Human activity recognition data analysis: history, evolutions, and new trends
The Assisted Living Environments Research Area–AAL (Ambient Assisted Living), focuses on generating innovative technology, products, and services to assist, medical care and rehabilitation to older adults, to increase the time in which these people can live. independently, whether they suffer from n...
- Autores:
-
Ariza Colpas, Paola Patricia
sVicario, Enrico
Oviedo Carrascal, Ana Isabel
aziz, shariq
Piñeres Melo, Marlon Alberto
Quintero linero, Alejandra paola
PATARA, FULVIO
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9460
- Acceso en línea:
- https://hdl.handle.net/11323/9460
https://doi.org/10.3390/s22093401
https://repositorio.cuc.edu.co/
- Palabra clave:
- Ambient assisted living—AAL
Human activity recognition—HAR
Activities of daily living—ADL
Activity recognition systems—ARS
Clustering
Unsupervised activity recognition
Supervised learning
Unsupervised learning
Ensemble learning
Deep learning
Reinforcement learning
- Rights
- openAccess
- License
- © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
id |
RCUC2_befb999e69f3ddf39edea1702d412447 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9460 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Human activity recognition data analysis: history, evolutions, and new trends |
title |
Human activity recognition data analysis: history, evolutions, and new trends |
spellingShingle |
Human activity recognition data analysis: history, evolutions, and new trends Ambient assisted living—AAL Human activity recognition—HAR Activities of daily living—ADL Activity recognition systems—ARS Clustering Unsupervised activity recognition Supervised learning Unsupervised learning Ensemble learning Deep learning Reinforcement learning |
title_short |
Human activity recognition data analysis: history, evolutions, and new trends |
title_full |
Human activity recognition data analysis: history, evolutions, and new trends |
title_fullStr |
Human activity recognition data analysis: history, evolutions, and new trends |
title_full_unstemmed |
Human activity recognition data analysis: history, evolutions, and new trends |
title_sort |
Human activity recognition data analysis: history, evolutions, and new trends |
dc.creator.fl_str_mv |
Ariza Colpas, Paola Patricia sVicario, Enrico Oviedo Carrascal, Ana Isabel aziz, shariq Piñeres Melo, Marlon Alberto Quintero linero, Alejandra paola PATARA, FULVIO |
dc.contributor.author.spa.fl_str_mv |
Ariza Colpas, Paola Patricia sVicario, Enrico Oviedo Carrascal, Ana Isabel aziz, shariq Piñeres Melo, Marlon Alberto Quintero linero, Alejandra paola PATARA, FULVIO |
dc.subject.proposal.eng.fl_str_mv |
Ambient assisted living—AAL Human activity recognition—HAR Activities of daily living—ADL Activity recognition systems—ARS Clustering Unsupervised activity recognition Supervised learning Unsupervised learning Ensemble learning Deep learning Reinforcement learning |
topic |
Ambient assisted living—AAL Human activity recognition—HAR Activities of daily living—ADL Activity recognition systems—ARS Clustering Unsupervised activity recognition Supervised learning Unsupervised learning Ensemble learning Deep learning Reinforcement learning |
description |
The Assisted Living Environments Research Area–AAL (Ambient Assisted Living), focuses on generating innovative technology, products, and services to assist, medical care and rehabilitation to older adults, to increase the time in which these people can live. independently, whether they suffer from neurodegenerative diseases or some disability. This important area is responsible for the development of activity recognition systems—ARS (Activity Recognition Systems), which is a valuable tool when it comes to identifying the type of activity carried out by older adults, to provide them with assistance. that allows you to carry out your daily activities with complete normality. This article aims to show the review of the literature and the evolution of the different techniques for processing this type of data from supervised, unsupervised, ensembled learning, deep learning, reinforcement learning, transfer learning, and metaheuristics approach applied to this sector of science. health, showing the metrics of recent experiments for researchers in this area of knowledge. As a result of this article, it can be identified that models based on reinforcement or transfer learning constitute a good line of work for the processing and analysis of human recognition activities. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-17T20:12:04Z |
dc.date.available.none.fl_str_mv |
2022-08-17T20:12:04Z |
dc.date.issued.none.fl_str_mv |
2022-04-29 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Ariza-Colpas, P.P.; Vicario, E.; Oviedo-Carrascal, A.I.; Butt Aziz, S.; Piñeres-Melo, M.A.; Quintero-Linero, A.; Patara, F. Human Activity Recognition Data Analysis: History, Evolutions, and New Trends. Sensors 2022, 22, 3401. https://doi.org/10.3390/s22093401 |
dc.identifier.issn.spa.fl_str_mv |
1424-3210 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9460 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.3390/s22093401 |
dc.identifier.doi.spa.fl_str_mv |
10.3390/s22093401 |
dc.identifier.eissn.spa.fl_str_mv |
1424-8220 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Ariza-Colpas, P.P.; Vicario, E.; Oviedo-Carrascal, A.I.; Butt Aziz, S.; Piñeres-Melo, M.A.; Quintero-Linero, A.; Patara, F. Human Activity Recognition Data Analysis: History, Evolutions, and New Trends. Sensors 2022, 22, 3401. https://doi.org/10.3390/s22093401 1424-3210 10.3390/s22093401 1424-8220 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9460 https://doi.org/10.3390/s22093401 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Sensors |
dc.relation.references.spa.fl_str_mv |
1. Aracil, J.; Gordillo, F. Dinámica de Sistemas; Alianza Editorial: Madrid, Spain, 1997. 2. Cramer, H.; Cansado, C. Métodos Matemáticos de Estadística; Aguilar: Madrid, Spain, 1968. 3. Shapiro, S.C. Artificial intelligence. In Encyclopedia of Artificial Intelligence, 2nd ed.; Shapiro, S.C., Ed.; Wiley: New York, NY, USA, 1992; Volume 1. 4. Rouse, M. Inteligencia Artificial, o AI. Available online: https://www.computerweekly.com/es/definicion/Inteligencia-artificialo-IA (accessed on 30 October 2021). 5. Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial intelligence for decision making in the era of Big Data—Evolution, challenges and research agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [CrossRef] 6. Sekeroglu, B.; Hasan, S.S.; Abdullah, S.M. Comparison of Machine Learning Algorithms for Classification Problems. Adv. Intell. Syst. Comput. 2020, 944, 491–499. 7. Jordan, M.I.; Jordan, M.T.M. Machine Learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef] 8. Ge, Z.; Song, Z.; Ding, S.X.; Huang, B. Data Mining and Analytics in the Process Industry: The Role of Machine Learning. IEEE Access 2017, 5, 20590–20616. [CrossRef] 9. Amiribesheli, M.; Benmansour, A.; Bouchachia, A. A review of smart homes in healthcare. J. Ambient Intell. Humaniz. Comput. 2015, 6, 495–517. [CrossRef] 10. Cook, D.J.; Youngblood, M.; Das, S.K. Amulti-agent approach to controlling a smart environment. In Designing Smart Homes; Springer: Berlin/Heidelberg, Germany, 2006; pp. 165–182. 11. Andrew McCallum, K.N. A Comparison of Event Models for Naive Bayes Text Classification. In Proceedings of the AAAI-98 Workshop on Learning for Text Categorization, Menlo Park, CA, USA, 26–27 July 1998; Volume 752, p. 307. [CrossRef] 12. Murata, N.; Yoshizawa, S.; Amari, S. Network information criterion-determining the number of hidden units for an artificial neural network model. IEEE Trans. Neural Netw. 1994, 5, 865–872. [CrossRef] [PubMed] 13. Du, W.S.; Hu, B.Q. Approximate distribution reducts in inconsistent interval-valued ordered decision tables. Inf. Sci. 2014, 271, 93–114. [CrossRef] 14. Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 2017, 151, 147–160. [CrossRef] 15. Saxena, A.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Er, M.J.; Ding, W.; Lin, C.-T. A review of clustering techniques and developments. Neurocomputing 2017, 267, 664–681. [CrossRef] 16. Jones, F.W.; McLaren, I.P.L. Rules and associations. In Proceedings of the Twenty First Annual Conference of the Cognitive Science Society, Vancouver, BC, Canada, 23 December 2020; Psychology Press: East Sussex, UK, 2020; pp. 240–245. 17. Van Der Maaten, L.; Postma, E.; Van den Herik, J. Dimensionality reduction: A comparative. J. Mach. Learn. Res. 2009, 10, 13. 18. Divina, F.; Gilson, A.; Goméz-Vela, F.; García Torres, M.; Torres, J.F. Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting. Energies 2018, 11, 949. [CrossRef] 19. Sewell, M. Ensemble learning. RN 2008, 11, 1–34. 20. Svetnik, V.; Wang, T.; Tong, C.; Liaw, A.; Sheridan, R.P.; Song, Q. Boosting: An ensemble learning tool for compound classification and QSAR modeling. J. Chem. Inf. Modeling 2005, 45, 786–799. [CrossRef] [PubMed] 21. Shen, Y.; Chen, T.; Xiao, Z.; Liu, B.; Chen, Y. High-Dimensional Data Clustering with Fuzzy C-Means: Problem, Reason, and Solution. In Proceedings of the International Work-Conference on Artificial Neural Networks, Virtual Event, 16–18 June 2021; Springer: Cham, Switzerland, 2021; pp. 89–100. 22. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef] 23. Kaur, M.; Kaur, G.; Sharma, P.K.; Jolfaei, A.; Singh, D. Binary cuckoo search metaheuristic-based supercomputing framework for human behavior analysis in smart home. J. Supercomput. 2019, 76, 2479–2502. [CrossRef] 24. Althöfer, I.; Koschnick, K.U. On the convergence of “Threshold Accepting”. Appl. Math. Optim. 1991, 24, 183–195. [CrossRef] 25. Moscato, P.; Cotta, C.; Mendes, A. Memetic algorithms. In New Optimization Techniques in Engineering; Springer: Berlin/Heidelberg, Germany, 2004; pp. 53–85. 26. Wesselkamper, J. Fail-Safe MultiBoot Reference Design; XAPP468; Xilinx: San Jose, CA, USA, 2009. 27. Salcedo-Sanz, S.; Cuadra, L.; Vermeij, M. A review of Computational Intelligence techniques in coral reef-related applications. Ecol. Inform. 2016, 32, 107–123. [CrossRef] 28. Krause, J.; Cordeiro, J.; Parpinelli, R.S.; Lopes, H.S. A survey of swarm algorithms applied to discrete optimization problems. In Swarm Intelligence and Bio-Inspired Computation; Elsevier: Amsterdam, The Netherlands, 2013; pp. 169–191. 29. Kumar, M.; Husain, M.; Upreti, N.; Gupta, D. Genetic Algorithm: Review and Application. 2010. Available online: https: //papers.ssrn.com/sol3/papers.cfm?abstract_id=3529843 (accessed on 30 October 2021). 30. Glover, F.; Laguna, M.; Martí, R. Scatter search. In Advances in Evolutionary Computing; Springer: Berlin/Heidelberg, Germany, 2003; pp. 519–537. 31. Hansen, P.; Mladenovi´c, N. Variable neighborhood search. In Search Methodologies; Springer: Boston, MA, USA, 2005; pp. 211–238. 32. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef] 33. Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques; IGI Global: Hershey, PA, USA, 2010; pp. 242–264. 34. Timarán Pereira, S.R.; Hernández Arteaga, I.; Caicedo Zambrano, S.J.; Hidalgo Troya, A.; Alvarado Pérez, J.C. Descubrimiento de Patrones de Desempeño Académico con Árboles de Decisión en las Competencias Genéricas de la Formación Profesional; Ediciones Universidad Cooperativa de Colombia: Bogotá, Colombia, 2015. [CrossRef] 35. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef] 36. Han, S.; Qubo, C.; Meng, H. Parameter selection in SVM with RBF kernel function. In Proceedings of the World Automation Congress 2012, Puerto Vallarta, Mexico, 24–28 June 2012; pp. 1–4. 37. Gaikwad, N.B.; Tiwari, V.; Keskar, A.; Shivaprakash, N.C. Efficient FPGA implementation of multilayer perceptron for real-time human activity classification. IEEE Access 2019, 7, 26696–26706. [CrossRef] 38. Yiyu, Y. Decision-theoretic rough set models. In Proceedings of the International Conference on Rough Sets and Knowledge Technology, Toronto, ON, Canada, 14–16 May 2007; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–12. [CrossRef] 39. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; John Wiley & Sons: Hoboken, NJ, USA, 2012. 40. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. (CSUR) 1999, 31, 264–323. [CrossRef] 41. Li, J. Two-scale image retrieval with significant meta-information feedback. In Proceedings of the 13th Annual ACM International Conference on Multimedia, Singapore, 6–11 November 2005; pp. 499–502. 42. Li, J.; Ray, S.; Lindsay, B.G. A Nonparametric Statistical Approach to Clustering via Mode Identification. J. Mach. Learn. Res. 2007, 8, 1687–1723. 43. Xu, X. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [CrossRef] [PubMed] 44. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef] 45. Li, T.S.; Simon, J.D.; Drlica-Wagner, A.; Bechtol, K.; Wang, M.Y.; Garcia-Bellido, J.; Frieman, J.; Marshall, J.L.; James, D.J.; Strigari, L.; et al. Farthest Neighbor: The Distant Milky Way Satellite Eridanus II. Astrophys. J. Lett. 2017, 838, 8. [CrossRef] 46. Huse, S.M.; Welch, D.M.; Morrison, H.G.; Sogin, M.L. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 2010, 12, 1889–1898. [CrossRef] 47. McIntyre, R.M.; Blashfield, R.K. A Nearest-Centroid Technique for Evaluating The Minimum-Variance Clustering Procedure. Multivar. Behav. Res. 1980, 15, 225–238. [CrossRef] 48. Ferrer, M.; Valveny, E.; Serratosa, F.; Bardají, I.; Bunke, H. Graph-based k-means clustering: A comparison of the set median versus the generalized median graph. In International Conference on Computer Analysis of Images and Patterns; Springer: Berlin/Heidelberg, Germany, 2009; pp. 342–350. 49. Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [CrossRef] 50. Kamen, J.M. Quick clustering. J. Mark. Res. 1970, 7, 199–204. [CrossRef] 51. Redmond, S.; Heneghan, C. A method for initialising the K-means clustering algorithm using kd-trees. Pattern Recognit. Lett. 2007, 28, 965–973. [CrossRef] 52. Park, H.-S.; Jun, C.-H. A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 2009, 36, 3336–3341. [CrossRef] 53. Gupta, T.; Panda, S.P. A comparison of k-means clustering algorithm and clara clustering algorithm on iris dataset. Int. J. Eng. Technol. 2018, 7, 4766–4768. 54. Hadji, M.; Zeghlache, D. Minimum cost maximum flow algorithm for dynamic resource allocation in clouds. In Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA, 24–29 June 2012; pp. 876–882. 55. Cara, F.J.; Carpio, J.; Juan, J.; Alarcón, E. An approach to operational modal analysis using the expectation maximization algorithm. Mech. Syst. Signal Processing 2012, 31, 109–129. [CrossRef] 56. Gholami, E.; Jahromi, Y.M. Forecastingof the Value Added Tax from Tobacco Consumption Using Neural Network Method. J. Res. Econ. Model. 2015, 5, 55–72. [CrossRef] 57. Fortin, M.; Fortin, A. A generalization of Uzawa’s algorithm for the solution of the Navier-Stokes equations. Commun. Appl. Numer. Methods 1985, 1, 205–208. [CrossRef] 58. Niu, P.; Niu, S.; Liu, N.; Chang, L. The defect of the Grey Wolf optimization algorithm and its verification method. Knowl. -Based Syst. 2019, 171, 37–43. [CrossRef] 59. Govaert, G.; Nadif, M. Clustering with block mixture models. Pattern Recognit. 2003, 36, 463–473. [CrossRef] 60. De Roover, K. Finding Clusters of Groups with Measurement Invariance: Unraveling Intercept Non-Invariance with Mixture Multigroup Factor Analysis. Struct. Equ. Model. A Multidiscip. J. 2021, 28, 663–683. [CrossRef] 61. Agrawal, R.; Srikant, R. Fast algorithms for mining association rules in large databases. In Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile, 12–15 September 1994; pp. 487–499. 62. Hipp, J.; Güntzer, U.; Nakhaeizadeh, G. Algorithms for association rule mining—A general survey and comparison. ACM SIGKDD Explor. Newsl. 2000, 2, 58–64. [CrossRef] 63. Zaki, M. Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 2000, 12, 372–390. [CrossRef] 64. Han, J.; Pei, J.; Yin, Y. Mining frequent patterns without candidate generation. In Proceedings of the ACM International Conference on Management of Data, Dallas, TX, USA, 15–18 May 2000; pp. 1–12. 65. Rathee, S.; Kaul, M.; Kashyap, A. R-Apriori: An efficient Apriori based algorithm on Spark. In Proceedings of the PIKM’15, ACM, Melbourne, Australia, 31 May–4 June 2015. 66. Qiu, H.; Gu, R.; Yuan, C.; Huang, Y. YAFIM: A parallel frequent itemset mining algorithm with Spark. In Proceedings of the Parallel & Distributed Processing Symposium Workshops (IPDPSW), Phoenix, AZ, USA, 19–23 May 2014; pp. 1664–1671. 67. Zaki, M.J.; Parthasarathy, S.; Ogihara, M.; Li, W. Parallel Algorithms for Discovery of Association Rules. Data Min. Knowl. Discov. 1997, 1, 343–373. [CrossRef] 68. Cong, S.; Han, J.; Hoeflinger, J.; Padua, D. A sampling-based framework for parallel data mining. In Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Chicago, IL, USA, 15–17 June 2005; pp. 255–265. 69. Shintani, T.; Kitsuregawa, M. Hash-based parallel algorithms for mining association rules. In Proceedings of the Fourth International Conference on Parallel and Distributed Information Systems, Miami Beach, FL, USA, 18–20 December 1996; pp. 19–30. 70. Li, H.; Wang, Y.; Zhang, D.; Zhang, M.; Chang, E.Y. PFP: Parallel FP-growth for query recommendation. In Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Switzerland, 23–25 October 2008; pp. 107–114. 71. Gabroveanu, M.; Cosulschi, M.; Slabu, F. Mining fuzzy association rules using MapReduce technique. In Proceedings of the International Symposium on INnovations in Intelligent SysTems and Applications, INISTA, Sinaia, Romania, 2–5 August 2016; pp. 1–8. 72. Gabroveanu, M.; Iancu, I.; Co¸sulschi, M.; Constantinescu, N. Towards using grid services for mining fuzzy association rules. In Proceedings of the Ninth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, 26–29 September 2007; pp. 507–513. 73. Palo, H.K.; Sahoo, S.; Subudhi, A.K. Dimensionality Reduction Techniques: Principles, Benefits, and Limitations. In Data Analytics in Bioinformatics: A Machine Learning Perspective; Willey: New York, NY, USA, 2021; pp. 77–107. 74. Zhou, H.; Yu, K.-M.; Hsu, H.-P. Hybrid Modeling Method for Soft Sensing of Key Process Parameters in Chemical Industry. Sens. Mater. 2021, 33, 2789. [CrossRef] 75. Priya, S.; Ward, C.; Locke, T.; Soni, N.; Maheshwarappa, R.P.; Monga, V.; Bathla, G. Glioblastoma and primary central nervous system lymphoma: Differentiation using MRI derived first-order texture analysis—A machine learning study. Neuroradiol. J. 2021, 34, 320–328. [CrossRef] [PubMed] 76. Weerasuriya, A.U.; Zhang, X.; Lu, B.; Tse, K.T.; Liu, C.H. A Gaussian Process-Based emulator for modeling pedestrian-level wind field. Build. Environ. 2021, 188, 107500. [CrossRef] 77. Uddin, M.P.; Mamun, M.A.; Afjal, M.I.; Hossain, M.A. Information-theoretic feature selection with segmentation-based folded principal component analysis (PCA) for hyperspectral image classification. Int. J. Remote Sens. 2021, 42, 286–321. [CrossRef] 78. Bari, A.; Brower, W.; Davidson, C. Using Artificial Intelligence to Predict Legislative Votes in the United States Congress. In Proceedings of the 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA), Xiamen, China, 5–8 March 2021; pp. 56–60. 79. Nanehkaran, Y.A.; Chen, J.; Salimi, S.; Zhang, D. A pragmatic convolutional bagging ensemble learning for recognition of Farsi handwritten digits. J. Supercomput. 2021, 77, 13474–13493. [CrossRef] 80. Kumari, P.; Toshniwal, D. Extreme gradient boosting and deep neural network based ensemble learning approach to forecast hourly solar irradiance. J. Clean. Prod. 2020, 279, 123285. [CrossRef] 81. Cui, S.; Yin, Y.; Wang, D.; Li, Z.; Wang, Y. A stacking-based ensemble learning method for earthquake casualty prediction. Appl. Soft Comput. 2020, 101, 107038. [CrossRef] 82. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] 83. Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [CrossRef] 84. Kag, A.; Saligrama, V. Training Recurrent Neural Networks via Forward Propagation through Time. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 5189–5200. 85. Yang, G.; Lv, J.; Chen, Y.; Huang, J.; Zhu, J. Generative Adversarial Networks (GAN) Powered Fast Magnetic Resonance Imaging—Mini Review, Comparison and Perspectives. arXiv 2021, arXiv:2105.01800. 86. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998. 87. Rummery, G.A.; Niranjan, M. On-Line q-Learning Using Connectionist Systems; University of Cambridge, Department of Engineering: Cambridge, UK, 1994. 88. Watkins, C. Learning from Delayed Rewards; King’s College: Cambridge, UK, 1989. 89. Watkins, C.J.C.H.; Dayan, P. Technical Note: Q-Learning. Mach. Learn. 1992, 8, 279–292. [CrossRef] 90. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M.A. Playing atari with deep reinforcement learning. arXiv 2013, arXiv:1312.5602. 