://repositorio.cuc.edu.co/bitstreams/fbae87fb-9321-462f-8f8c-a032d93d61a5/download |
bitstream.checksum.fl_str_mv |
8690379487335ffc411af21139b2d477 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 7c1e1cb35367d3e4d748e4d98148505f 7e6e423bed3893bd26aeb73ea31aa31c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760699303526400 |
spelling |
Sellaoui, LotfiDhaouadi, FatmaLi, ZichaoCadaval Jr, Tito R. S.Igansi, Andrei V.Pinto, Luiz A. A.Dotto, Guilherme LuizBonilla-Petriciolet, AdrianPinto, DianaChen, Zhuqi2021-06-03T18:39:50Z2021-06-03T18:39:50Z202120232213-3437https://hdl.handle.net/11323/8351https://doi.org/10.1016/j.jece.2021.105516Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper reports the application of an advanced multilayer model to study the adsorption of food dyes FD&C blue No. 2, acid red 18, FD&C red No. 2, and FD&C yellow 5 from aqueous solutions with a chitosan film. These dyes' adsorption mechanisms were discussed and analyzed at 298–328 K and pH 4–7 via statistical physics calculations. Physicochemical parameters were utilized to explain the dye adsorption at the molecular scale. Modeling results showed dye aggregation phenomena where each functional group of chitosan film adsorbed several dye molecules simultaneously at different tested temperatures. Aqueous solution temperature reduced the dye adsorption capacities, attributed to the exothermic nature of dye removal. The chitosan film was more effective for the adsorption of dye FD&C yellow 5. The estimated adsorption energies for dye-chitosan film and dye-dye interactions confirmed an exothermic physisorption associated with van der Waals forces and hydrogen bonding. This study's results contributed to expanding the knowledge on the adsorption mechanisms of dye molecules using biopolymers like chitosan.Sellaoui, LotfiDhaouadi, Fatma-will be generated-orcid-0000-0001-9671-7804-600Li, ZichaoCadaval Jr, Tito R. S.Igansi, Andrei V.Pinto, Luiz A. A.Dotto, Guilherme Luiz-will be generated-orcid-0000-0002-4413-8138-600Bonilla-Petriciolet, Adrian-will be generated-orcid-0000-0002-0197-3539-600Pinto, Diana-will be generated-orcid-0000-0002-1496-5722-600Chen, Zhuqiapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Environmental Chemical Engineeringsciencedirect.com/science/article/pii/S2213343721004930?via%3DihubAdsorptionFood dyesChitosan filmMultilayer modelImplementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan filmPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] H.A.M. Saleh, I. Mantasha, K.M.A. Qasem, M. Shahid, M.N. Akhtar, M.A. AlDamen, M. Ahmad A two dimensional Co(II) metal–organic framework with bey topology for excellent dye adsorption and separation: Exploring kinetics and mechanism of adsorption Inorg. Chim. Acta, 512 (2020), Article 119900, 10.1016/j.ica.2020.119900[2] B. Adhikari, G. Palui, A. Banerjee Self-assembling tripeptide based hydrogels and their use in removal of dyes from waste-water Soft Matter, 5 (2009), p. 3452, 10.1039/b905985g[3] J.-W. Lee, S.-P. Choi, R. Thiruvenkatachari, W.-G. Shim, H. Moon Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dyes Water Res., 40 (2006), pp. 435-444, 10.1016/j.watres.2005.11.034[4] M.G. Buonomenna, A. Gordano, G. Golemme, E. Drioli Preparation, characterization and use of PEEKWC nanofiltration membranes for removal of Azur B dye from aqueous media React. Funct. Polym., 69 (2009), pp. 259-263, 10.1016/j.reactfunctpolym.2009.01.004[5] M.H. Farzana, S. Meenakshi Exploitation of zinc oxide impregnated chitosan beads for the photocatalytic decolorization of an azo dye Int. J. Biol. Macromol., 72 (2015), pp. 900-910, 10.1016/j.ijbiomac.2014.09.038[6] S. Sadri Moghaddam, M.R. Alavi Moghaddam, M. Arami Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology J. Hazar. Mat., 175 (2010), pp. 651-657, 10.1016/j.jhazmat.2009.10.058[7] P. Sirajudheen, S. Meenakshi Encapsulation of Zn–Fe layered double hydroxide on activated carbon and its litheness in tuning anionic and rhoda dyes through adsorption mechanism Asia Pac J. Chem. Eng., 15 (2020), 10.1002/apj.2479[8] M.S. Khalili, K. Zare, O. Moradi, M. Sillanpää Preparation and characterization of MWCNT–COOH–cellulose–MgO NP nanocomposite as adsorbent for removal of methylene blue from aqueous solutions: isotherm, thermodynamic and kinetic studies J. Nanostruct. Chem., 8 (2018), pp. 103-121, 10.1007/s40097-018-0258-5[9] F. Dhaouadi, L. Sellaoui, G.L. Dotto, A. Bonilla-Petriciolet, A. Erto, A.B. Lamine Adsorption of methylene blue on comminuted raw avocado seeds: interpretation of the effect of salts via physical monolayer model J. Mol. Liq., 305 (2020), Article 112815, 10.1016/j.molliq.2020.112815[10] B. Shi, G. Li, D. Wang, C. Feng, H. Tang Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species J. Hazar. Mat., 143 (2007), pp. 567-574, 10.1016/j.jhazmat.2006.09.076[11] Z.-L. Cheng, Y. Li, Z. Liu Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO2/Al2O3 ratio Ecotoxicol. Environ. Saf., 148 (2018), pp. 585-592, 10.1016/j.ecoenv.2017.11.005[12] N.F. Cardoso, E.C. Lima, B. Royer, M.V. Bach, G.L. Dotto, L.A.A. Pinto, T. Calvete Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents J. Hazar. Mat., 241–242 (2012), pp. 146-153, 10.1016/j.jhazmat.2012.09.026[13] N. Sakkayawong, P. Thiravetyan, W. Nakbanpote Adsorption mechanism of synthetic reactive dye wastewater by chitosan J. Colloid Interface Sci., 286 (2005), pp. 36-42, 10.1016/j.jcis.2005.01.020[14] G. McKay, M.S. Otterburn, A.G. Sweeney Surface mass transfer processes during colour removal from effluent using silica Water Res., 15 (1981), pp. 327-331, 10.1016/0043-1354(81)90036-1[15] H.D. Utomo, R.Y.N. Phoon, Z. Shen, L.H. Ng, Z.B. Lim Removal of methylene blue using chemically modified sugarcane bagasse Nat. Resour., 06 (2015), pp. 209-220, 10.4236/nr.2015.64019[16] G. Akkaya, İ. Uzun, F. Güzel Kinetics of the adsorption of reactive dyes by chitin Dyes Pigments, 73 (2007), pp. 168-177, 10.1016/j.dyepig.2005.11.005[17] M. Khnifira, W. Boumya, M. Abdennouri, M. Sadiq, M. Achak, G. Serdaroğlu, S. Kaya, S. Şimşek, N. Barka A combined molecular dynamic simulation, DFT calculations, and experimental study of the eriochrome black T dye adsorption onto chitosan in aqueous solutions J. Biol. Macromol., 166 (2021), pp. 707-721, 10.1016/j.ijbiomac.2020.10.228[18] Z.M. Şenol, N. Gürsoy, S. Şimşek, A. Özer, N. Karakuş Removal of food dyes from aqueous solution by chitosan-vermiculite beads J. Biol. Macromol., 148 (2020), pp. 635-646, 10.1016/j.ijbiomac.2020.01.166[19] G.L. Dotto, R. Ocampo-Pérez, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto Adsorption rate of Reactive Black 5 on chitosan based materials: geometry and swelling effects Adsorption, 22 (2016), pp. 973-983, 10.1007/s10450-016-9804-y[20] E. Águila-Almanza, S.S. Low, H. Hernández-Cocoletzi, A. Atonal-Sandoval, E. Rubio-Rosas, J. Violante-González, P.L. Show Facile and green approach in managing sand crab carapace biowaste for obtention of high deacetylation percentage chitosan J. Environ. Chem. Eng., 9 (2021), Article 105229, 10.1016/j.jece.2021.105229[21] G. Cavallaro, S. Micciulla, L. Chiappisi, G. Lazzara Chitosan-based smart hybrid materials: a physico-chemical perspective J. Mater. Chem. B, 9 (2021), pp. 594-611, 10.1039/D0TB01865A[22] R. Chanajaree, M. Sriuttha, V.S. Lee, K. Wittayanarakul Thermodynamics and kinetics of cationic/anionic dyes adsorption on cross-linked chitosan J. Mol. Liq., 322 (2021), Article 114507, 10.1016/j.molliq.2020.114507[23] S. Hussain, M. Kamran, S.A. Khan, K. Shaheen, Z. Shah, H. Suo, Q. Khan, A.B. Shah, W.U. Rehman, Y.O. Al-Ghamdi, U. Ghani Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films J. Biol. Macromol., 168 (2021), pp. 383-394, 10.1016/j.ijbiomac.2020.12.054[24] F. Marrakchi, B.H. Hameed, E.H. Hummadi Mesoporous biohybrid epichlorohydrin crosslinked chitosan/carbon–clay adsorbent for effective cationic and anionic dyes adsorption Int. J. Biol. Macromol., 163 (2020), pp. 1079-1086, 10.1016/j.ijbiomac.2020.07.032[25] T.V. Rêgo, T.R.S. Cadaval, G.L. Dotto, L.A.A. Pinto Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan films J. Colloid Interface Sci., 411 (2013), pp. 27-33, 10.1016/j.jcis.2013.08.051[26] Z. Li, G.L. Dotto, A. Bajahzar, L. Sellaoui, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet Adsorption of indium (III) from aqueous solution on raw, ultrasound- and supercritical-modified chitin: experimental and theoretical análisis Chem. Eng. J., 373 (2019), pp. 1247-1253, 10.1016/j.cej.2019.05.134[27] G.L. Dotto, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption Chem. Eng. J., 214 (2013), pp. 8-16, 10.1016/j.cej.2012.10.027[28] T.R.S. Cadaval, G.L. Dotto, L.A.A. Pinto Equilibrium isotherms, thermodynamics, and kinetic studies for the adsorption of food azo dyes onto chitosan films Chem. Eng. Commun., 202 (2015), pp. 1316-1323, 10.1080/00986445.2014.934449[29] L. Sellaoui, Z. Li, M. Badawi, G.L. Dotto, A. Bonilla-Petriciolet, Z. Chen Origin of the outstanding performance of Zn Al and Mg Fe layered double hydroxides in the adsorption of 2-nitrophenol: a statistical physics assessment J. Mol. Liq., 314 (2020), Article 113572, 10.1016/j.molliq.2020.113572[30] P. Hua, L. Sellaoui, D. Franco, M.S. Netto, G. Luiz Dotto, A. Bajahzar, H. Belmabrouk, A. Bonilla-Petriciolet, Z. Li Adsorption of acid green and procion red on a magnetic geopolymer based adsorbent: experiments, characterization and theoretical treatment Chem. Eng. J., 383 (2020), Article 123113, 10.1016/j.cej.2019.123113[31] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A. Ben Lamine Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon Fluid. Phase. Equilib., 387 (2015), pp. 103-110, 10.1016/j.fluid.2014.12.018[32] F. Dhaouadi, L. Sellaoui, B. Chávez-González, H. Elizabeth Reynel-Ávila, L.L. Diaz-Muñoz, D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, E.C. Lima, J.C. Tapia-Picazo, A.B. Lamine Application of a heterogeneous physical model for the adsorption of Cd2+, Ni2+, Zn2+ and Cu2+ ions on flamboyant pods functionalized with citric acid Chem. Eng. J. (2020), Article 127975, 10.1016/j.cej.2020.127975[33] F. Dhaouadi, L. Sellaoui, M. Badawi, H.E. Reynel-Ávila, D.I. Mendoza-Castillo, J.E. Jaime-Leal, A. Bonilla-Petriciolet, A.B. Lamine Statistical physics interpretation of the adsorption mechanism of Pb2+, Cd2+ and Ni2+ on chicken feathers J. Mol. Liq., 319 (2020), Article 114168, 10.1016/j.molliq.2020.114168[34] F. Dhaouadi, L. Sellaoui, H.E. Reynel-Ávila, V. Landín-Sandoval, D.I. Mendoza-Castillo, J.E. Jaime-Leal, E.C. Lima, A. Bonilla-Petriciolet, A.B. Lamine Adsorption mechanism of Zn2+, Ni2+, Cd2+, and Cu2+ ions by carbon-based adsorbents: interpretation of the adsorption isotherms via physical modelling Environ. Sci. Pollut. Res. (2021), 10.1007/s11356-021-12832-x[35] L. Sellaoui, B.B. Saha, S. Wjihi, A.B. Lamine Physicochemical parameters interpretation for adsorption equilibrium of ethanol on metal organic framework: application of the multilayer model with saturation J. Mol. Liq., 233 (2017), pp. 537-542, 10.1016/j.molliq.2016.07.017PublicationORIGINALImplementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film.pdfImplementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film.pdfapplication/pdf112488https://repositorio.cuc.edu.co/bitstreams/4378741f-5d8c-47da-84d0-9b04d93a512a/download8690379487335ffc411af21139b2d477MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/2a7097bc-46c5-45a4-8f66-7f9ff26ada8c/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/013b9827-964c-466e-be13-44f998505ba0/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILImplementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film.pdf.jpgImplementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film.pdf.jpgimage/jpeg47454https://repositorio.cuc.edu.co/bitstreams/bdf31686-6aa0-4e99-ae5d-784134f153e6/download7c1e1cb35367d3e4d748e4d98148505fMD54TEXTImplementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film.pdf.txtImplementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film.pdf.txttext/plain10965https://repositorio.cuc.edu.co/bitstreams/fbae87fb-9321-462f-8f8c-a032d93d61a5/download7e6e423bed3893bd26aeb73ea31aa31cMD5511323/8351oai:repositorio.cuc.edu.co:11323/83512024-09-17 10:17:10.183http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |