Evaluation of eleven numerical methods for determining weibull parameters for wind energy generation in the caribbean region of Colombia

The two-parameter Weibull probability density function (PDF) is widely utilized by different researchers and engineers to fit wind speed data for statistical analysis and modeling. The characterization of wind resources in the frequency and probability domain is necessary to estimate the power outpu...

Full description

Autores:
Vega Zuñiga, Samuel
Rueda-Bayona, Juan Gabriel
Ospino C., Adalberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9259
Acceso en línea:
https://hdl.handle.net/11323/9259
https://doi.org/10.18280/mmep.090124
https://repositorio.cuc.edu.co/
Palabra clave:
Weibull parameters
PDF Weibull
Wind speed
Shape
Scale parameters
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_be45caa1d1d5ea2cce8299304999b131
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9259
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Evaluation of eleven numerical methods for determining weibull parameters for wind energy generation in the caribbean region of Colombia
title Evaluation of eleven numerical methods for determining weibull parameters for wind energy generation in the caribbean region of Colombia
spellingShingle Evaluation of eleven numerical methods for determining weibull parameters for wind energy generation in the caribbean region of Colombia
Weibull parameters
PDF Weibull
Wind speed
Shape
Scale parameters
title_short Evaluation of eleven numerical methods for determining weibull parameters for wind energy generation in the caribbean region of Colombia
title_full Evaluation of eleven numerical methods for determining weibull parameters for wind energy generation in the caribbean region of Colombia
title_fullStr Evaluation of eleven numerical methods for determining weibull parameters for wind energy generation in the caribbean region of Colombia
title_full_unstemmed Evaluation of eleven numerical methods for determining weibull parameters for wind energy generation in the caribbean region of Colombia
title_sort Evaluation of eleven numerical methods for determining weibull parameters for wind energy generation in the caribbean region of Colombia
dc.creator.fl_str_mv Vega Zuñiga, Samuel
Rueda-Bayona, Juan Gabriel
Ospino C., Adalberto
dc.contributor.author.spa.fl_str_mv Vega Zuñiga, Samuel
Rueda-Bayona, Juan Gabriel
Ospino C., Adalberto
dc.subject.proposal.eng.fl_str_mv Weibull parameters
PDF Weibull
Wind speed
Shape
Scale parameters
topic Weibull parameters
PDF Weibull
Wind speed
Shape
Scale parameters
description The two-parameter Weibull probability density function (PDF) is widely utilized by different researchers and engineers to fit wind speed data for statistical analysis and modeling. The characterization of wind resources in the frequency and probability domain is necessary to estimate the power output potential of new wind energy projects. Considering that exist a variety of Weibull equations evidenced in the literature review, this article evaluates 11 different methods to calculate the shape and scale parameters of the Weibull PDF. In this sense, it was written an algorithm within a Matlab function that solves the 11 methods for calculating the Weibull PDF parameters. Wind speed data extracted from the ERA5 database was used as input data for applying the proposed algorithm, and statistical parameters such as the Root Mean Square Error (RMSE), the Relative Root Mean Square Error (RRMSE), and chi-square test (X2) we utilized for assessing the performance of each one of the 11 methods for modeling the wind distribution. The statistical results pointed that the numerical iteration methods (e.g. maximum likelihood method) showed better results than parameterized equations such as the Graphical Method, hence, this research recommends the implicit methods for determining Weibull PDF parameters of wind speed data.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-16T14:13:18Z
dc.date.available.none.fl_str_mv 2022-06-16T14:13:18Z
dc.date.issued.none.fl_str_mv 2022-02-28
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Vega-Zuñiga, S., Rueda-Bayona, J.G., Ospino-Castro, A. (2022). Evaluation of eleven numerical methods for determining Weibull parameters for wind energy generation in the Caribbean region of Colombia. Mathematical Modelling of Engineering Problems, Vol. 9, No. 1, pp. 194-199. https://doi.org/10.18280/mmep.090124
dc.identifier.issn.spa.fl_str_mv 2369-0739
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9259
dc.identifier.url.spa.fl_str_mv https://doi.org/10.18280/mmep.090124
dc.identifier.doi.spa.fl_str_mv 10.18280/mmep.090124
dc.identifier.eissn.spa.fl_str_mv 2369-0747
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Vega-Zuñiga, S., Rueda-Bayona, J.G., Ospino-Castro, A. (2022). Evaluation of eleven numerical methods for determining Weibull parameters for wind energy generation in the Caribbean region of Colombia. Mathematical Modelling of Engineering Problems, Vol. 9, No. 1, pp. 194-199. https://doi.org/10.18280/mmep.090124
2369-0739
10.18280/mmep.090124
2369-0747
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9259
https://doi.org/10.18280/mmep.090124
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Mathematical Modelling of Engineering Problems
dc.relation.references.spa.fl_str_mv [1] Carneiro, T.C., Melo, S.P., Carvalho, P.C., Braga, A.P.D.S. (2016). Particle swarm optimization method for estimation of Weibull parameters: A case study for the Brazilian northeast region. Renewable Energy, 86: 751- 759. https://doi.org/10.1016/j.renene.2015.08.060
[2] Pryor, S.C., Barthelmie, R.J., Bukovsky, M.S., Leung, L.R., Sakaguchi, K. (2020). Climate change impacts on wind power generation. Nature Reviews Earth & Environment, 1(12): 627-643. https://doi.org/10.1038/s43017-020-0101-7
[3] Haque, A.U., Mandal, P., Meng, J., Kaye, M.E., Chang, L. (2012). A new strategy for wind speed forecasting using hybrid intelligent models. In 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Montreal, QC, Canada, pp. 1-4. https://doi.org/10.1109/CCECE.2012.6334847
[4] Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N., Jalilvand, M. (2016). Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Conversion and Management, 108: 322-335. https://doi.org/10.1016/j.enconman.2015.11.015
[5] Wais, P. (2017). A review of Weibull functions in wind sector. Renewable and Sustainable Energy Reviews, 70: 1099-1107. https://doi.org/10.1016/j.rser.2016.12.014
[6] Murthy, K.S.R., Rahi, O.P. (2017). A comprehensive review of wind resource assessment. Renewable and Sustainable Energy Reviews, 72: 1320-1342. https://doi.org/10.1016/j.rser.2016.10.038
[7] Guenoukpati, A., Salami, A.A., Kodjo, M.K., Napo, K. (2020). Estimating Weibull parameters for wind energy applications using seven numerical methods: Case studies of three coastal sites in West Africa. International Journal of Renewable Energy Development, 9(2): 217- 226, https://doi.org/10.14710/ijred.9.2.217-226
[8] Masseran, N. (2015). Evaluating wind power density models and their statistical properties. Energy, 84: 533- 541. https://doi.org/10.1016/j.energy.2015.03.018
[9] Chang, T.P. (2011). Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application. Applied Energy, 88(1): 272- 282. https://doi.org/10.1016/j.apenergy.2010.06.018
[10] Rocha, C. (2012). Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil. Appl. Energy, 89: 395-400. https://doi.org/10.1016/j.apenergy.2011.08.003
[11] Arslan, T., Bulut, Y.M., Yavuz, A.A. (2014). Comparative study of numerical methods for determining Weibull parameters for wind energy potential. Renewable and Sustainable Energy Reviews, 40: 820-825. https://doi.org/10.1016/j.rser.2014.08.009
[12] Kapen, P.T., Gouajio, M.J., Yemélé, D. (2020). Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon. Renewable Energy, 159: 1188-1198. https://doi.org/10.1016/j.renene.2020.05.185
[13] Bilir, L., Imir, M., Devrim, Y., Albostan, A. (2015). Seasonal and yearly wind speed distribution and wind power density analysis based on Weibull distribution function. International Journal of Hydrogen Energy, 40(44): 15301-15310. https://doi.org/10.1016/j.ijhydene.2015.04.140
[14] Usta, I. (2016). An innovative estimation method regarding Weibull parameters for wind energy applications. Energy, 106: 301-314. https://doi.org/10.1016/j.energy.2016.03.068
[15] Chaurasiya, P.K., Ahmed, S., Warudkar, V. (2018). Comparative analysis of Weibull parameters for wind data measured from met-mast and remote sensing techniques. Renewable Energy, 115: 1153-1165. 10.1016/j.renene.2017.08.014
[16] Tizgui, I., El Guezar, F., Bouzahir, H., Benaid, B. (2017). Comparison of methods in estimating Weibull parameters for wind energy applications. International Journal of Energy Sector, 11(4): 650-663. https://doi.org/10.1108/IJESM-06-2017-0002
[17] Rueda-Bayona, J.G., Elles Pérez, C.J., Sánchez Cotte, E.H., González Ariza, Á.L., Rivillas Ospina, G.D. (2016). Identificación de patrones de variabilidad climática a partir de análisis de componentes principales, Fourier y clúster k-medias. Tecnura, 20(50): 55-68. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a 04
[18] Rueda-Bayona, J.G. (2017). Identificación de la influencia de las variaciones convectivas en la generación de cargas transitorias y su efecto hidromecánico en las estructuras Offshore. PhD Thesis, Universidad del Norte, Barranquilla, Colombia.
[19] Rueda-Bayona, J.G., Cabello Eras, J.J., Sagastume, A. (2021). Modeling wind speed with a long-term horizon and high-time interval with a hybrid Fourier-neural network model. Mathematical Modelling of Engineering Problems, 8(3): 431-440. https://doi.org/10.18280/mmep.080313
[20] Orimoloye, S., Horrillo-Caraballo, J., Karunarathna, H., Reeve, D.E. (2021). Wave overtopping of smooth impermeable seawalls under unidirectional bimodal sea conditions. Coastal Engineering, 165: 103792. https://doi.org/10.1016/j.coastaleng.2020.103792
dc.relation.citationendpage.spa.fl_str_mv 199
dc.relation.citationstartpage.spa.fl_str_mv 194
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 9
dc.rights.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.coverage.region.none.fl_str_mv Caribbean region
dc.publisher.place.spa.fl_str_mv Canada
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.iieta.org/journals/mmep/paper/10.18280/mmep.090124
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d40e9a5c-f24d-4366-9b43-192888212168/download
https://repositorio.cuc.edu.co/bitstreams/ade7301c-61f4-4781-a2b5-a90fb419467e/download
https://repositorio.cuc.edu.co/bitstreams/0edd336a-203b-4a4f-9966-ac44a9fc228f/download
https://repositorio.cuc.edu.co/bitstreams/c45d04df-53a7-44da-abe8-a3247431996d/download
bitstream.checksum.fl_str_mv f72564033a02540feb9496273b5b1ea8
e30e9215131d99561d40d6b0abbe9bad
6c4f54b0e7524800bf1392140a89556c
265f0b981516774a128ebd17ab7f1106
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760839080804352
spelling Vega Zuñiga, SamuelRueda-Bayona, Juan GabrielOspino C., Adalberto2022-06-16T14:13:18Z2022-06-16T14:13:18Z2022-02-28Vega-Zuñiga, S., Rueda-Bayona, J.G., Ospino-Castro, A. (2022). Evaluation of eleven numerical methods for determining Weibull parameters for wind energy generation in the Caribbean region of Colombia. Mathematical Modelling of Engineering Problems, Vol. 9, No. 1, pp. 194-199. https://doi.org/10.18280/mmep.0901242369-0739https://hdl.handle.net/11323/9259https://doi.org/10.18280/mmep.09012410.18280/mmep.0901242369-0747Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The two-parameter Weibull probability density function (PDF) is widely utilized by different researchers and engineers to fit wind speed data for statistical analysis and modeling. The characterization of wind resources in the frequency and probability domain is necessary to estimate the power output potential of new wind energy projects. Considering that exist a variety of Weibull equations evidenced in the literature review, this article evaluates 11 different methods to calculate the shape and scale parameters of the Weibull PDF. In this sense, it was written an algorithm within a Matlab function that solves the 11 methods for calculating the Weibull PDF parameters. Wind speed data extracted from the ERA5 database was used as input data for applying the proposed algorithm, and statistical parameters such as the Root Mean Square Error (RMSE), the Relative Root Mean Square Error (RRMSE), and chi-square test (X2) we utilized for assessing the performance of each one of the 11 methods for modeling the wind distribution. The statistical results pointed that the numerical iteration methods (e.g. maximum likelihood method) showed better results than parameterized equations such as the Graphical Method, hence, this research recommends the implicit methods for determining Weibull PDF parameters of wind speed data.International Information and Engineering Technology Association6 páginasapplication/pdfengAtribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Evaluation of eleven numerical methods for determining weibull parameters for wind energy generation in the caribbean region of ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.iieta.org/journals/mmep/paper/10.18280/mmep.090124ColombiaCaribbean regionCanadaMathematical Modelling of Engineering Problems[1] Carneiro, T.C., Melo, S.P., Carvalho, P.C., Braga, A.P.D.S. (2016). Particle swarm optimization method for estimation of Weibull parameters: A case study for the Brazilian northeast region. Renewable Energy, 86: 751- 759. https://doi.org/10.1016/j.renene.2015.08.060[2] Pryor, S.C., Barthelmie, R.J., Bukovsky, M.S., Leung, L.R., Sakaguchi, K. (2020). Climate change impacts on wind power generation. Nature Reviews Earth & Environment, 1(12): 627-643. https://doi.org/10.1038/s43017-020-0101-7[3] Haque, A.U., Mandal, P., Meng, J., Kaye, M.E., Chang, L. (2012). A new strategy for wind speed forecasting using hybrid intelligent models. In 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Montreal, QC, Canada, pp. 1-4. https://doi.org/10.1109/CCECE.2012.6334847[4] Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N., Jalilvand, M. (2016). Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Conversion and Management, 108: 322-335. https://doi.org/10.1016/j.enconman.2015.11.015[5] Wais, P. (2017). A review of Weibull functions in wind sector. Renewable and Sustainable Energy Reviews, 70: 1099-1107. https://doi.org/10.1016/j.rser.2016.12.014[6] Murthy, K.S.R., Rahi, O.P. (2017). A comprehensive review of wind resource assessment. Renewable and Sustainable Energy Reviews, 72: 1320-1342. https://doi.org/10.1016/j.rser.2016.10.038[7] Guenoukpati, A., Salami, A.A., Kodjo, M.K., Napo, K. (2020). Estimating Weibull parameters for wind energy applications using seven numerical methods: Case studies of three coastal sites in West Africa. International Journal of Renewable Energy Development, 9(2): 217- 226, https://doi.org/10.14710/ijred.9.2.217-226[8] Masseran, N. (2015). Evaluating wind power density models and their statistical properties. Energy, 84: 533- 541. https://doi.org/10.1016/j.energy.2015.03.018[9] Chang, T.P. (2011). Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application. Applied Energy, 88(1): 272- 282. https://doi.org/10.1016/j.apenergy.2010.06.018[10] Rocha, C. (2012). Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil. Appl. Energy, 89: 395-400. https://doi.org/10.1016/j.apenergy.2011.08.003[11] Arslan, T., Bulut, Y.M., Yavuz, A.A. (2014). Comparative study of numerical methods for determining Weibull parameters for wind energy potential. Renewable and Sustainable Energy Reviews, 40: 820-825. https://doi.org/10.1016/j.rser.2014.08.009[12] Kapen, P.T., Gouajio, M.J., Yemélé, D. (2020). Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon. Renewable Energy, 159: 1188-1198. https://doi.org/10.1016/j.renene.2020.05.185[13] Bilir, L., Imir, M., Devrim, Y., Albostan, A. (2015). Seasonal and yearly wind speed distribution and wind power density analysis based on Weibull distribution function. International Journal of Hydrogen Energy, 40(44): 15301-15310. https://doi.org/10.1016/j.ijhydene.2015.04.140[14] Usta, I. (2016). An innovative estimation method regarding Weibull parameters for wind energy applications. Energy, 106: 301-314. https://doi.org/10.1016/j.energy.2016.03.068[15] Chaurasiya, P.K., Ahmed, S., Warudkar, V. (2018). Comparative analysis of Weibull parameters for wind data measured from met-mast and remote sensing techniques. Renewable Energy, 115: 1153-1165. 10.1016/j.renene.2017.08.014[16] Tizgui, I., El Guezar, F., Bouzahir, H., Benaid, B. (2017). Comparison of methods in estimating Weibull parameters for wind energy applications. International Journal of Energy Sector, 11(4): 650-663. https://doi.org/10.1108/IJESM-06-2017-0002[17] Rueda-Bayona, J.G., Elles Pérez, C.J., Sánchez Cotte, E.H., González Ariza, Á.L., Rivillas Ospina, G.D. (2016). Identificación de patrones de variabilidad climática a partir de análisis de componentes principales, Fourier y clúster k-medias. Tecnura, 20(50): 55-68. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a 04[18] Rueda-Bayona, J.G. (2017). Identificación de la influencia de las variaciones convectivas en la generación de cargas transitorias y su efecto hidromecánico en las estructuras Offshore. PhD Thesis, Universidad del Norte, Barranquilla, Colombia.[19] Rueda-Bayona, J.G., Cabello Eras, J.J., Sagastume, A. (2021). Modeling wind speed with a long-term horizon and high-time interval with a hybrid Fourier-neural network model. Mathematical Modelling of Engineering Problems, 8(3): 431-440. https://doi.org/10.18280/mmep.080313[20] Orimoloye, S., Horrillo-Caraballo, J., Karunarathna, H., Reeve, D.E. (2021). Wave overtopping of smooth impermeable seawalls under unidirectional bimodal sea conditions. Coastal Engineering, 165: 103792. https://doi.org/10.1016/j.coastaleng.2020.10379219919419Weibull parametersPDF WeibullWind speedShapeScale parametersPublicationORIGINALEvaluation of Eleven Numerical Methods.pdfEvaluation of Eleven Numerical Methods.pdfapplication/pdf1488157https://repositorio.cuc.edu.co/bitstreams/d40e9a5c-f24d-4366-9b43-192888212168/downloadf72564033a02540feb9496273b5b1ea8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/ade7301c-61f4-4781-a2b5-a90fb419467e/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTEvaluation of Eleven Numerical Methods.pdf.txtEvaluation of Eleven Numerical Methods.pdf.txttext/plain23828https://repositorio.cuc.edu.co/bitstreams/0edd336a-203b-4a4f-9966-ac44a9fc228f/download6c4f54b0e7524800bf1392140a89556cMD53THUMBNAILEvaluation of Eleven Numerical Methods.pdf.jpgEvaluation of Eleven Numerical Methods.pdf.jpgimage/jpeg16875https://repositorio.cuc.edu.co/bitstreams/c45d04df-53a7-44da-abe8-a3247431996d/download265f0b981516774a128ebd17ab7f1106MD5411323/9259oai:repositorio.cuc.edu.co:11323/92592024-09-17 14:08:39.47https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==