91. Ann, O.C.; Theng, L.B. Human activity recognition: A review. In Proceedings of the 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2014), Penang, Malaysia, 28–30 November 2014; pp. 389–393. 92. Glover, F. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 1986, 13, 533–549. [CrossRef] 93. Zhang, W.; Zhang, Y.; Gu, X.; Wu, C.; Han, L. Soft Computing. In Application of Soft Computing, Machine Learning, Deep Learning and Optimizations in Geoengineering and Geoscience; Springer: Singapore, 2022; pp. 7–19. 94. Gavrilu¸t, V.; Pruski, A.; Berger, M.S. Constructive or Optimized: An Overview of Strategies to Design Networks for Time-Critical Applications. ACM Comput. Surv. 2022, 55, 1–35. [CrossRef] 95. Sahoo, R.R.; Ray, M. Metaheuristic techniques for test case generation: A review. In Research Anthology on Agile Software, Software Development, and Testing; IGI Global: Hershey, PA, USA, 2022; pp. 1043–1058. 96. Singh, R.M.; Awasthi, L.K.; Sikka, G. Towards Metaheuristic Scheduling Techniques in Cloud and Fog: An Extensive Taxonomic Review. ACM Comput. Surv. (CSUR) 2022, 55, 1–43. [CrossRef] 97. Stevo, B.; Ante, F. The influence of pattern similarity and transfer learning upon the training of a base perceptron B2. In Proceedings of the Symposium Informatica, Gda ´nsk, Poland, 6–10 September 1976. 98. Qi, W.; Su, H.; Yang, C.; Ferrigno, G.; De Momi, E.; Aliverti, A. A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone. Sensors 2019, 19, 3731. [CrossRef] 99. de Jesús, P.-V.R.; Palencia-Díaz, R. Teléfonos inteligentes y tabletas.¿ una herramienta o una barrera en la atención del paciente? Med. Interna De Mex. 2013, 29, 404–409. 100. Organista-Sandoval, J.; McAnally-Salas, L.; Lavigne, G. El teléfono inteligente (smartphone) como herramienta pedagógica. Apertura 2013, 5, 6–19. 101. Alonso, A.B.; Artime, I.F.; Rodríguez, M.Á.; Baniello, R.G. Dispositivos Móviles; EPSIG Ing. Telecomunicación Universidad de Oviedo: Oviedo, Spain, 2011. 102. Anguita, D.; Ghio, A.; Oneto, L.; Parra Perez, X.; Reyes Ortiz, J.L. A Public Domain Dataset for Human Activity Recognition Using Smartphones. In Proceedings of the 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium, 24–26 April 2013. 103. Sikder, N.; Nahid, A.-A. KU-HAR: An open dataset for heterogeneous human activity recognition. Pattern Recognit. Lett. 2021, 146, 46–54. [CrossRef] 104. Popescu, A.-C.; Mocanu, I.; Cramariuc, B. PRECIS HAR. 2019. Available online: https://ieee-dataport.org/open-access/precishar (accessed on 30 October 2021). 105. Martínez-Villaseñor, L.; Ponce, H.; Brieva, J.; Moya-Albor, E.; Núñez-Martínez, J.; Peñafort-Asturiano, C. UP-Fall Detection Dataset: A Multimodal Approach. Sensors 2019, 19, 1988. [CrossRef] [PubMed] 106. Van Kasteren, T.; Noulas, A.; Englebienne, G.; Kröse, B. Accurate activity recognition in a home setting. In Proceedings of the 10th International Conference on Ubiquitous Computing, Seoul, Korea, 21–24 September 2008; pp. 1–9. 107. Singla, G.; Cook, D.; Schmitter-Edgecombe, M. Recognizing independent and joint activities among multiple residents in smart environments. Ambient. Intell. Humaniz. Comput. J. 2010, 1, 57–63. [CrossRef] [PubMed] 108. Weiss, G.M.; Yoneda, K.; Hayajneh, T. Smartphone and Smartwatch-Based Biometrics Using Activities of Daily Living. IEEE Access 2019, 7, 133190–133202. [CrossRef] 109. Gallissot, M.; Caelen, J.; Bonnefond, N.; Meillon, B.; Pons, S. Using the Multicom Domus Dataset; Research Report RR-LIG-020; LIG: Grenoble, France, 2011. 110. Roggen, D.; Calatroni, A.; Rossi, M.; Holleczek, T.; Tröster, G.; Lukowicz, P.; Pirkl, G.; Bannach, D.; Ferscha, A.; Doppler, J.; et al. Collecting complex activity data sets in highly rich networked sensor environments. In Proceedings of the Seventh International Conference on Networked Sensing Systems (INSS’10), Kassel, Germany, 15–18 June 2010. 111. Cook, D. Learning setting-generalized activity mdoels for smart spaces. IEEE Intell. Syst. 2010, 1. [CrossRef] 112. Zhang, M.; Sawchuk, A.A. USC-HAD: A Daily Activity Dataset for Ubiquitous Activity Recognition Using Wearable Sensors. In Proceedings of the ACM International Conference on Ubiquitous Computing (UbiComp) Workshop on Situation, Activity and Goal Awareness (SAGAware), Pittsburgh, PA, USA, 5–8 September 2012. 113. Logan, B.; Healey, B.J.; Philipose, J.M.; Tapia, E.M.; Intille, S. A long-term evaluation of sensing modalities for activity recognition. In Proceedings of the International Conference on Ubiquitous Computing, Taipei, Taiwan, 17–20 December 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 483–500. 114. Nugent, C.D.; Mulvenna, M.D.; Hong, X.; Devlin, S. Experiences in the development of a Smart Lab. Int. J. Biomed. Eng. Technol. 2009, 2, 319–331. [CrossRef] 115. Schmitter-Edgecombe, M.; Cook, D.J. Assessing the Quality of Activities in a Smart Environment. Methods Inf. Med. 2009, 48, 480–485. [CrossRef] 116. Reiss, A.; Stricker, D. Introducing a New Benchmarked Dataset for Activity Monitoring. In Proceedings of the 16th IEEE International Symposium on Wearable Computers (ISWC), Newcastle, UK, 18–22 June 2012. 117. Banos, O.; Garcia, R.; Holgado, J.A.; Damas, M.; Pomares, H.; Rojas, I.; Saez, A.; Villalonga, C. mHealthDroid: A novel framework for agile development of mobile health applications. In Proceedings of the 6th International Work-conference on Ambient Assisted Living an Active Ageing (IWAAL 2014), Belfast, UK, 2–5 December 2014. 118. Barshan, B.; Yüksek, M.C. Recognizing daily and sports activities in two open source machine learning environments using body-worn sensor units. Comput. J. 2014, 57, 1649–1667. [CrossRef] 119. Espinilla, M.; Martínez, L.; Medina, J.; Nugent, C. The experience of developing theUJAmI Smart lab. IEEE Access. 2018, 6, 34631–34642. [CrossRef] 120. Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software engineering—A systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15. [CrossRef] 121. Tasmin, M.; Ishtiak, T.; Ruman, S.U.; Suhan, A.U.R.C.; Islam, N.S.; Jahan, S.; Rahman, R.M. Comparative Study of Classifiers on Human Activity Recognition by Different Feature Engineering Techniques. In Proceedings of the 2020 IEEE 10th International Conference on Intelligent Systems (IS), Varna, Bulgaria, 28–30 August 2020; pp. 93–101. 122. Igwe, O.M.; Wang, Y.; Giakos, G.C.; Fu, J. Human activity recognition in smart environments employing margin setting algorithm. J. Ambient Intell. Humaniz. Comput. 2020, 1–13. [CrossRef] 123. Subasi, A.; Radhwan, M.; Kurdi, R.; Khateeb, K. IoT based mobile healthcare system for human activity recognition. In Proceedings of the 2018 15th Learning and Technology Conference (L&T), Jeddah, Saudi Arabia, 25–26 February 2018; pp. 29–34. 124. Maswadi, K.; Ghani, N.A.; Hamid, S.; Rasheed, M.B. Human activity classification using Decision Tree and Naïve Bayes classifiers. Multimed. Tools Appl. 2021, 80, 21709–21726. [CrossRef] 125. Damodaran, N.; Haruni, E.; Kokhkharova, M.; Schäfer, J. Device free human activity and fall recognition using WiFi channel state information (CSI). CCF Trans. Pervasive Comput. Interact. 2020, 2, 1–17. [CrossRef] 126. Saha, J.; Chowdhury, C.; Biswas, S. Two phase ensemble classifier for smartphone based human activity recognition independent of hardware configuration and usage behaviour. Microsyst. Technol. 2018, 24, 2737–2752. [CrossRef] 127. Das, A.; Kjærgaard, M.B. Activity Recognition using Multi-Class Classification inside an Educational Building. In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Austin, TX, USA, 23–27 March 2020; pp. 1–6. 128. Franco, P.; Martínez, J.M.; Kim, Y.C.; Ahmed, M.A. IoT based approach for load monitoring and activity recognition in smart homes. IEEE Access 2021, 9, 45325–45339. [CrossRef] 129. Bozkurt, F. A Comparative Study on Classifying Human Activities Using Classical Machine and Deep Learning Methods. Arab. J. Sci. Eng. 2021, 47, 1507–1521. [CrossRef] 130. Wang, A.; Zhao, S.; Zheng, C.; Chen, H.; Liu, L.; Chen, G. HierHAR: Sensor-Based Data-Driven Hierarchical Human Activity Recognition. IEEE Sens. J. 2020, 21, 3353–3365. [CrossRef] 131. Oukrich, N. Daily Human Activity Recognition in Smart Home Based on Feature Selection, Neural Network and Load Signature of Appliances. Ph.D. Thesis, Université Mohamed V, Ecole Mohammadia d’Ingénieurs-Université Mohammed V de Rabat-Maroc, Rabat, Morocco, 2019. 132. Demrozi, F.; Turetta, C.; Pravadelli, G. B-HAR: An open-source baseline framework for in depth study of human activity recognition datasets and workflows. arXiv 2021, arXiv:2101.10870. 133. Xu, Z.; Wang, G.; Guo, X. Sensor-based activity recognition of solitary elderly via stigmergy and two-layer framework. Eng. Appl. Artif. Intell. 2020, 95, 10385. [CrossRef] 134. Hussain, F.; Hussain, F.; Ehatisham-ul-Haq, M.; Azam, M.A. Activity-aware fall detection and recognition based on wearable sensors. IEEE Sens. J. 2019, 19, 4528–4536. [CrossRef] 135. Liciotti, D.; Bernardini, M.; Romeo, L.; Frontoni, E. A sequential deep learning application for recognising human activities in smart homes. Neurocomputing 2019, 396, 501–513. [CrossRef] 136. Mohmed, G.; Lotfi, A.; Langensiepen, C.; Pourabdollah, A. Clustering-based fuzzy finite state machine for human activity recognition. In UK Workshop on Computational Intelligence; Springer: Cham, Switzerland, 2018; pp. 264–275. 137. Brena, R.F.; Garcia-Ceja, E. A crowdsourcing approach for personalization in human activities recognition. Intell. Data Anal. 2017, 21, 721–738. [CrossRef] 138. He, H.; Tan, Y.; Zhang, W. A wavelet tensor fuzzy clustering scheme for multi-sensor human activity recognition. Eng. Appl. Artif. Intell. 2018, 70, 109–122. [CrossRef] 139. Wang, X.; Lu, Y.; Wang, D.; Liu, L.; Zhou, H. Using jaccard distance measure for unsupervised activity recognition with smartphone accelerometers. In Proceedings of the Asia-Pacific Web (apweb) and Web-Age Information Management (WAIM) Joint Conference on Web and Big Data, Beijing, China, 7–9 July 2017; Springer: Cham, Switzerland, 2017; pp. 74–83. 140. Bota, P.; Silva, J.; Folgado, D.; Gamboa, H. A Semi-Automatic Annotation Approach for Human Activity Recognition. Sensors 2019, 19, 501. [CrossRef] [PubMed] 141. Yacchirema, D.; de Puga, J.S.; Palau, C.; Esteve, M. Fall detection system for elderly people using IoT and ensemble machine learning algorithm. Pers. Ubiquitous Comput. 2019, 23, 801–817. [CrossRef] 142. Manzi, A.; Dario, P.; Cavallo, F. A Human Activity Recognition System Based on Dynamic Clustering of Skeleton Data. Sensors 2017, 17, 1100. [CrossRef] 143. Ma, H.; Zhang, Z.; Li, W.; Lu, S. Unsupervised Human Activity Representation Learning with Multi-task Deep Clustering. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–25. [CrossRef] 144. Budisteanu, E.A.; Mocanu, I.G. Combining Supervised and Unsupervised Learning Algorithms for Human Activity Recognition. Sensors 2021, 21, 6309. [CrossRef] 145. Xu, S.; Tang, Q.; Jin, L.; Pan, Z. A Cascade Ensemble Learning Model for Human Activity Recognition with Smartphones. Sensors 2019, 19, 2307. [CrossRef] 146. Choudhury, N.A.; Moulik, S.; Roy, D.S. Physique-Based Human Activity Recognition Using Ensemble Learning and Smartphone Sensors. IEEE Sens. J. 2021, 21, 16852–16860. [CrossRef] 147. Wang, Z.; Wu, D.; Chen, J.; Ghoneim, A.; Hossain, M.A. A Triaxial Accelerometer-Based Human Activity Recognition via EEMD-Based Features and Game-Theory-Based Feature Selection. IEEE Sens. J. 2016, 16, 3198–3207. [CrossRef] 148. Jethanandani, M.; Sharma, A.; Perumal, T.; Chang, J.R. Multi-label classification based ensemble learning for human activity recognition in smart home. Internet Things 2020, 12, 100324. [CrossRef] 149. Subasi, A.; Dammas, D.H.; Alghamdi, R.D.; Makawi, R.A.; Albiety, E.A.; Brahimi, T.; Sarirete, A. Sensor Based Human Activity Recognition Using Adaboost Ensemble Classifier. Procedia Comput. Sci. 2018, 140, 104–111. [CrossRef] 150. Padmaja, B.; Prasa, V.; Sunitha, K. A Novel Random Split Point Procedure Using Extremely Randomized (Extra) Trees Ensemble Method for Human Activity Recognition. EAI Endorsed Trans. Pervasive Health Technol. 2020, 6, e5. [CrossRef] 151. Nweke, H.F.; Teh, Y.W.; Al-Garadi, M.A.; Alo, U.R. Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018, 105, 233–261. [CrossRef] 152. Ma, L.; Cheng, S.; Shi, Y. Enhancing learning efficiency of brain storm optimization via orthogonal learning design. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 6723–6742. [CrossRef] 153. Wan, S.; Qi, L.; Xu, X.; Tong, C.; Gu, Z. Deep Learning Models for Real-time Human Activity Recognition with Smartphones. Mob. Netw. Appl. 2019, 25, 743–755. [CrossRef] 154. Akula, A.; Shah, A.K.; Ghosh, R. Deep learning approach for human action recognition in infrared images. Cogn. Syst. Res. 2018, 50, 146–154. [CrossRef] 155. He, J.; Zhang, Q.; Wang, L.; Pei, L. Weakly supervised human activity recognition from wearable sensors by recurrent attention learning. IEEE Sens. J. 2018, 19, 2287–2297. [CrossRef] 156. Long, J.; Sun, W.; Yang, Z.; Raymond, O.I. Asymmetric Residual Neural Network for Accurate Human Activity Recognition. Information 2019, 10, 203. [CrossRef] 157. Ariza-Colpas, P.; Morales-Ortega, R.; Piñeres-Melo, M.A.; Melendez-Pertuz, F.; Serrano-Torné, G.; Hernandez-Sanchez, G.; Martínez-Osorio, H. Teleagro: Iot applications for the georeferencing and detection of zeal in cattle. In Proceedings of the IFIP International Conference on Computer Information Systems and Industrial Management, Belgrade, Serbia, 19–21 September 2019; pp. 232–239. 158. Mekruksavanich, S.; Jitpattanakul, A. Deep convolutional neural network with rnns for complex activity recognition using wrist-worn wearable sensor data. Electronics 2021, 10, 1685. [CrossRef] 159. Papagiannaki, A.; Zacharaki, E.I.; Kalouris, G.; Kalogiannis, S.; Deltouzos, K.; Ellul, J.; Megalooikonomou, V. Recognizing Physical Activity of Older People from Wearable Sensors and Inconsistent Data. Sensors 2019, 19, 880. [CrossRef] [PubMed] 160. Hassan, M.M.; Uddin, Z.; Mohamed, A.; Almogren, A. A robust human activity recognition system using smartphone sensors and deep learning. Futur. Gener. Comput. Syst. 2018, 81, 307–313. [CrossRef] 161. Berlin, S.J.; John, M. R-STDP Based Spiking Neural Network for Human Action Recognition. Appl. Artif. Intell. 2020, 34, 656–673. [CrossRef] 162. Lu, Y.; Li, Y.; Velipasalar, S. Efficient human activity classification from egocentric videos incorporating actor-critic reinforcement learning. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 564–568. 163. Hossain, H.S.; Roy, N. Active deep learning for activity recognition with context-aware annotator selection. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1862–1870. 164. Zhou, X.; Liang, W.; Wang, K.I.-K.; Wang, H.; Yang, L.T.; Jin, Q. Deep-Learning-Enhanced Human Activity Recognition for Internet of Healthcare Things. IEEE Internet Things J. 2020, 7, 6429–6438. [CrossRef] 165. Xu, W.; Miao, Z.; Yu, J.; Ji, Q. Deep Reinforcement Learning for Weak Human Activity Localization. IEEE Trans. Image Process. 2019, 29, 1522–1535. [CrossRef] 166. Chen, K.; Yao, L.; Zhang, D.; Wang, X.; Chang, X.; Nie, F. A Semisupervised Recurrent Convolutional Attention Model for Human Activity Recognition. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 1747–1756. [CrossRef] 167. Possas, R.; Caceres, S.P.; Ramos, F. Egocentric activity recognition on a budget. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5967–5976. 168. Liu, G.; Ma, R.; Hao, Q. A Reinforcement Learning Based Design of Compressive Sensing Systems for Human Activity Recognition. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. 169. Shen, X.; Guo, L.; Lu, Z.; Wen, X.; Zhou, S. WiAgent: Link Selection for CSI-Based Activity Recognition in Densely Deployed Wi-Fi Environments. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–6. 170. Campbell, C.; Ahmad, F. Attention-augmented convolutional autoencoder for radar-based human activity recognition. In Proceedings of the 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, 28–30 April 2020; pp. 990–995. 171. Nguyen, T.D.; Huynh, T.T.; Pham, H.A. An improved human activity recognition by using genetic algorithm to optimize feature vector. In Proceedings of the 2018 10th International Conference on Knowledge and Systems Engineering (KSE), Ho Chi Minh City, Vietnam, 1–3 November 2018; pp. 123–128. 172. Mocanu, I.; Axinte, D.; Cramariuc, O.; Cramariuc, B. Human activity recognition with convolution neural network using tiago robot. In Proceedings of the 2018 41st International Conference on Telecommunications and Signal Processing (TSP), Athens, Greece, 4–6 July 2018; pp. 1–4. 173. El-Maaty, A.M.A.; Wassal, A.G. Hybrid GA-PCA feature selection approach for inertial human activity recognition. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 1027–1032. 174. Baldominos, A.; Saez, Y.; Isasi, P. Model selection in committees of evolved convolutional neural networks using genetic algorithms. In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, Madrid, Spain, 21–23 November 2018; Springer: Cham, Switzerland, 2018; pp. 364–373. 175. Saba, T.; Rehman, A.; Latif, R.; Fati, S.M.; Raza, M.; Sharif, M. Suspicious Activity Recognition Using Proposed Deep L4-BranchedActionnet With Entropy Coded Ant Colony System Optimization. IEEE Access 2021, 9, 89181–89197. [CrossRef] 176. Li, J.; Tian, L.; Chen, L.; Wang, H.; Cao, T.; Yu, L. Optimal feature selection for activity recognition based on ant colony algorithm. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 2356–2362. 177. Fan, C.; Gao, F. Enhanced human activity recognition using wearable sensors via a hybrid feature selection method. Sensors 2021, 21, 6434. [CrossRef] 178. Jalal, A.; Batool, M.; Kim, K. Stochastic Recognition of Physical Activity and Healthcare Using Tri-Axial Inertial Wearable Sensors. Appl. Sci. 2020, 10, 7122. [CrossRef] 179. Arshad, S.; Feng, C.; Yu, R.; Liu, Y. Leveraging transfer learning in multiple human activity recognition using wifi signal. In Proceedings of the 2019 IEEE 20th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Washington, DC, USA, 10–12 June 2019; pp. 1–10. 180. Soleimani, E.; Nazerfard, E. Cross-subject transfer learning in human activity recognition systems using generative adversarial networks. Neurocomputing 2021, 426, 26–34. [CrossRef] 181. Ding, R.; Li, X.; Nie, L.; Li, J.; Si, X.; Chu, D.; Zhan, D. Empirical study and improvement on deep transfer learning for human activity recognition. Sensors 2018, 19, 57. [CrossRef] [PubMed] 182. Fu, Z.; He, X.; Wang, E.; Huo, J.; Huang, J.; Wu, D. Personalized Human Activity Recognition Based on Integrated Wearable Sensor and Transfer Learning. Sensors 2021, 21, 885. [CrossRef] [PubMed] 183. Deep, S.; Zheng, X. Leveraging CNN and transfer learning for vision-based human activity recognition. In Proceedings of the 29th International Telecommunication Networks and Applications Conference (ITNAC), Auckland, New Zealand, 27–29 November 2019; pp. 1–4. 184. Hoelzemann, A.; Van Laerhoven, K. Digging deeper: Towards a better understanding of transfer learning for human activity recognition. In Proceedings of the 2020 International Symposium on Wearable Computers, Virtual, 12–17 September 2020; pp. 50–54. 185. Wang, J.; Zheng, V.W.; Chen, Y.; Huang, M. Deep transfer learning for cross-domain activity recognition. In Proceedings of the 3rd International Conference on Crowd Science and Engineering, Singapore, 28–31 July 2018; pp. 1–8. 186. Mutegeki, R.; Han, D.S. Feature-representation transfer learning for human activity recognition. In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 16–18 October 2019; pp. 18–20. 187. Khan, M.A.A.H.; Roy, N. Transact: Transfer learning enabled activity recognition. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017; pp. 545–550. 188. Ding, X.; Jiang, T.; Li, Y.; Xue, W.; Zhong, Y. Device-free location-independent human activity recognition using transfer learning based on CNN. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; pp. 1–6. 189. Kalouris, G.; Zacharaki, E.I.; Megalooikonomou, V. Improving CNN-based activity recognition by data augmentation and transfer learning. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; Volume 1, pp. 1387–1394. 190. Rokni, S.A.; Ghasemzadeh, H. Autonomous Training of Activity Recognition Algorithms in Mobile Sensors: A Transfer Learning Approach in Context-Invariant Views. IEEE Trans. Mob. Comput. 2018, 17, 1764–1777. [CrossRef] 191. Verma, K.K.; Singh, B.M. Vision based Human Activity Recognition using Deep Transfer Learning and Support Vector Machine. In Proceedings of the 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Dehradun, India, 11–13 November 2021; pp. 1–9. 192. Xiao, F.; Pei, L.; Chu, L.; Zou, D.; Yu, W.; Zhu, Y.; Li, T. A deep learning method for complex human activity recognition using virtual wearable sensors. In Proceedings of the International Conference on Spatial Data and Intelligence, Virtual, 8–9 May 2020; Springer: Cham, Switzerland, 2020; pp. 261–270. 193. Faridee, A.Z.M.; Khan, M.A.A.H.; Pathak, N.; Roy, N. AugToAct: Scaling complex human activity recognition with few labels. In Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Houston, TX, USA, 12–14 November 2019; pp. 162–171. 194. Mutegeki, R.; Han, D.S. A CNN-LSTM approach to human activity recognition. In Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020; pp. 362–366. |
dc.relation.citationendpage.spa.fl_str_mv |
37 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
9 |
dc.relation.citationvolume.spa.fl_str_mv |
22 |
dc.rights.spa.fl_str_mv |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
37 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.publisher.place.spa.fl_str_mv |
Switzerland |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/1424-8220/22/9/3401 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/507d01bf-5115-43b3-bab5-0b11561d2e2b/download https://repositorio.cuc.edu.co/bitstreams/31f9a117-bb29-4f7f-b4fd-7c5eb20c290a/download https://repositorio.cuc.edu.co/bitstreams/4b1a0d24-a22d-4033-865f-d9bb05a32714/download https://repositorio.cuc.edu.co/bitstreams/0bae1630-4af8-421f-a4ca-e9cf9b86f5e2/download |
bitstream.checksum.fl_str_mv |
6dd2f821d700c1ae339205e06a67c709 e30e9215131d99561d40d6b0abbe9bad ab9abfdb148e062520c2034f2ce7bbcc dd00fe718de953538f5f115d5445f07b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760684466176000 |
spelling |
Ariza Colpas, Paola PatriciasVicario, EnricoOviedo Carrascal, Ana Isabelaziz, shariq Piñeres Melo, Marlon AlbertoQuintero linero, Alejandra paolaPATARA, FULVIO2022-08-17T20:12:04Z2022-08-17T20:12:04Z2022-04-29Ariza-Colpas, P.P.; Vicario, E.; Oviedo-Carrascal, A.I.; Butt Aziz, S.; Piñeres-Melo, M.A.; Quintero-Linero, A.; Patara, F. Human Activity Recognition Data Analysis: History, Evolutions, and New Trends. Sensors 2022, 22, 3401. https://doi.org/10.3390/s220934011424-3210https://hdl.handle.net/11323/9460https://doi.org/10.3390/s2209340110.3390/s220934011424-8220Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The Assisted Living Environments Research Area–AAL (Ambient Assisted Living), focuses on generating innovative technology, products, and services to assist, medical care and rehabilitation to older adults, to increase the time in which these people can live. independently, whether they suffer from neurodegenerative diseases or some disability. This important area is responsible for the development of activity recognition systems—ARS (Activity Recognition Systems), which is a valuable tool when it comes to identifying the type of activity carried out by older adults, to provide them with assistance. that allows you to carry out your daily activities with complete normality. This article aims to show the review of the literature and the evolution of the different techniques for processing this type of data from supervised, unsupervised, ensembled learning, deep learning, reinforcement learning, transfer learning, and metaheuristics approach applied to this sector of science. health, showing the metrics of recent experiments for researchers in this area of knowledge. As a result of this article, it can be identified that models based on reinforcement or transfer learning constitute a good line of work for the processing and analysis of human recognition activities.37 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)Switzerland© 2022 by the authors. Licensee MDPI, Basel, Switzerland.Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Human activity recognition data analysis: history, evolutions, and new trendsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.mdpi.com/1424-8220/22/9/3401Sensors1. Aracil, J.; Gordillo, F. Dinámica de Sistemas; Alianza Editorial: Madrid, Spain, 1997.2. Cramer, H.; Cansado, C. Métodos Matemáticos de Estadística; Aguilar: Madrid, Spain, 1968.3. Shapiro, S.C. Artificial intelligence. In Encyclopedia of Artificial Intelligence, 2nd ed.; Shapiro, S.C., Ed.; Wiley: New York, NY, USA, 1992; Volume 1.4. Rouse, M. Inteligencia Artificial, o AI. Available online: https://www.computerweekly.com/es/definicion/Inteligencia-artificialo-IA (accessed on 30 October 2021).5. Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial intelligence for decision making in the era of Big Data—Evolution, challenges and research agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [CrossRef]6. Sekeroglu, B.; Hasan, S.S.; Abdullah, S.M. Comparison of Machine Learning Algorithms for Classification Problems. Adv. Intell. Syst. Comput. 2020, 944, 491–499.7. Jordan, M.I.; Jordan, M.T.M. Machine Learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]8. Ge, Z.; Song, Z.; Ding, S.X.; Huang, B. Data Mining and Analytics in the Process Industry: The Role of Machine Learning. IEEE Access 2017, 5, 20590–20616. [CrossRef]9. Amiribesheli, M.; Benmansour, A.; Bouchachia, A. A review of smart homes in healthcare. J. Ambient Intell. Humaniz. Comput. 2015, 6, 495–517. [CrossRef]10. Cook, D.J.; Youngblood, M.; Das, S.K. Amulti-agent approach to controlling a smart environment. In Designing Smart Homes; Springer: Berlin/Heidelberg, Germany, 2006; pp. 165–182.11. Andrew McCallum, K.N. A Comparison of Event Models for Naive Bayes Text Classification. In Proceedings of the AAAI-98 Workshop on Learning for Text Categorization, Menlo Park, CA, USA, 26–27 July 1998; Volume 752, p. 307. [CrossRef]12. Murata, N.; Yoshizawa, S.; Amari, S. Network information criterion-determining the number of hidden units for an artificial neural network model. IEEE Trans. Neural Netw. 1994, 5, 865–872. [CrossRef] [PubMed]13. Du, W.S.; Hu, B.Q. Approximate distribution reducts in inconsistent interval-valued ordered decision tables. Inf. Sci. 2014, 271, 93–114. [CrossRef]14. Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 2017, 151, 147–160. [CrossRef]15. Saxena, A.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Er, M.J.; Ding, W.; Lin, C.-T. A review of clustering techniques and developments. Neurocomputing 2017, 267, 664–681. [CrossRef]16. Jones, F.W.; McLaren, I.P.L. Rules and associations. In Proceedings of the Twenty First Annual Conference of the Cognitive Science Society, Vancouver, BC, Canada, 23 December 2020; Psychology Press: East Sussex, UK, 2020; pp. 240–245.17. Van Der Maaten, L.; Postma, E.; Van den Herik, J. Dimensionality reduction: A comparative. J. Mach. Learn. Res. 2009, 10, 13.18. Divina, F.; Gilson, A.; Goméz-Vela, F.; García Torres, M.; Torres, J.F. Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting. Energies 2018, 11, 949. [CrossRef]19. Sewell, M. Ensemble learning. RN 2008, 11, 1–34.20. Svetnik, V.; Wang, T.; Tong, C.; Liaw, A.; Sheridan, R.P.; Song, Q. Boosting: An ensemble learning tool for compound classification and QSAR modeling. J. Chem. Inf. Modeling 2005, 45, 786–799. [CrossRef] [PubMed]21. Shen, Y.; Chen, T.; Xiao, Z.; Liu, B.; Chen, Y. High-Dimensional Data Clustering with Fuzzy C-Means: Problem, Reason, and Solution. In Proceedings of the International Work-Conference on Artificial Neural Networks, Virtual Event, 16–18 June 2021; Springer: Cham, Switzerland, 2021; pp. 89–100.22. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]23. Kaur, M.; Kaur, G.; Sharma, P.K.; Jolfaei, A.; Singh, D. Binary cuckoo search metaheuristic-based supercomputing framework for human behavior analysis in smart home. J. Supercomput. 2019, 76, 2479–2502. [CrossRef]24. Althöfer, I.; Koschnick, K.U. On the convergence of “Threshold Accepting”. Appl. Math. Optim. 1991, 24, 183–195. [CrossRef]25. Moscato, P.; Cotta, C.; Mendes, A. Memetic algorithms. In New Optimization Techniques in Engineering; Springer: Berlin/Heidelberg, Germany, 2004; pp. 53–85.26. Wesselkamper, J. Fail-Safe MultiBoot Reference Design; XAPP468; Xilinx: San Jose, CA, USA, 2009.27. Salcedo-Sanz, S.; Cuadra, L.; Vermeij, M. A review of Computational Intelligence techniques in coral reef-related applications. Ecol. Inform. 2016, 32, 107–123. [CrossRef]28. Krause, J.; Cordeiro, J.; Parpinelli, R.S.; Lopes, H.S. A survey of swarm algorithms applied to discrete optimization problems. In Swarm Intelligence and Bio-Inspired Computation; Elsevier: Amsterdam, The Netherlands, 2013; pp. 169–191.29. Kumar, M.; Husain, M.; Upreti, N.; Gupta, D. Genetic Algorithm: Review and Application. 2010. Available online: https: //papers.ssrn.com/sol3/papers.cfm?abstract_id=3529843 (accessed on 30 October 2021).30. Glover, F.; Laguna, M.; Martí, R. Scatter search. In Advances in Evolutionary Computing; Springer: Berlin/Heidelberg, Germany, 2003; pp. 519–537.31. Hansen, P.; Mladenovi´c, N. Variable neighborhood search. In Search Methodologies; Springer: Boston, MA, USA, 2005; pp. 211–238.32. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]33. Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques; IGI Global: Hershey, PA, USA, 2010; pp. 242–264.34. Timarán Pereira, S.R.; Hernández Arteaga, I.; Caicedo Zambrano, S.J.; Hidalgo Troya, A.; Alvarado Pérez, J.C. Descubrimiento de Patrones de Desempeño Académico con Árboles de Decisión en las Competencias Genéricas de la Formación Profesional; Ediciones Universidad Cooperativa de Colombia: Bogotá, Colombia, 2015. [CrossRef]35. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]36. Han, S.; Qubo, C.; Meng, H. Parameter selection in SVM with RBF kernel function. In Proceedings of the World Automation Congress 2012, Puerto Vallarta, Mexico, 24–28 June 2012; pp. 1–4.37. Gaikwad, N.B.; Tiwari, V.; Keskar, A.; Shivaprakash, N.C. Efficient FPGA implementation of multilayer perceptron for real-time human activity classification. IEEE Access 2019, 7, 26696–26706. [CrossRef]38. Yiyu, Y. Decision-theoretic rough set models. In Proceedings of the International Conference on Rough Sets and Knowledge Technology, Toronto, ON, Canada, 14–16 May 2007; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–12. [CrossRef]39. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; John Wiley & Sons: Hoboken, NJ, USA, 2012.40. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. (CSUR) 1999, 31, 264–323. [CrossRef]41. Li, J. Two-scale image retrieval with significant meta-information feedback. In Proceedings of the 13th Annual ACM International Conference on Multimedia, Singapore, 6–11 November 2005; pp. 499–502.42. Li, J.; Ray, S.; Lindsay, B.G. A Nonparametric Statistical Approach to Clustering via Mode Identification. J. Mach. Learn. Res. 2007, 8, 1687–1723.43. Xu, X. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [CrossRef] [PubMed]44. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]45. Li, T.S.; Simon, J.D.; Drlica-Wagner, A.; Bechtol, K.; Wang, M.Y.; Garcia-Bellido, J.; Frieman, J.; Marshall, J.L.; James, D.J.; Strigari, L.; et al. Farthest Neighbor: The Distant Milky Way Satellite Eridanus II. Astrophys. J. Lett. 2017, 838, 8. [CrossRef]46. Huse, S.M.; Welch, D.M.; Morrison, H.G.; Sogin, M.L. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 2010, 12, 1889–1898. [CrossRef]47. McIntyre, R.M.; Blashfield, R.K. A Nearest-Centroid Technique for Evaluating The Minimum-Variance Clustering Procedure. Multivar. Behav. Res. 1980, 15, 225–238. [CrossRef]48. Ferrer, M.; Valveny, E.; Serratosa, F.; Bardají, I.; Bunke, H. Graph-based k-means clustering: A comparison of the set median versus the generalized median graph. In International Conference on Computer Analysis of Images and Patterns; Springer: Berlin/Heidelberg, Germany, 2009; pp. 342–350.49. Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [CrossRef]50. Kamen, J.M. Quick clustering. J. Mark. Res. 1970, 7, 199–204. [CrossRef]51. Redmond, S.; Heneghan, C. A method for initialising the K-means clustering algorithm using kd-trees. Pattern Recognit. Lett. 2007, 28, 965–973. [CrossRef]52. Park, H.-S.; Jun, C.-H. A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 2009, 36, 3336–3341. [CrossRef]53. Gupta, T.; Panda, S.P. A comparison of k-means clustering algorithm and clara clustering algorithm on iris dataset. Int. J. Eng. Technol. 2018, 7, 4766–4768.54. Hadji, M.; Zeghlache, D. Minimum cost maximum flow algorithm for dynamic resource allocation in clouds. In Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA, 24–29 June 2012; pp. 876–882.55. Cara, F.J.; Carpio, J.; Juan, J.; Alarcón, E. An approach to operational modal analysis using the expectation maximization algorithm. Mech. Syst. Signal Processing 2012, 31, 109–129. [CrossRef]56. Gholami, E.; Jahromi, Y.M. Forecastingof the Value Added Tax from Tobacco Consumption Using Neural Network Method. J. Res. Econ. Model. 2015, 5, 55–72. [CrossRef]57. Fortin, M.; Fortin, A. A generalization of Uzawa’s algorithm for the solution of the Navier-Stokes equations. Commun. Appl. Numer. Methods 1985, 1, 205–208. [CrossRef]58. Niu, P.; Niu, S.; Liu, N.; Chang, L. The defect of the Grey Wolf optimization algorithm and its verification method. Knowl. -Based Syst. 2019, 171, 37–43. [CrossRef]59. Govaert, G.; Nadif, M. Clustering with block mixture models. Pattern Recognit. 2003, 36, 463–473. [CrossRef]60. De Roover, K. Finding Clusters of Groups with Measurement Invariance: Unraveling Intercept Non-Invariance with Mixture Multigroup Factor Analysis. Struct. Equ. Model. A Multidiscip. J. 2021, 28, 663–683. [CrossRef]61. Agrawal, R.; Srikant, R. Fast algorithms for mining association rules in large databases. In Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile, 12–15 September 1994; pp. 487–499.62. Hipp, J.; Güntzer, U.; Nakhaeizadeh, G. Algorithms for association rule mining—A general survey and comparison. ACM SIGKDD Explor. Newsl. 2000, 2, 58–64. [CrossRef]63. Zaki, M. Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 2000, 12, 372–390. [CrossRef]64. Han, J.; Pei, J.; Yin, Y. Mining frequent patterns without candidate generation. In Proceedings of the ACM International Conference on Management of Data, Dallas, TX, USA, 15–18 May 2000; pp. 1–12.65. Rathee, S.; Kaul, M.; Kashyap, A. R-Apriori: An efficient Apriori based algorithm on Spark. In Proceedings of the PIKM’15, ACM, Melbourne, Australia, 31 May–4 June 2015.66. Qiu, H.; Gu, R.; Yuan, C.; Huang, Y. YAFIM: A parallel frequent itemset mining algorithm with Spark. In Proceedings of the Parallel & Distributed Processing Symposium Workshops (IPDPSW), Phoenix, AZ, USA, 19–23 May 2014; pp. 1664–1671.67. Zaki, M.J.; Parthasarathy, S.; Ogihara, M.; Li, W. Parallel Algorithms for Discovery of Association Rules. Data Min. Knowl. Discov. 1997, 1, 343–373. [CrossRef]68. Cong, S.; Han, J.; Hoeflinger, J.; Padua, D. A sampling-based framework for parallel data mining. In Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Chicago, IL, USA, 15–17 June 2005; pp. 255–265.69. Shintani, T.; Kitsuregawa, M. Hash-based parallel algorithms for mining association rules. In Proceedings of the Fourth International Conference on Parallel and Distributed Information Systems, Miami Beach, FL, USA, 18–20 December 1996; pp. 19–30.70. Li, H.; Wang, Y.; Zhang, D.; Zhang, M.; Chang, E.Y. PFP: Parallel FP-growth for query recommendation. In Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Switzerland, 23–25 October 2008; pp. 107–114.71. Gabroveanu, M.; Cosulschi, M.; Slabu, F. Mining fuzzy association rules using MapReduce technique. In Proceedings of the International Symposium on INnovations in Intelligent SysTems and Applications, INISTA, Sinaia, Romania, 2–5 August 2016; pp. 1–8.72. Gabroveanu, M.; Iancu, I.; Co¸sulschi, M.; Constantinescu, N. Towards using grid services for mining fuzzy association rules. In Proceedings of the Ninth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, 26–29 September 2007; pp. 507–513.73. Palo, H.K.; Sahoo, S.; Subudhi, A.K. Dimensionality Reduction Techniques: Principles, Benefits, and Limitations. In Data Analytics in Bioinformatics: A Machine Learning Perspective; Willey: New York, NY, USA, 2021; pp. 77–107.74. Zhou, H.; Yu, K.-M.; Hsu, H.-P. Hybrid Modeling Method for Soft Sensing of Key Process Parameters in Chemical Industry. Sens. Mater. 2021, 33, 2789. [CrossRef]75. Priya, S.; Ward, C.; Locke, T.; Soni, N.; Maheshwarappa, R.P.; Monga, V.; Bathla, G. Glioblastoma and primary central nervous system lymphoma: Differentiation using MRI derived first-order texture analysis—A machine learning study. Neuroradiol. J. 2021, 34, 320–328. [CrossRef] [PubMed]76. Weerasuriya, A.U.; Zhang, X.; Lu, B.; Tse, K.T.; Liu, C.H. A Gaussian Process-Based emulator for modeling pedestrian-level wind field. Build. Environ. 2021, 188, 107500. [CrossRef]77. Uddin, M.P.; Mamun, M.A.; Afjal, M.I.; Hossain, M.A. Information-theoretic feature selection with segmentation-based folded principal component analysis (PCA) for hyperspectral image classification. Int. J. Remote Sens. 2021, 42, 286–321. [CrossRef]78. Bari, A.; Brower, W.; Davidson, C. Using Artificial Intelligence to Predict Legislative Votes in the United States Congress. In Proceedings of the 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA), Xiamen, China, 5–8 March 2021; pp. 56–60.79. Nanehkaran, Y.A.; Chen, J.; Salimi, S.; Zhang, D. A pragmatic convolutional bagging ensemble learning for recognition of Farsi handwritten digits. J. Supercomput. 2021, 77, 13474–13493. [CrossRef]80. Kumari, P.; Toshniwal, D. Extreme gradient boosting and deep neural network based ensemble learning approach to forecast hourly solar irradiance. J. Clean. Prod. 2020, 279, 123285. [CrossRef]81. Cui, S.; Yin, Y.; Wang, D.; Li, Z.; Wang, Y. A stacking-based ensemble learning method for earthquake casualty prediction. Appl. Soft Comput. 2020, 101, 107038. [CrossRef]82. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]83. Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [CrossRef]84. Kag, A.; Saligrama, V. Training Recurrent Neural Networks via Forward Propagation through Time. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 5189–5200.85. Yang, G.; Lv, J.; Chen, Y.; Huang, J.; Zhu, J. Generative Adversarial Networks (GAN) Powered Fast Magnetic Resonance Imaging—Mini Review, Comparison and Perspectives. arXiv 2021, arXiv:2105.01800.86. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998.87. Rummery, G.A.; Niranjan, M. On-Line q-Learning Using Connectionist Systems; University of Cambridge, Department of Engineering: Cambridge, UK, 1994.88. Watkins, C. Learning from Delayed Rewards; King’s College: Cambridge, UK, 1989.89. Watkins, C.J.C.H.; Dayan, P. Technical Note: Q-Learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]90. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M.A. Playing atari with deep reinforcement learning. arXiv 2013, arXiv:1312.5602.91. Ann, O.C.; Theng, L.B. Human activity recognition: A review. In Proceedings of the 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2014), Penang, Malaysia, 28–30 November 2014; pp. 389–393.92. Glover, F. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 1986, 13, 533–549. [CrossRef]93. Zhang, W.; Zhang, Y.; Gu, X.; Wu, C.; Han, L. Soft Computing. In Application of Soft Computing, Machine Learning, Deep Learning and Optimizations in Geoengineering and Geoscience; Springer: Singapore, 2022; pp. 7–19.94. Gavrilu¸t, V.; Pruski, A.; Berger, M.S. Constructive or Optimized: An Overview of Strategies to Design Networks for Time-Critical Applications. ACM Comput. Surv. 2022, 55, 1–35. [CrossRef]95. Sahoo, R.R.; Ray, M. Metaheuristic techniques for test case generation: A review. In Research Anthology on Agile Software, Software Development, and Testing; IGI Global: Hershey, PA, USA, 2022; pp. 1043–1058.96. Singh, R.M.; Awasthi, L.K.; Sikka, G. Towards Metaheuristic Scheduling Techniques in Cloud and Fog: An Extensive Taxonomic Review. ACM Comput. Surv. (CSUR) 2022, 55, 1–43. [CrossRef]97. Stevo, B.; Ante, F. The influence of pattern similarity and transfer learning upon the training of a base perceptron B2. In Proceedings of the Symposium Informatica, Gda ´nsk, Poland, 6–10 September 1976.98. Qi, W.; Su, H.; Yang, C.; Ferrigno, G.; De Momi, E.; Aliverti, A. A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone. Sensors 2019, 19, 3731. [CrossRef]99. de Jesús, P.-V.R.; Palencia-Díaz, R. Teléfonos inteligentes y tabletas.¿ una herramienta o una barrera en la atención del paciente? Med. Interna De Mex. 2013, 29, 404–409.100. Organista-Sandoval, J.; McAnally-Salas, L.; Lavigne, G. El teléfono inteligente (smartphone) como herramienta pedagógica. Apertura 2013, 5, 6–19.101. Alonso, A.B.; Artime, I.F.; Rodríguez, M.Á.; Baniello, R.G. Dispositivos Móviles; EPSIG Ing. Telecomunicación Universidad de Oviedo: Oviedo, Spain, 2011.102. Anguita, D.; Ghio, A.; Oneto, L.; Parra Perez, X.; Reyes Ortiz, J.L. A Public Domain Dataset for Human Activity Recognition Using Smartphones. In Proceedings of the 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium, 24–26 April 2013.103. Sikder, N.; Nahid, A.-A. KU-HAR: An open dataset for heterogeneous human activity recognition. Pattern Recognit. Lett. 2021, 146, 46–54. [CrossRef]104. Popescu, A.-C.; Mocanu, I.; Cramariuc, B. PRECIS HAR. 2019. Available online: https://ieee-dataport.org/open-access/precishar (accessed on 30 October 2021).105. Martínez-Villaseñor, L.; Ponce, H.; Brieva, J.; Moya-Albor, E.; Núñez-Martínez, J.; Peñafort-Asturiano, C. UP-Fall Detection Dataset: A Multimodal Approach. Sensors 2019, 19, 1988. [CrossRef] [PubMed]106. Van Kasteren, T.; Noulas, A.; Englebienne, G.; Kröse, B. Accurate activity recognition in a home setting. In Proceedings of the 10th International Conference on Ubiquitous Computing, Seoul, Korea, 21–24 September 2008; pp. 1–9.107. Singla, G.; Cook, D.; Schmitter-Edgecombe, M. Recognizing independent and joint activities among multiple residents in smart environments. Ambient. Intell. Humaniz. Comput. J. 2010, 1, 57–63. [CrossRef] [PubMed]108. Weiss, G.M.; Yoneda, K.; Hayajneh, T. Smartphone and Smartwatch-Based Biometrics Using Activities of Daily Living. IEEE Access 2019, 7, 133190–133202. [CrossRef]109. Gallissot, M.; Caelen, J.; Bonnefond, N.; Meillon, B.; Pons, S. Using the Multicom Domus Dataset; Research Report RR-LIG-020; LIG: Grenoble, France, 2011.110. Roggen, D.; Calatroni, A.; Rossi, M.; Holleczek, T.; Tröster, G.; Lukowicz, P.; Pirkl, G.; Bannach, D.; Ferscha, A.; Doppler, J.; et al. Collecting complex activity data sets in highly rich networked sensor environments. In Proceedings of the Seventh International Conference on Networked Sensing Systems (INSS’10), Kassel, Germany, 15–18 June 2010.111. Cook, D. Learning setting-generalized activity mdoels for smart spaces. IEEE Intell. Syst. 2010, 1. [CrossRef]112. Zhang, M.; Sawchuk, A.A. USC-HAD: A Daily Activity Dataset for Ubiquitous Activity Recognition Using Wearable Sensors. In Proceedings of the ACM International Conference on Ubiquitous Computing (UbiComp) Workshop on Situation, Activity and Goal Awareness (SAGAware), Pittsburgh, PA, USA, 5–8 September 2012.113. Logan, B.; Healey, B.J.; Philipose, J.M.; Tapia, E.M.; Intille, S. A long-term evaluation of sensing modalities for activity recognition. In Proceedings of the International Conference on Ubiquitous Computing, Taipei, Taiwan, 17–20 December 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 483–500.114. Nugent, C.D.; Mulvenna, M.D.; Hong, X.; Devlin, S. Experiences in the development of a Smart Lab. Int. J. Biomed. Eng. Technol. 2009, 2, 319–331. [CrossRef]115. Schmitter-Edgecombe, M.; Cook, D.J. Assessing the Quality of Activities in a Smart Environment. Methods Inf. Med. 2009, 48, 480–485. [CrossRef]116. Reiss, A.; Stricker, D. Introducing a New Benchmarked Dataset for Activity Monitoring. In Proceedings of the 16th IEEE International Symposium on Wearable Computers (ISWC), Newcastle, UK, 18–22 June 2012.117. Banos, O.; Garcia, R.; Holgado, J.A.; Damas, M.; Pomares, H.; Rojas, I.; Saez, A.; Villalonga, C. mHealthDroid: A novel framework for agile development of mobile health applications. In Proceedings of the 6th International Work-conference on Ambient Assisted Living an Active Ageing (IWAAL 2014), Belfast, UK, 2–5 December 2014.118. Barshan, B.; Yüksek, M.C. Recognizing daily and sports activities in two open source machine learning environments using body-worn sensor units. Comput. J. 2014, 57, 1649–1667. [CrossRef]119. Espinilla, M.; Martínez, L.; Medina, J.; Nugent, C. The experience of developing theUJAmI Smart lab. IEEE Access. 2018, 6, 34631–34642. [CrossRef]120. Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software engineering—A systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15. [CrossRef]121. Tasmin, M.; Ishtiak, T.; Ruman, S.U.; Suhan, A.U.R.C.; Islam, N.S.; Jahan, S.; Rahman, R.M. Comparative Study of Classifiers on Human Activity Recognition by Different Feature Engineering Techniques. In Proceedings of the 2020 IEEE 10th International Conference on Intelligent Systems (IS), Varna, Bulgaria, 28–30 August 2020; pp. 93–101.122. Igwe, O.M.; Wang, Y.; Giakos, G.C.; Fu, J. Human activity recognition in smart environments employing margin setting algorithm. J. Ambient Intell. Humaniz. Comput. 2020, 1–13. [CrossRef]123. Subasi, A.; Radhwan, M.; Kurdi, R.; Khateeb, K. IoT based mobile healthcare system for human activity recognition. In Proceedings of the 2018 15th Learning and Technology Conference (L&T), Jeddah, Saudi Arabia, 25–26 February 2018; pp. 29–34.124. Maswadi, K.; Ghani, N.A.; Hamid, S.; Rasheed, M.B. Human activity classification using Decision Tree and Naïve Bayes classifiers. Multimed. Tools Appl. 2021, 80, 21709–21726. [CrossRef]125. Damodaran, N.; Haruni, E.; Kokhkharova, M.; Schäfer, J. Device free human activity and fall recognition using WiFi channel state information (CSI). CCF Trans. Pervasive Comput. Interact. 2020, 2, 1–17. [CrossRef]126. Saha, J.; Chowdhury, C.; Biswas, S. Two phase ensemble classifier for smartphone based human activity recognition independent of hardware configuration and usage behaviour. Microsyst. Technol. 2018, 24, 2737–2752. [CrossRef]127. Das, A.; Kjærgaard, M.B. Activity Recognition using Multi-Class Classification inside an Educational Building. In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Austin, TX, USA, 23–27 March 2020; pp. 1–6.128. Franco, P.; Martínez, J.M.; Kim, Y.C.; Ahmed, M.A. IoT based approach for load monitoring and activity recognition in smart homes. IEEE Access 2021, 9, 45325–45339. [CrossRef]129. Bozkurt, F. A Comparative Study on Classifying Human Activities Using Classical Machine and Deep Learning Methods. Arab. J. Sci. Eng. 2021, 47, 1507–1521. [CrossRef]130. Wang, A.; Zhao, S.; Zheng, C.; Chen, H.; Liu, L.; Chen, G. HierHAR: Sensor-Based Data-Driven Hierarchical Human Activity Recognition. IEEE Sens. J. 2020, 21, 3353–3365. [CrossRef]131. Oukrich, N. Daily Human Activity Recognition in Smart Home Based on Feature Selection, Neural Network and Load Signature of Appliances. Ph.D. Thesis, Université Mohamed V, Ecole Mohammadia d’Ingénieurs-Université Mohammed V de Rabat-Maroc, Rabat, Morocco, 2019.132. Demrozi, F.; Turetta, C.; Pravadelli, G. B-HAR: An open-source baseline framework for in depth study of human activity recognition datasets and workflows. arXiv 2021, arXiv:2101.10870.133. Xu, Z.; Wang, G.; Guo, X. Sensor-based activity recognition of solitary elderly via stigmergy and two-layer framework. Eng. Appl. Artif. Intell. 2020, 95, 10385. [CrossRef]134. Hussain, F.; Hussain, F.; Ehatisham-ul-Haq, M.; Azam, M.A. Activity-aware fall detection and recognition based on wearable sensors. IEEE Sens. J. 2019, 19, 4528–4536. [CrossRef]135. Liciotti, D.; Bernardini, M.; Romeo, L.; Frontoni, E. A sequential deep learning application for recognising human activities in smart homes. Neurocomputing 2019, 396, 501–513. [CrossRef]136. Mohmed, G.; Lotfi, A.; Langensiepen, C.; Pourabdollah, A. Clustering-based fuzzy finite state machine for human activity recognition. In UK Workshop on Computational Intelligence; Springer: Cham, Switzerland, 2018; pp. 264–275.137. Brena, R.F.; Garcia-Ceja, E. A crowdsourcing approach for personalization in human activities recognition. Intell. Data Anal. 2017, 21, 721–738. [CrossRef]138. He, H.; Tan, Y.; Zhang, W. A wavelet tensor fuzzy clustering scheme for multi-sensor human activity recognition. Eng. Appl. Artif. Intell. 2018, 70, 109–122. [CrossRef]139. Wang, X.; Lu, Y.; Wang, D.; Liu, L.; Zhou, H. Using jaccard distance measure for unsupervised activity recognition with smartphone accelerometers. In Proceedings of the Asia-Pacific Web (apweb) and Web-Age Information Management (WAIM) Joint Conference on Web and Big Data, Beijing, China, 7–9 July 2017; Springer: Cham, Switzerland, 2017; pp. 74–83.140. Bota, P.; Silva, J.; Folgado, D.; Gamboa, H. A Semi-Automatic Annotation Approach for Human Activity Recognition. Sensors 2019, 19, 501. [CrossRef] [PubMed]141. Yacchirema, D.; de Puga, J.S.; Palau, C.; Esteve, M. Fall detection system for elderly people using IoT and ensemble machine learning algorithm. Pers. Ubiquitous Comput. 2019, 23, 801–817. [CrossRef]142. Manzi, A.; Dario, P.; Cavallo, F. A Human Activity Recognition System Based on Dynamic Clustering of Skeleton Data. Sensors 2017, 17, 1100. [CrossRef]143. Ma, H.; Zhang, Z.; Li, W.; Lu, S. Unsupervised Human Activity Representation Learning with Multi-task Deep Clustering. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–25. [CrossRef]144. Budisteanu, E.A.; Mocanu, I.G. Combining Supervised and Unsupervised Learning Algorithms for Human Activity Recognition. Sensors 2021, 21, 6309. [CrossRef]145. Xu, S.; Tang, Q.; Jin, L.; Pan, Z. A Cascade Ensemble Learning Model for Human Activity Recognition with Smartphones. Sensors 2019, 19, 2307. [CrossRef]146. Choudhury, N.A.; Moulik, S.; Roy, D.S. Physique-Based Human Activity Recognition Using Ensemble Learning and Smartphone Sensors. IEEE Sens. J. 2021, 21, 16852–16860. [CrossRef]147. Wang, Z.; Wu, D.; Chen, J.; Ghoneim, A.; Hossain, M.A. A Triaxial Accelerometer-Based Human Activity Recognition via EEMD-Based Features and Game-Theory-Based Feature Selection. IEEE Sens. J. 2016, 16, 3198–3207. [CrossRef]148. Jethanandani, M.; Sharma, A.; Perumal, T.; Chang, J.R. Multi-label classification based ensemble learning for human activity recognition in smart home. Internet Things 2020, 12, 100324. [CrossRef]149. Subasi, A.; Dammas, D.H.; Alghamdi, R.D.; Makawi, R.A.; Albiety, E.A.; Brahimi, T.; Sarirete, A. Sensor Based Human Activity Recognition Using Adaboost Ensemble Classifier. Procedia Comput. Sci. 2018, 140, 104–111. [CrossRef]150. Padmaja, B.; Prasa, V.; Sunitha, K. A Novel Random Split Point Procedure Using Extremely Randomized (Extra) Trees Ensemble Method for Human Activity Recognition. EAI Endorsed Trans. Pervasive Health Technol. 2020, 6, e5. [CrossRef]151. Nweke, H.F.; Teh, Y.W.; Al-Garadi, M.A.; Alo, U.R. Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018, 105, 233–261. [CrossRef]152. Ma, L.; Cheng, S.; Shi, Y. Enhancing learning efficiency of brain storm optimization via orthogonal learning design. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 6723–6742. [CrossRef]153. Wan, S.; Qi, L.; Xu, X.; Tong, C.; Gu, Z. Deep Learning Models for Real-time Human Activity Recognition with Smartphones. Mob. Netw. Appl. 2019, 25, 743–755. [CrossRef]154. Akula, A.; Shah, A.K.; Ghosh, R. Deep learning approach for human action recognition in infrared images. Cogn. Syst. Res. 2018, 50, 146–154. [CrossRef]155. He, J.; Zhang, Q.; Wang, L.; Pei, L. Weakly supervised human activity recognition from wearable sensors by recurrent attention learning. IEEE Sens. J. 2018, 19, 2287–2297. [CrossRef]156. Long, J.; Sun, W.; Yang, Z.; Raymond, O.I. Asymmetric Residual Neural Network for Accurate Human Activity Recognition. Information 2019, 10, 203. [CrossRef]157. Ariza-Colpas, P.; Morales-Ortega, R.; Piñeres-Melo, M.A.; Melendez-Pertuz, F.; Serrano-Torné, G.; Hernandez-Sanchez, G.; Martínez-Osorio, H. Teleagro: Iot applications for the georeferencing and detection of zeal in cattle. In Proceedings of the IFIP International Conference on Computer Information Systems and Industrial Management, Belgrade, Serbia, 19–21 September 2019; pp. 232–239.158. Mekruksavanich, S.; Jitpattanakul, A. Deep convolutional neural network with rnns for complex activity recognition using wrist-worn wearable sensor data. Electronics 2021, 10, 1685. [CrossRef]159. Papagiannaki, A.; Zacharaki, E.I.; Kalouris, G.; Kalogiannis, S.; Deltouzos, K.; Ellul, J.; Megalooikonomou, V. Recognizing Physical Activity of Older People from Wearable Sensors and Inconsistent Data. Sensors 2019, 19, 880. [CrossRef] [PubMed]160. Hassan, M.M.; Uddin, Z.; Mohamed, A.; Almogren, A. A robust human activity recognition system using smartphone sensors and deep learning. Futur. Gener. Comput. Syst. 2018, 81, 307–313. [CrossRef]161. Berlin, S.J.; John, M. R-STDP Based Spiking Neural Network for Human Action Recognition. Appl. Artif. Intell. 2020, 34, 656–673. [CrossRef]162. Lu, Y.; Li, Y.; Velipasalar, S. Efficient human activity classification from egocentric videos incorporating actor-critic reinforcement learning. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 564–568.163. Hossain, H.S.; Roy, N. Active deep learning for activity recognition with context-aware annotator selection. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1862–1870.164. Zhou, X.; Liang, W.; Wang, K.I.-K.; Wang, H.; Yang, L.T.; Jin, Q. Deep-Learning-Enhanced Human Activity Recognition for Internet of Healthcare Things. IEEE Internet Things J. 2020, 7, 6429–6438. [CrossRef]165. Xu, W.; Miao, Z.; Yu, J.; Ji, Q. Deep Reinforcement Learning for Weak Human Activity Localization. IEEE Trans. Image Process. 2019, 29, 1522–1535. [CrossRef]166. Chen, K.; Yao, L.; Zhang, D.; Wang, X.; Chang, X.; Nie, F. A Semisupervised Recurrent Convolutional Attention Model for Human Activity Recognition. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 1747–1756. [CrossRef]167. Possas, R.; Caceres, S.P.; Ramos, F. Egocentric activity recognition on a budget. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5967–5976.168. Liu, G.; Ma, R.; Hao, Q. A Reinforcement Learning Based Design of Compressive Sensing Systems for Human Activity Recognition. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4.169. Shen, X.; Guo, L.; Lu, Z.; Wen, X.; Zhou, S. WiAgent: Link Selection for CSI-Based Activity Recognition in Densely Deployed Wi-Fi Environments. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–6.170. Campbell, C.; Ahmad, F. Attention-augmented convolutional autoencoder for radar-based human activity recognition. In Proceedings of the 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, 28–30 April 2020; pp. 990–995.171. Nguyen, T.D.; Huynh, T.T.; Pham, H.A. An improved human activity recognition by using genetic algorithm to optimize feature vector. In Proceedings of the 2018 10th International Conference on Knowledge and Systems Engineering (KSE), Ho Chi Minh City, Vietnam, 1–3 November 2018; pp. 123–128.172. Mocanu, I.; Axinte, D.; Cramariuc, O.; Cramariuc, B. Human activity recognition with convolution neural network using tiago robot. In Proceedings of the 2018 41st International Conference on Telecommunications and Signal Processing (TSP), Athens, Greece, 4–6 July 2018; pp. 1–4.173. El-Maaty, A.M.A.; Wassal, A.G. Hybrid GA-PCA feature selection approach for inertial human activity recognition. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 1027–1032.174. Baldominos, A.; Saez, Y.; Isasi, P. Model selection in committees of evolved convolutional neural networks using genetic algorithms. In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, Madrid, Spain, 21–23 November 2018; Springer: Cham, Switzerland, 2018; pp. 364–373.175. Saba, T.; Rehman, A.; Latif, R.; Fati, S.M.; Raza, M.; Sharif, M. Suspicious Activity Recognition Using Proposed Deep L4-BranchedActionnet With Entropy Coded Ant Colony System Optimization. IEEE Access 2021, 9, 89181–89197. [CrossRef]176. Li, J.; Tian, L.; Chen, L.; Wang, H.; Cao, T.; Yu, L. Optimal feature selection for activity recognition based on ant colony algorithm. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 2356–2362.177. Fan, C.; Gao, F. Enhanced human activity recognition using wearable sensors via a hybrid feature selection method. Sensors 2021, 21, 6434. [CrossRef]178. Jalal, A.; Batool, M.; Kim, K. Stochastic Recognition of Physical Activity and Healthcare Using Tri-Axial Inertial Wearable Sensors. Appl. Sci. 2020, 10, 7122. [CrossRef]179. Arshad, S.; Feng, C.; Yu, R.; Liu, Y. Leveraging transfer learning in multiple human activity recognition using wifi signal. In Proceedings of the 2019 IEEE 20th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Washington, DC, USA, 10–12 June 2019; pp. 1–10.180. Soleimani, E.; Nazerfard, E. Cross-subject transfer learning in human activity recognition systems using generative adversarial networks. Neurocomputing 2021, 426, 26–34. [CrossRef]181. Ding, R.; Li, X.; Nie, L.; Li, J.; Si, X.; Chu, D.; Zhan, D. Empirical study and improvement on deep transfer learning for human activity recognition. Sensors 2018, 19, 57. [CrossRef] [PubMed]182. Fu, Z.; He, X.; Wang, E.; Huo, J.; Huang, J.; Wu, D. Personalized Human Activity Recognition Based on Integrated Wearable Sensor and Transfer Learning. Sensors 2021, 21, 885. [CrossRef] [PubMed]183. Deep, S.; Zheng, X. Leveraging CNN and transfer learning for vision-based human activity recognition. In Proceedings of the 29th International Telecommunication Networks and Applications Conference (ITNAC), Auckland, New Zealand, 27–29 November 2019; pp. 1–4.184. Hoelzemann, A.; Van Laerhoven, K. Digging deeper: Towards a better understanding of transfer learning for human activity recognition. In Proceedings of the 2020 International Symposium on Wearable Computers, Virtual, 12–17 September 2020; pp. 50–54.185. Wang, J.; Zheng, V.W.; Chen, Y.; Huang, M. Deep transfer learning for cross-domain activity recognition. In Proceedings of the 3rd International Conference on Crowd Science and Engineering, Singapore, 28–31 July 2018; pp. 1–8.186. Mutegeki, R.; Han, D.S. Feature-representation transfer learning for human activity recognition. In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 16–18 October 2019; pp. 18–20.187. Khan, M.A.A.H.; Roy, N. Transact: Transfer learning enabled activity recognition. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017; pp. 545–550.188. Ding, X.; Jiang, T.; Li, Y.; Xue, W.; Zhong, Y. Device-free location-independent human activity recognition using transfer learning based on CNN. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; pp. 1–6.189. Kalouris, G.; Zacharaki, E.I.; Megalooikonomou, V. Improving CNN-based activity recognition by data augmentation and transfer learning. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; Volume 1, pp. 1387–1394.190. Rokni, S.A.; Ghasemzadeh, H. Autonomous Training of Activity Recognition Algorithms in Mobile Sensors: A Transfer Learning Approach in Context-Invariant Views. IEEE Trans. Mob. Comput. 2018, 17, 1764–1777. [CrossRef]191. Verma, K.K.; Singh, B.M. Vision based Human Activity Recognition using Deep Transfer Learning and Support Vector Machine. In Proceedings of the 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Dehradun, India, 11–13 November 2021; pp. 1–9.192. Xiao, F.; Pei, L.; Chu, L.; Zou, D.; Yu, W.; Zhu, Y.; Li, T. A deep learning method for complex human activity recognition using virtual wearable sensors. In Proceedings of the International Conference on Spatial Data and Intelligence, Virtual, 8–9 May 2020; Springer: Cham, Switzerland, 2020; pp. 261–270.193. Faridee, A.Z.M.; Khan, M.A.A.H.; Pathak, N.; Roy, N. AugToAct: Scaling complex human activity recognition with few labels. In Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Houston, TX, USA, 12–14 November 2019; pp. 162–171.194. Mutegeki, R.; Han, D.S. A CNN-LSTM approach to human activity recognition. In Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020; pp. 362–366.371922Ambient assisted living—AALHuman activity recognition—HARActivities of daily living—ADLActivity recognition systems—ARSClusteringUnsupervised activity recognitionSupervised learningUnsupervised learningEnsemble learningDeep learningReinforcement learningPublicationORIGINALHuman Activity Recognition Data Analysis.pdfHuman Activity Recognition Data Analysis.pdfapplication/pdf2030726https://repositorio.cuc.edu.co/bitstreams/507d01bf-5115-43b3-bab5-0b11561d2e2b/download6dd2f821d700c1ae339205e06a67c709MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/31f9a117-bb29-4f7f-b4fd-7c5eb20c290a/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTHuman Activity Recognition Data Analysis.pdf.txtHuman Activity Recognition Data Analysis.pdf.txttext/plain128060https://repositorio.cuc.edu.co/bitstreams/4b1a0d24-a22d-4033-865f-d9bb05a32714/downloadab9abfdb148e062520c2034f2ce7bbccMD53THUMBNAILHuman Activity Recognition Data Analysis.pdf.jpgHuman Activity Recognition Data Analysis.pdf.jpgimage/jpeg16287https://repositorio.cuc.edu.co/bitstreams/0bae1630-4af8-421f-a4ca-e9cf9b86f5e2/downloaddd00fe718de953538f5f115d5445f07bMD5411323/9460oai:repositorio.cuc.edu.co:11323/94602024-09-16 16:48:30.018https://creativecommons.org/licenses/by/4.0/© 2022 by the authors. Licensee MDPI, Basel, Switzerland.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |