Geo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems
The novel coronavirus, SARS-CoV-2, has the potential to cause natural ventilation systems in hospital environments to be rendered inadequate, not only for workers but also for people who transit through these environments even for a limited duration. Studies in of the fields of geosciences and engin...
- Autores:
-
Zorzi, Carla Gabriela Carlot
Neckel, Alcindo
Stolfo Maculan, Laércio
Tibério Cardoso, Grace
Dal Moro, Leila
Almeida Del Savio, Alexandre
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9192
- Acceso en línea:
- https://hdl.handle.net/11323/9192
https://doi.org/10.1016/j.gsf.2021.101279
https://repositorio.cuc.edu.co/
- Palabra clave:
- COVID-19 global epidemic
Dimensional analysis
Wind velocity
Hospital environment
Contamination
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_bdbc2dc774827376f3c10f09b53072bc |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9192 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Geo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems |
title |
Geo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems |
spellingShingle |
Geo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems COVID-19 global epidemic Dimensional analysis Wind velocity Hospital environment Contamination |
title_short |
Geo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems |
title_full |
Geo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems |
title_fullStr |
Geo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems |
title_full_unstemmed |
Geo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems |
title_sort |
Geo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems |
dc.creator.fl_str_mv |
Zorzi, Carla Gabriela Carlot Neckel, Alcindo Stolfo Maculan, Laércio Tibério Cardoso, Grace Dal Moro, Leila Almeida Del Savio, Alexandre |
dc.contributor.author.spa.fl_str_mv |
Zorzi, Carla Gabriela Carlot Neckel, Alcindo Stolfo Maculan, Laércio Tibério Cardoso, Grace Dal Moro, Leila Almeida Del Savio, Alexandre |
dc.subject.proposal.eng.fl_str_mv |
COVID-19 global epidemic Dimensional analysis Wind velocity Hospital environment Contamination |
topic |
COVID-19 global epidemic Dimensional analysis Wind velocity Hospital environment Contamination |
description |
The novel coronavirus, SARS-CoV-2, has the potential to cause natural ventilation systems in hospital environments to be rendered inadequate, not only for workers but also for people who transit through these environments even for a limited duration. Studies in of the fields of geosciences and engineering, when combined with appropriate technologies, allow for the possibility of reducing the impacts of the SARS-CoV-2 virus in the environment, including those of hospitals which are critical centers for healthcare. In this work, we build parametric 3D models to assess the possible circulation of the SARS-CoV-2 virus in the natural ventilation system of a hospital built to care infected patients during the COVID-19 pandemic. Building Information Modeling (BIM) was performed, generating 3D models of hospital environments utilizing Revit software for Autodesk CFD 2021. The evaluation considered dimensional analyses of 0°, 45°, 90° and 180°. The analysis of natural ventilation patterns on both internal and external surfaces and the distribution of windows in relation to the displacement dynamics of the SARS-CoV-2 virus through the air were considered. The results showed that in the external area of the hospital, the wind speed reached velocities up to 2.1 m/s when entering the building through open windows. In contact with the furniture, this value decreased to 0.78 m/s. In some internal isolation wards that house patients with COVID-19, areas that should be equipped with negative room pressure, air velocity was null. Our study provides insights into the possibility of SARS-CoV-2 contamination in internal hospital environments as well as external areas surrounding hospitals, both of which encounter high pedestrian traffic in cities worldwide. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-05-25T22:23:59Z |
dc.date.available.none.fl_str_mv |
2022-05-25T22:23:59Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1674-9871 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9192 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.gsf.2021.101279 |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.gsf.2021.101279 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1674-9871 10.1016/j.gsf.2021.101279 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9192 https://doi.org/10.1016/j.gsf.2021.101279 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Geoscience Frontiers |
dc.relation.references.spa.fl_str_mv |
Abrahão et al., 2021 J.S. Abrahão, L. Sacchetto, I.M. Rezende, R.A.L. Rodrigues, A.P.C. Crispim, C. Moura, D.C. Mendonça, E. Reis, F. Souza, G.F.G. Oliveira Detection of SARS-CoV-2 RNA on public surfaces in a densely populated urban area of Brazil: a potential tool for monitoring the circulation of infected patients Sci. Total Environ., 766 (2021), Article 142645 Aghalari et al., 2021 Z. Aghalari, H.U. Dahms, J.E. Sosa-Hernandez, M.A. Oyervides-Muñoz, R. Parra-Saldívar Evaluation of SARS-COV-2 transmission through indoor air in hospitals and prevention methods: a systematic review Environ. Res., 195 (2021), Article 110841 Ahmed et al., 2021 T. Ahmed, P. Kumar, L. Mottet Natural ventilation in warm climates: the challenges of thermal comfort, heatwave resilience and indoor air quality Renew. Sustain. Energy Rev., 138 (2021), Article 110669 Autodesk CFD, 2021 Autodesk CFD, 2021. Turbulence. Autodesk CFD 2021. Turbulent (the default) to simulate turbulent flow. https://help.autodesk.com/view/SCDSE/2021/ENU/?guid=GUID-E9E8ACA1-8D49-4A49-8A35-52DB1A2C3E5F. Aviv et al., 2021 D. Aviv, K.W. Chen, E. Teitelbaum, D. Sheppard, J. Pantelic, A. Rysanek, F. Meggers A fresh (air) look at ventilation for COVID-19: estimating the global energy savings potential of coupling natural ventilation with novel radiant cooling strategies Appl. Energy, 292 (2021), Article 116848 Barker and Jones, 2005 J. Barker, M.V. Jones The potential spread of infection caused by aerosol contamination of surfaces after flushing a domestic toilet J. Appl. Microbiol., 99 (2005), pp. 339-347 Blocken, 2018 B. Blocken LES over RANS in building simulation for outdoor and indoor applications: a foregone conclusion? Build. Simul., 11 (2018), pp. 821-870 Cai et al., 2020 W. Cai, J.Y. Zhao, M. Zhu A real time methodology of cluster-system theory-based reliability estimation using k-means clustering Reliab. Eng. Syst. Saf., 202 (2020), Article 107045 Calautit et al., 2020 J.K. Calautit, D. O’Connor, P.W. Tien, S.Y. Wei, C.A.J. Pantua, B. Hughes Development of a natural ventilation windcatcher with passive heat recovery wheel for mild-cold climates: CFD and experimental analysis Renew. Energy, 160 (2020), pp. 465-482 Cao et al., 2021 Y.X. Cao, L.Y. Shao, T. Jones, M.L.S. Oliveira, S. Ge, X. Feng, L.F.O. Silva, K. Bérubé Multiple relationships between aerosol and COVID-19: a framework for global studies Gondwana Res., 93 (2021), pp. 243-251 Carraturo et al., 2020 F. Carraturo, C.D. Giudice, M. Morelli, V. Cerullo, G. Libralato, E. Galdiero, M. Guida Persistence of SARS-CoV-2 in the environment and COVID-19 transmission risk from environmental matrices and surfaces Environ. Pollut., 265 (2020), Article 115010 Chen et al., 2019 J.L. Chen, G.S. Brager, G. Augenbroe, X.Y. Song Impact of outdoor air quality on the natural ventilation usage of commercial buildings in the US Appl. Energy, 235 (2019), pp. 673-684 Chen et al., 2021 L.K. Chen, R.P. Yuan, X.J. Ji, X.Y. Lu, J. Xiao, J.B. Tao, X. Kang, X. Li, Z.H. He, S. Quan Modular composite building in urgent emergency engineering projects: a case study of accelerated design and construction of Wuhan thunder god mountain/Leishenshan Hospital to covid-19 pandemic Autom. Constr., 124 (2021), Article 103555 Cui et al., 2021 P.Y. Cui, Y. Zhang, W.Q. Chen, J.H. Zhang, Y. Luo, Y.D. Huang Wind-tunnel studies on the characteristics of indoor/outdoor airflow and pollutant exchange in a building cluster J. Wind. Eng. Ind. Aerodyn., 214 (2021), Article 104645 Das et al., 2016 S. Das, N.G. Deen, J.A.M. Kuipers Direct numerical simulation for flow and heat transfer through random open-cell solid foams: development of an IBM based CFD model Catal. Today, 273 (2016), pp. 140-150 Gatheeshgar et al., 2021 P. Gatheeshgar, K. Poologanathan, S. Gunalan, I. Shyha, P. Sherlock, H. Rajanayagam, B. Nagaratnam Development of affordable steel-framed modular buildings for emergency situations (Covid-19) Structure, 31 (2021), pp. 862-875 Gottesman et al., 2021 T. Gottesman, R. Fedorowsky, R. Yerushalmi, J. Lellouche, A. Nutman An outbreak of carbapenem-resistant Acinetobacter baumannii in a COVID-19 dedicated hospital J. Infect. Prev. Pract., 3 (1) (2021), Article 100113 Hadei et al., 2021 M. Hadei, S.R. Mohebbi, P.K. Hopke, A. Shahsavani, S. Bazzazpour, M. Alipour, A.J. Jafari, A.M. Bandpey, A. Zali, M. Yarahmadi Presence of SARS-CoV-2 in the air of public places and transportation Atmos. Pollut. Res., 12 (3) (2021), pp. 302-306 Hirose et al., 2021 C. Hirose, N. Ikegaya, A. Hagishima, J. Tanimoto Indoor airflow and thermal comfort in a cross-ventilated building within an urban-like block array using large-eddy simulations Build. Environ., 196 (2021), Article 107811 Ibge, 2021 Ibge (Brazilian Institute of Geography and Statistics), 2021. Brazilian Institute of Geography and Statistics. Demographic Data of 2021 - Brazil. https://cidades.ibge.gov.br/. INMET, 2016 INMET (Brazilian Institute of Meteorology). 2016. Climate archives. http://www.mme.gov.br/projeteee/dados-climaticos/. Jansi et al., 2021 R.S. Jansi, A. Khusro, P. Agastian, A. Alfarhan, N.A. Al-Dhabi, M.V. Arasu, R. Rajagopal, D. Barcelo, A. Al-Tamimi Emerging paradigms of viral diseases and paramount role of natural resources as antiviral agents Sci. Total Environ., 759 (2021), Article 143539 Jing et al., 2021 J.K. Jing, S.Z. Ke, T.J. Li, T. Wang Energy method of geophysical logging lithology based on K-means dynamic clustering analysis Environ. Technol. Innov., 23 (2021), Article 101534 Johansson and Wasim, 2020 E. Johansson, M. Wasim Wind comfort and solar access in a coastal development in Malmö, Sweden Urban Clim., 33 (2020), Article 100645 Kenarkoohi et al., 2020 A. Kenarkoohi, Z. Noorimotlagh, S. Falahi, A. Amarloei, S.A. Mirzaee, I. Pakzad, E. Bastani Hospital indoor air quality monitoring for the detection of SARS-CoV-2 (COVID-19) virus Sci. Total Environ., 748 (2020), Article 141324 Kim et al., 2020 R.W. Kim, S.W. Hong, T. Norton, T. Amon, A. Youssef, D. Berckmans, I.B. Lee Computational fluid dynamics for non-experts: development of a user-friendly CFD simulator (Hnvr-Sys) for natural ventilation design applications Biosyst. Eng., 193 (2020), pp. 232-246 Kristianto et al., 2014 M.A. Kristianto, N.A. Utama, A.M. Fathoni Analyzing indoor environment of Minahasa Traditional House Using CFD Procedia Environ. Sci., 20 (2014), pp. 172-179 Lane et al., 2020 M.A. Lane, E.A. Brownsword, J.S. Morgan, A. Babiker, S.A. Vanairsdale, G.M. Lyon, A.K. Mehta, J.M. Ingersoll, W.G. Lindsley, C.S. Kraft Bioaerosol sampling of a ventilated patient with COVID-19 Am. J. Infect. Control, 48 (12) (2020), pp. 1540-1542 Li and Chen, 2020 Y. Li, L. Chen A study on database of modular façade retrofitting building envelope Energy Build., 214 (2020), Article 109826 Liu and Lee, 2020 T. Liu, W.L. Lee Evaluating the influence of transom window designs on natural ventilation in high-rise residential buildings in Hong Kong Sustain. Cities Soc., 62 (2020), Article 102406 López et al., 2021 J.H. López, Á.S. Romo, D.C. Molina, G.Á. Hernández, Á.B.G. Cureño, M.A. Acosta, C.A.A. Gaxiola, M.J.S. Félix, T.G. Galván Detection of Sars-Cov-2 in the air of two hospitals in Hermosillo, Sonora, México, utilizing a low-cost environmental monitoring system J. Glob. Infect. Dis., 102 (2021), pp. 478-482 Lou et al., 2020 L. Lou, D.H. Shou, H. Park, D.L. Zhao, Y.S. Wu, X.N. Hui, R.G. Yang, E.C. Kan, J.T. Fan Thermoelectric air conditioning undergarment for personal thermal management and HVAC energy saving Energy Build., 226 (2020), Article 110374 Ly and Cornelisse, 2019 Ly, A., Cornelisse, J., 2019. How to train a machine learning model in Jasp: Clustering. https://jasp-stats.org/2019/11/19/how-to-train-a-machine-learning-model-in-jasp-clustering/. Maroni et al., 2021 D. Maroni, G.T. Cardoso, A. Neckel, L.S. Maculan, M.L.S. Oliveira, E.T. Bodah, B.W. Bodah, M. Santosh Land surface temperature and vegetation index as a proxy to microclimate J. Environ. Chem. Eng., 9 (4) (2021), Article 105796 Matour et al., 2021 S. Matour, V. Garcia-Hansen, S. Omrani, S. Hassanli, R. Drogemuller Wind-driven ventilation of Double Skin Façades with vertical openings: effects of opening configurations Build. Environ., 196 (2021), Article 107804 Meteoblue, 2021 Meteoblue, 2021. Wind rose of Porto Alegre. https://www.meteoblue.com/es/tiempo/archive/windrose/. Mora-Pérez et al., 2015 M. Mora-Pérez, I. Guillén-Guillamón, P.A. López-Jiménez Computational analysis of wind interactions for comparing different buildings sites in terms of natural ventilation Adv. Eng. Softw., 88 (2015), pp. 73-82 Mousa et al., 2017 W.A.Y. Mousa, W. Lang, T. Auer, W.A. Yousef A pattern recognition approach for modeling the air change rates in naturally ventilated buildings from limited steady-state CFD simulations Energy Build., 155 (2017), pp. 54-65 Nalamwar et al., 2017 M. Nalamwar, D. Parbat, D. Singh Study of effect of windows location on ventilation by CFD Simulation Int. J. Civ. Eng. Technol., 8 (7) (2017), pp. 521-531 Neckel et al., 2021 A. Neckel, C. Korcelski, H.A. Kujawa, I.S.da. Silva, F. Prezoto, A.L.W. Amorin, L.S. Maculan, A.C. Gonçalves, E.T. Bodah, B.W. Bodah Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability Chemosphere, 262 (2021), Article 128248 Noorimotlagh et al., 2021 Z. Noorimotlagh, N. Jaafarzadeh, S.S. Martínez, S.A. Mirzaee A systematic review of possible airborne transmission of the COVID-19 virus (SARS-CoV-2) in the indoor air environment Environ. Res., 193 (2021), Article 110612 Oliveira et al., 2021 M.L.S. Oliveira, A. Neckel, D. Pinto, L.S. Maculan, M.R.D. Zanchett, L.F.O. Silva Air pollutants and their degradation of a historic building in the largest metropolitan area in Latin America Chemosphere, 277 (2021), Article 130286 Perondi et al., 2020 B. Perondi, A. Miethke-Morais, A.C. Montal, L. Harima, A.C. Segurado Setting up hospital care provision to patients with COVID-19: lessons learnt at a 2400-bed academic tertiary center in São Paulo, Brazil Braz. J. Infect. Dis., 24 (6) (2020), pp. 570-574 Porras-Amores et al., 2019 C. Porras-Amores, F.R. Mazarrón, I. Cañas, P.V. Sáez Natural ventilation analysis in an underground construction: CFD simulation and experimental validation Tunn. Undergr. Space Technol., 90 (2019), pp. 162-173 Raczkowski et al., 2019 A. Raczkowski, Z. Suchorab, P. Brzyski Computational fluid dynamics simulation of thermal comfort in naturally ventilated room MATEC Web Conf., 252 (2019), p. 04007 Robotto et al., 2021 A. Robotto, P. Quaglino, D. Lembo, M. Morello, E. Brizio, L. Bardi, A. Civra SARS-CoV-2 and indoor/outdoor air samples: a methodological approach to have consistent and comparable results Environ. Res., 195 (2021), Article 110847 Ryu et al., 2020 B.H. Ryu, Y. Cho, O.H. Cho, S.I. Hong, S. Kim, S. Lee Environmental contamination of SARS-CoV-2 during the COVID-19 outbreak in South Korea Am. J. Infect. Control, 48 (8) (2020), pp. 875-879 Shao et al., 2021 L. Shao, S. Ge, T. Jones, M. Santosh, L.F.O. Silva, Y.X. Cao, M.L.S. Oliveira, M. Zhang, K. Bérubé The role of airborne particles and environmental considerations in the transmission of SARS-CoV-2 Geosci. Front., 12 (2021), Article 101189 Silva et al., 2020 L.F.O. Silva, D. Pinto, A. Neckel, G.L. Dotto, M.L.S. Oliveira The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil Chemosphere, 251 (2020), Article 126838 Silva et al., 2021 L.F. Silva, M. Santosh, M. Schindler, J. Gasparotto, G.L. Dotto, M.L. Oliveira, M.F. Hochella Jr Nanoparticles in fossil and mineral fuel sectors and their impact on environment and human health: a review and perspective Gondwana Res., 82 (2021), pp. 184-201 Stavroulakis et al., 2020 P.J. Stavroulakis, S. Papadimitriou, V. Tsioumas, I.G. Koliousis, E. Riza, F. Tsirikou Exploratory spatial analysis of maritime clusters Mar. Policy, 120 (2020), Article 104125 Tung et al., 2010 Y.C. Tung, Y.C. Shih, S.C. Hu, Y.L. Chang Experimental performance investigation of ventilation schemes in a private bathroom Build. Environ., 45 (1) (2010), pp. 243-251 Ueda et al., 2020 R.M. Ueda, A.M. Souza, R.M.C.P. Menezes How macroeconomic variables affect admission and dismissal in the Brazilian electro-electronic sector: a var-based model and cluster analysis Phys. A: Stat. Mech. Appl., 557 (2020), Article 124872 Utkucu and Sözer, 2020 D. Utkucu, H. Sözer An evaluation process for natural ventilation using a scenario-based multi-criteria and multi-interaction analysis Energy Rep., 6 (2020), pp. 644-661 Vandercam et al., 2020 G. Vandercam, A. Simon, A. Scohy, L. Belkhir, B. Kabamba, H. Rodriguez-Villalobos, J.C. Yombi Clinical characteristics and humoral immune response in healthcare workers with COVID-19 in a teaching hospital in Belgium J. Hosp. Infect., 106 (4) (2020), pp. 713-720 Vassella et al., 2021 C.C. Vassella, J. Koch, A. Henzi, A. Jordan, R. Waeber, R. Iannaccone, R. Charrière From spontaneous to strategic natural window ventilation: improving indoor air quality in swiss schools Int. J. Hyg. Environ. Health, 234 (2021), Article 113746 Wang et al., 2021 Z.F. Wang, Y.Z. Wang, Z.W. Yang, H.K. Wu, J.Y. Liang, H.W. Liang, H.M. Lin, R.C. Chen, Y.E. Ou, F.Y. Wang, Y. Wang, Y. Wang, W.Z. Luo, N.J. Li, Z.T. Li, J.X. Xie, M. Jiang, S.Y. Li The use of non-invasive ventilation in COVID-19: a systematic review J. Glob. Infect. Dis., 106 (2021), pp. 254-261 WHO, 2021 WHO (World Health Organization), 2021. WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int/. Xu et al., 2021 F. Xu, S.Z. Xu, U. Passe, B. Ganapathysubramanian Computational study of natural ventilation in a sustainable building with complex geometry Sustain. Energy Technol. Assess., 45 (2021), Article 101153 Yang and Chong, 2021 S.S. Yang, Z.H. Chong Smart city projects against COVID-19: quantitative evidence from china Sustain. Cities Soc., 70 (2021), Article 102897 Zhang et al., 2021 Zhang, Y.Y., Wang, H.J., Lv, Dong, X., Zhang, P., 2021. Capturing the grouping and compactness of high-level semantic feature for saliency detection. Neural Netw. 142, 351-362 Zhou et al., 2020 S.G. Zhou, K.F. Zhou, J.L. Wang Geochemical metallogenic potential based on cluster analysis: a new method to extract valuable information for mineral exploration from geochemical data J. Appl. Geochem., 122 (2020), Article 104748 |
dc.relation.citationendpage.spa.fl_str_mv |
13 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
13 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
China University of Geosciences (Beijing) and Peking University |
dc.publisher.place.spa.fl_str_mv |
China |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1674987121001432 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/79f43a93-7cee-45ef-b85c-617ef9b5796b/download https://repositorio.cuc.edu.co/bitstreams/79b3b707-91a4-4a09-859d-5bb601819593/download https://repositorio.cuc.edu.co/bitstreams/ccc0ebd3-b472-4190-83c8-a858ff77e0e2/download https://repositorio.cuc.edu.co/bitstreams/1bdb7c6d-ea24-476e-bbe3-e5bd9190212b/download |
bitstream.checksum.fl_str_mv |
c6094b52eccd1e5d9aed38db7f0f09d8 e30e9215131d99561d40d6b0abbe9bad cd75f64be6d4bfbe16314f36540fdcb3 b3c47481d3281a3cd65c14f281c8cbd6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1831932020348944384 |
spelling |
Zorzi, Carla Gabriela CarlotNeckel, AlcindoStolfo Maculan, LaércioTibério Cardoso, GraceDal Moro, Leila Almeida Del Savio, Alexandre2022-05-25T22:23:59Z2022-05-25T22:23:59Z20211674-9871https://hdl.handle.net/11323/9192https://doi.org/10.1016/j.gsf.2021.10127910.1016/j.gsf.2021.101279Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The novel coronavirus, SARS-CoV-2, has the potential to cause natural ventilation systems in hospital environments to be rendered inadequate, not only for workers but also for people who transit through these environments even for a limited duration. Studies in of the fields of geosciences and engineering, when combined with appropriate technologies, allow for the possibility of reducing the impacts of the SARS-CoV-2 virus in the environment, including those of hospitals which are critical centers for healthcare. In this work, we build parametric 3D models to assess the possible circulation of the SARS-CoV-2 virus in the natural ventilation system of a hospital built to care infected patients during the COVID-19 pandemic. Building Information Modeling (BIM) was performed, generating 3D models of hospital environments utilizing Revit software for Autodesk CFD 2021. The evaluation considered dimensional analyses of 0°, 45°, 90° and 180°. The analysis of natural ventilation patterns on both internal and external surfaces and the distribution of windows in relation to the displacement dynamics of the SARS-CoV-2 virus through the air were considered. The results showed that in the external area of the hospital, the wind speed reached velocities up to 2.1 m/s when entering the building through open windows. In contact with the furniture, this value decreased to 0.78 m/s. In some internal isolation wards that house patients with COVID-19, areas that should be equipped with negative room pressure, air velocity was null. Our study provides insights into the possibility of SARS-CoV-2 contamination in internal hospital environments as well as external areas surrounding hospitals, both of which encounter high pedestrian traffic in cities worldwide.13 páginasapplication/pdfengChina University of Geosciences (Beijing) and Peking UniversityChinaAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Geo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systemsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.sciencedirect.com/science/article/pii/S1674987121001432Geoscience FrontiersAbrahão et al., 2021 J.S. Abrahão, L. Sacchetto, I.M. Rezende, R.A.L. Rodrigues, A.P.C. Crispim, C. Moura, D.C. Mendonça, E. Reis, F. Souza, G.F.G. Oliveira Detection of SARS-CoV-2 RNA on public surfaces in a densely populated urban area of Brazil: a potential tool for monitoring the circulation of infected patients Sci. Total Environ., 766 (2021), Article 142645Aghalari et al., 2021 Z. Aghalari, H.U. Dahms, J.E. Sosa-Hernandez, M.A. Oyervides-Muñoz, R. Parra-Saldívar Evaluation of SARS-COV-2 transmission through indoor air in hospitals and prevention methods: a systematic review Environ. Res., 195 (2021), Article 110841Ahmed et al., 2021 T. Ahmed, P. Kumar, L. Mottet Natural ventilation in warm climates: the challenges of thermal comfort, heatwave resilience and indoor air quality Renew. Sustain. Energy Rev., 138 (2021), Article 110669Autodesk CFD, 2021 Autodesk CFD, 2021. Turbulence. Autodesk CFD 2021. Turbulent (the default) to simulate turbulent flow. https://help.autodesk.com/view/SCDSE/2021/ENU/?guid=GUID-E9E8ACA1-8D49-4A49-8A35-52DB1A2C3E5F.Aviv et al., 2021 D. Aviv, K.W. Chen, E. Teitelbaum, D. Sheppard, J. Pantelic, A. Rysanek, F. Meggers A fresh (air) look at ventilation for COVID-19: estimating the global energy savings potential of coupling natural ventilation with novel radiant cooling strategies Appl. Energy, 292 (2021), Article 116848Barker and Jones, 2005 J. Barker, M.V. Jones The potential spread of infection caused by aerosol contamination of surfaces after flushing a domestic toilet J. Appl. Microbiol., 99 (2005), pp. 339-347Blocken, 2018 B. Blocken LES over RANS in building simulation for outdoor and indoor applications: a foregone conclusion? Build. Simul., 11 (2018), pp. 821-870Cai et al., 2020 W. Cai, J.Y. Zhao, M. Zhu A real time methodology of cluster-system theory-based reliability estimation using k-means clustering Reliab. Eng. Syst. Saf., 202 (2020), Article 107045Calautit et al., 2020 J.K. Calautit, D. O’Connor, P.W. Tien, S.Y. Wei, C.A.J. Pantua, B. Hughes Development of a natural ventilation windcatcher with passive heat recovery wheel for mild-cold climates: CFD and experimental analysis Renew. Energy, 160 (2020), pp. 465-482Cao et al., 2021 Y.X. Cao, L.Y. Shao, T. Jones, M.L.S. Oliveira, S. Ge, X. Feng, L.F.O. Silva, K. Bérubé Multiple relationships between aerosol and COVID-19: a framework for global studies Gondwana Res., 93 (2021), pp. 243-251Carraturo et al., 2020 F. Carraturo, C.D. Giudice, M. Morelli, V. Cerullo, G. Libralato, E. Galdiero, M. Guida Persistence of SARS-CoV-2 in the environment and COVID-19 transmission risk from environmental matrices and surfaces Environ. Pollut., 265 (2020), Article 115010Chen et al., 2019 J.L. Chen, G.S. Brager, G. Augenbroe, X.Y. Song Impact of outdoor air quality on the natural ventilation usage of commercial buildings in the US Appl. Energy, 235 (2019), pp. 673-684Chen et al., 2021 L.K. Chen, R.P. Yuan, X.J. Ji, X.Y. Lu, J. Xiao, J.B. Tao, X. Kang, X. Li, Z.H. He, S. Quan Modular composite building in urgent emergency engineering projects: a case study of accelerated design and construction of Wuhan thunder god mountain/Leishenshan Hospital to covid-19 pandemic Autom. Constr., 124 (2021), Article 103555Cui et al., 2021 P.Y. Cui, Y. Zhang, W.Q. Chen, J.H. Zhang, Y. Luo, Y.D. Huang Wind-tunnel studies on the characteristics of indoor/outdoor airflow and pollutant exchange in a building cluster J. Wind. Eng. Ind. Aerodyn., 214 (2021), Article 104645Das et al., 2016 S. Das, N.G. Deen, J.A.M. Kuipers Direct numerical simulation for flow and heat transfer through random open-cell solid foams: development of an IBM based CFD model Catal. Today, 273 (2016), pp. 140-150Gatheeshgar et al., 2021 P. Gatheeshgar, K. Poologanathan, S. Gunalan, I. Shyha, P. Sherlock, H. Rajanayagam, B. Nagaratnam Development of affordable steel-framed modular buildings for emergency situations (Covid-19) Structure, 31 (2021), pp. 862-875Gottesman et al., 2021 T. Gottesman, R. Fedorowsky, R. Yerushalmi, J. Lellouche, A. Nutman An outbreak of carbapenem-resistant Acinetobacter baumannii in a COVID-19 dedicated hospital J. Infect. Prev. Pract., 3 (1) (2021), Article 100113Hadei et al., 2021 M. Hadei, S.R. Mohebbi, P.K. Hopke, A. Shahsavani, S. Bazzazpour, M. Alipour, A.J. Jafari, A.M. Bandpey, A. Zali, M. Yarahmadi Presence of SARS-CoV-2 in the air of public places and transportation Atmos. Pollut. Res., 12 (3) (2021), pp. 302-306Hirose et al., 2021 C. Hirose, N. Ikegaya, A. Hagishima, J. Tanimoto Indoor airflow and thermal comfort in a cross-ventilated building within an urban-like block array using large-eddy simulations Build. Environ., 196 (2021), Article 107811Ibge, 2021 Ibge (Brazilian Institute of Geography and Statistics), 2021. Brazilian Institute of Geography and Statistics. Demographic Data of 2021 - Brazil. https://cidades.ibge.gov.br/.INMET, 2016 INMET (Brazilian Institute of Meteorology). 2016. Climate archives. http://www.mme.gov.br/projeteee/dados-climaticos/.Jansi et al., 2021 R.S. Jansi, A. Khusro, P. Agastian, A. Alfarhan, N.A. Al-Dhabi, M.V. Arasu, R. Rajagopal, D. Barcelo, A. Al-Tamimi Emerging paradigms of viral diseases and paramount role of natural resources as antiviral agents Sci. Total Environ., 759 (2021), Article 143539Jing et al., 2021 J.K. Jing, S.Z. Ke, T.J. Li, T. Wang Energy method of geophysical logging lithology based on K-means dynamic clustering analysis Environ. Technol. Innov., 23 (2021), Article 101534Johansson and Wasim, 2020 E. Johansson, M. Wasim Wind comfort and solar access in a coastal development in Malmö, Sweden Urban Clim., 33 (2020), Article 100645Kenarkoohi et al., 2020 A. Kenarkoohi, Z. Noorimotlagh, S. Falahi, A. Amarloei, S.A. Mirzaee, I. Pakzad, E. Bastani Hospital indoor air quality monitoring for the detection of SARS-CoV-2 (COVID-19) virus Sci. Total Environ., 748 (2020), Article 141324Kim et al., 2020 R.W. Kim, S.W. Hong, T. Norton, T. Amon, A. Youssef, D. Berckmans, I.B. Lee Computational fluid dynamics for non-experts: development of a user-friendly CFD simulator (Hnvr-Sys) for natural ventilation design applications Biosyst. Eng., 193 (2020), pp. 232-246Kristianto et al., 2014 M.A. Kristianto, N.A. Utama, A.M. Fathoni Analyzing indoor environment of Minahasa Traditional House Using CFD Procedia Environ. Sci., 20 (2014), pp. 172-179Lane et al., 2020 M.A. Lane, E.A. Brownsword, J.S. Morgan, A. Babiker, S.A. Vanairsdale, G.M. Lyon, A.K. Mehta, J.M. Ingersoll, W.G. Lindsley, C.S. Kraft Bioaerosol sampling of a ventilated patient with COVID-19 Am. J. Infect. Control, 48 (12) (2020), pp. 1540-1542Li and Chen, 2020 Y. Li, L. Chen A study on database of modular façade retrofitting building envelope Energy Build., 214 (2020), Article 109826Liu and Lee, 2020 T. Liu, W.L. Lee Evaluating the influence of transom window designs on natural ventilation in high-rise residential buildings in Hong Kong Sustain. Cities Soc., 62 (2020), Article 102406López et al., 2021 J.H. López, Á.S. Romo, D.C. Molina, G.Á. Hernández, Á.B.G. Cureño, M.A. Acosta, C.A.A. Gaxiola, M.J.S. Félix, T.G. Galván Detection of Sars-Cov-2 in the air of two hospitals in Hermosillo, Sonora, México, utilizing a low-cost environmental monitoring system J. Glob. Infect. Dis., 102 (2021), pp. 478-482Lou et al., 2020 L. Lou, D.H. Shou, H. Park, D.L. Zhao, Y.S. Wu, X.N. Hui, R.G. Yang, E.C. Kan, J.T. Fan Thermoelectric air conditioning undergarment for personal thermal management and HVAC energy saving Energy Build., 226 (2020), Article 110374Ly and Cornelisse, 2019 Ly, A., Cornelisse, J., 2019. How to train a machine learning model in Jasp: Clustering. https://jasp-stats.org/2019/11/19/how-to-train-a-machine-learning-model-in-jasp-clustering/.Maroni et al., 2021 D. Maroni, G.T. Cardoso, A. Neckel, L.S. Maculan, M.L.S. Oliveira, E.T. Bodah, B.W. Bodah, M. Santosh Land surface temperature and vegetation index as a proxy to microclimate J. Environ. Chem. Eng., 9 (4) (2021), Article 105796Matour et al., 2021 S. Matour, V. Garcia-Hansen, S. Omrani, S. Hassanli, R. Drogemuller Wind-driven ventilation of Double Skin Façades with vertical openings: effects of opening configurations Build. Environ., 196 (2021), Article 107804Meteoblue, 2021 Meteoblue, 2021. Wind rose of Porto Alegre. https://www.meteoblue.com/es/tiempo/archive/windrose/.Mora-Pérez et al., 2015 M. Mora-Pérez, I. Guillén-Guillamón, P.A. López-Jiménez Computational analysis of wind interactions for comparing different buildings sites in terms of natural ventilation Adv. Eng. Softw., 88 (2015), pp. 73-82Mousa et al., 2017 W.A.Y. Mousa, W. Lang, T. Auer, W.A. Yousef A pattern recognition approach for modeling the air change rates in naturally ventilated buildings from limited steady-state CFD simulations Energy Build., 155 (2017), pp. 54-65Nalamwar et al., 2017 M. Nalamwar, D. Parbat, D. Singh Study of effect of windows location on ventilation by CFD Simulation Int. J. Civ. Eng. Technol., 8 (7) (2017), pp. 521-531Neckel et al., 2021 A. Neckel, C. Korcelski, H.A. Kujawa, I.S.da. Silva, F. Prezoto, A.L.W. Amorin, L.S. Maculan, A.C. Gonçalves, E.T. Bodah, B.W. Bodah Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability Chemosphere, 262 (2021), Article 128248Noorimotlagh et al., 2021 Z. Noorimotlagh, N. Jaafarzadeh, S.S. Martínez, S.A. Mirzaee A systematic review of possible airborne transmission of the COVID-19 virus (SARS-CoV-2) in the indoor air environment Environ. Res., 193 (2021), Article 110612Oliveira et al., 2021 M.L.S. Oliveira, A. Neckel, D. Pinto, L.S. Maculan, M.R.D. Zanchett, L.F.O. Silva Air pollutants and their degradation of a historic building in the largest metropolitan area in Latin America Chemosphere, 277 (2021), Article 130286Perondi et al., 2020 B. Perondi, A. Miethke-Morais, A.C. Montal, L. Harima, A.C. Segurado Setting up hospital care provision to patients with COVID-19: lessons learnt at a 2400-bed academic tertiary center in São Paulo, Brazil Braz. J. Infect. Dis., 24 (6) (2020), pp. 570-574Porras-Amores et al., 2019 C. Porras-Amores, F.R. Mazarrón, I. Cañas, P.V. Sáez Natural ventilation analysis in an underground construction: CFD simulation and experimental validation Tunn. Undergr. Space Technol., 90 (2019), pp. 162-173Raczkowski et al., 2019 A. Raczkowski, Z. Suchorab, P. Brzyski Computational fluid dynamics simulation of thermal comfort in naturally ventilated room MATEC Web Conf., 252 (2019), p. 04007Robotto et al., 2021 A. Robotto, P. Quaglino, D. Lembo, M. Morello, E. Brizio, L. Bardi, A. Civra SARS-CoV-2 and indoor/outdoor air samples: a methodological approach to have consistent and comparable results Environ. Res., 195 (2021), Article 110847Ryu et al., 2020 B.H. Ryu, Y. Cho, O.H. Cho, S.I. Hong, S. Kim, S. Lee Environmental contamination of SARS-CoV-2 during the COVID-19 outbreak in South Korea Am. J. Infect. Control, 48 (8) (2020), pp. 875-879Shao et al., 2021 L. Shao, S. Ge, T. Jones, M. Santosh, L.F.O. Silva, Y.X. Cao, M.L.S. Oliveira, M. Zhang, K. Bérubé The role of airborne particles and environmental considerations in the transmission of SARS-CoV-2 Geosci. Front., 12 (2021), Article 101189Silva et al., 2020 L.F.O. Silva, D. Pinto, A. Neckel, G.L. Dotto, M.L.S. Oliveira The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil Chemosphere, 251 (2020), Article 126838Silva et al., 2021 L.F. Silva, M. Santosh, M. Schindler, J. Gasparotto, G.L. Dotto, M.L. Oliveira, M.F. Hochella Jr Nanoparticles in fossil and mineral fuel sectors and their impact on environment and human health: a review and perspective Gondwana Res., 82 (2021), pp. 184-201Stavroulakis et al., 2020 P.J. Stavroulakis, S. Papadimitriou, V. Tsioumas, I.G. Koliousis, E. Riza, F. Tsirikou Exploratory spatial analysis of maritime clusters Mar. Policy, 120 (2020), Article 104125Tung et al., 2010 Y.C. Tung, Y.C. Shih, S.C. Hu, Y.L. Chang Experimental performance investigation of ventilation schemes in a private bathroom Build. Environ., 45 (1) (2010), pp. 243-251Ueda et al., 2020 R.M. Ueda, A.M. Souza, R.M.C.P. Menezes How macroeconomic variables affect admission and dismissal in the Brazilian electro-electronic sector: a var-based model and cluster analysis Phys. A: Stat. Mech. Appl., 557 (2020), Article 124872Utkucu and Sözer, 2020 D. Utkucu, H. Sözer An evaluation process for natural ventilation using a scenario-based multi-criteria and multi-interaction analysis Energy Rep., 6 (2020), pp. 644-661Vandercam et al., 2020 G. Vandercam, A. Simon, A. Scohy, L. Belkhir, B. Kabamba, H. Rodriguez-Villalobos, J.C. Yombi Clinical characteristics and humoral immune response in healthcare workers with COVID-19 in a teaching hospital in Belgium J. Hosp. Infect., 106 (4) (2020), pp. 713-720Vassella et al., 2021 C.C. Vassella, J. Koch, A. Henzi, A. Jordan, R. Waeber, R. Iannaccone, R. Charrière From spontaneous to strategic natural window ventilation: improving indoor air quality in swiss schools Int. J. Hyg. Environ. Health, 234 (2021), Article 113746Wang et al., 2021 Z.F. Wang, Y.Z. Wang, Z.W. Yang, H.K. Wu, J.Y. Liang, H.W. Liang, H.M. Lin, R.C. Chen, Y.E. Ou, F.Y. Wang, Y. Wang, Y. Wang, W.Z. Luo, N.J. Li, Z.T. Li, J.X. Xie, M. Jiang, S.Y. Li The use of non-invasive ventilation in COVID-19: a systematic review J. Glob. Infect. Dis., 106 (2021), pp. 254-261WHO, 2021 WHO (World Health Organization), 2021. WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int/.Xu et al., 2021 F. Xu, S.Z. Xu, U. Passe, B. Ganapathysubramanian Computational study of natural ventilation in a sustainable building with complex geometry Sustain. Energy Technol. Assess., 45 (2021), Article 101153Yang and Chong, 2021 S.S. Yang, Z.H. Chong Smart city projects against COVID-19: quantitative evidence from china Sustain. Cities Soc., 70 (2021), Article 102897Zhang et al., 2021 Zhang, Y.Y., Wang, H.J., Lv, Dong, X., Zhang, P., 2021. Capturing the grouping and compactness of high-level semantic feature for saliency detection. Neural Netw. 142, 351-362Zhou et al., 2020 S.G. Zhou, K.F. Zhou, J.L. Wang Geochemical metallogenic potential based on cluster analysis: a new method to extract valuable information for mineral exploration from geochemical data J. Appl. Geochem., 122 (2020), Article 104748131COVID-19 global epidemicDimensional analysisWind velocityHospital environmentContaminationPublication7d9e64e9-de19-4c99-a7a1-d3fdeebfbfa70000-0002-6067-6606ORIGINALGeo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems.pdfGeo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems.pdfapplication/pdf5750939https://repositorio.cuc.edu.co/bitstreams/79f43a93-7cee-45ef-b85c-617ef9b5796b/downloadc6094b52eccd1e5d9aed38db7f0f09d8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/79b3b707-91a4-4a09-859d-5bb601819593/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTGeo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems.pdf.txtGeo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems.pdf.txttext/plain56692https://repositorio.cuc.edu.co/bitstreams/ccc0ebd3-b472-4190-83c8-a858ff77e0e2/downloadcd75f64be6d4bfbe16314f36540fdcb3MD53THUMBNAILGeo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems.pdf.jpgGeo-environmental parametric 3D models of SARS-CoV-2 virus circulation in hospital ventilation systems.pdf.jpgimage/jpeg16124https://repositorio.cuc.edu.co/bitstreams/1bdb7c6d-ea24-476e-bbe3-e5bd9190212b/downloadb3c47481d3281a3cd65c14f281c8cbd6MD5411323/9192oai:repositorio.cuc.edu.co:11323/91922025-02-25 12:11:40.149https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |