Selection of jonswap spectra parameters during water-depth and sea-state transitions
The design of marine structures requires the simulation of wave parameters that consider sea-state and water-depth transitions. Proper selection of the model coefficients (e.g., alpha and gamma of the JONSWAP spectra) is then required, because of the wave-hydrodynamic nonlinearities during these oce...
- Autores:
-
Rueda-Bayona, Juan Gabriel
Guzmán, Andrés
Cabello Eras, Juan José
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7142
- Acceso en línea:
- https://hdl.handle.net/11323/7142
https://repositorio.cuc.edu.co/
- Palabra clave:
- DOE-ANOVA
JONSWAP spectra
Numerical modeling
Probability
Waves
- Rights
- closedAccess
- License
- CC0 1.0 Universal
id |
RCUC2_bd6a304849a50f084cc65f306d906f6c |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7142 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Selection of jonswap spectra parameters during water-depth and sea-state transitions |
title |
Selection of jonswap spectra parameters during water-depth and sea-state transitions |
spellingShingle |
Selection of jonswap spectra parameters during water-depth and sea-state transitions DOE-ANOVA JONSWAP spectra Numerical modeling Probability Waves |
title_short |
Selection of jonswap spectra parameters during water-depth and sea-state transitions |
title_full |
Selection of jonswap spectra parameters during water-depth and sea-state transitions |
title_fullStr |
Selection of jonswap spectra parameters during water-depth and sea-state transitions |
title_full_unstemmed |
Selection of jonswap spectra parameters during water-depth and sea-state transitions |
title_sort |
Selection of jonswap spectra parameters during water-depth and sea-state transitions |
dc.creator.fl_str_mv |
Rueda-Bayona, Juan Gabriel Guzmán, Andrés Cabello Eras, Juan José |
dc.contributor.author.spa.fl_str_mv |
Rueda-Bayona, Juan Gabriel Guzmán, Andrés Cabello Eras, Juan José |
dc.subject.spa.fl_str_mv |
DOE-ANOVA JONSWAP spectra Numerical modeling Probability Waves |
topic |
DOE-ANOVA JONSWAP spectra Numerical modeling Probability Waves |
description |
The design of marine structures requires the simulation of wave parameters that consider sea-state and water-depth transitions. Proper selection of the model coefficients (e.g., alpha and gamma of the JONSWAP spectra) is then required, because of the wave-hydrodynamic nonlinearities during these ocean processes. Therefore, the model coefficient selection should be tested using a nonlinear analysis to assess the effect of the selected spectra coefficients over the modeled wave parameters. The present study performed a design of experiment (DOE)-analysis of variance (ANOVA) and probability analysis to assess the effect of alpha and gamma parameters over the significant wave height (Hs) and peak period (Tp) during sea-state and water-depth transitions. The DOE-ANOVA demonstrated for the mean and extreme wave states of the study area that alpha and gamma parameters positively affect the Hs behavior in deep and intermediate waters. Furthermore, the standardized effects of alpha and gamma over the Tp during extreme wave states suggest quadruplets of wave-wave interactions. The joint and normal probability distributions of alpha and gamma for extreme and normal waves showed a Gaussian distribution, allowing identification of specific alpha and gamma values for the JONSWAP spectra model. The selected alpha and gamma parameters were then validated through the comparison of the modeled Hs (JONSWAP) against other local studies. Considering its relevance in design strategies for offshore structures, this research contributed to the understanding of the nonlinear effects of alpha and gamma parameters over the Hs and Tp during variations of water depth and wave states, easing the selection of the model coefficients. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-10-15T16:23:22Z |
dc.date.available.none.fl_str_mv |
2020-10-15T16:23:22Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7142 |
dc.identifier.doi.spa.fl_str_mv |
0733950X |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7142 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0733950X Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
ASCE. 2017. Minimum design loads and associated criteria for buildings and other structures. ASCE/SEI 7-16. Reston, VA: ASCE. Booij, N., R. C. Ris, and L. H. Holthuijsen. 1999. “A third-generation wave model for coastal regions: 1. Model description and validation.” J. Geophys. Res.: Oceans 104 (C4): 7649–7666. https://doi.org/10 .1029/98JC02622 Boukhanovsky, A. V., and C. Guedes Soares. 2009. “Modelling of multipeaked directional wave spectra.” Appl. Ocean Res. 31 (2): 132–141. https://doi.org/10.1016/j.apor.2009.06.001. Boukhanovsky, A. V., L. J. Lopatoukhin, and C. Guedes Soares. 2007. “Spectral wave climate of the North Sea.” Appl. Ocean Res. 29 (3): 146–154. https://doi.org/10.1016/j.apor.2007.08.004. Calini, A., and C. M. Schober. 2017. “Characterizing JONSWAP rogue waves and their statistics via inverse spectral data.” Wave Motion 71: 5–17. https://doi.org/10.1016/j.wavemoti.2016.06.007. Chakrabarti, S. 2005. Handbook of offshore engineering. Amsterdam, Netherlands: Elsevier. Cifuentes, C., and M. H. Kim. 2017. “Hydrodynamic response of a cage system under waves and currents using a morison-force model.” Ocean Eng. 141: 283–294. https://doi.org/10.1016/j.oceaneng.2017.06 .055. Deltares. 2014a. Delft3D-WAVE. Simulation of short-crested waves with SWAN—User manual. Delft, Netherlands: Deltares. Deltares. 2014b. Delft3D-FLOW. Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments—User manual. Delft, Netherlands: Deltares. Derschum, C., I. Nistor, J. Stolle, and N. Goseberg. 2018. “Debris impact under extreme hydrodynamic conditions part 1: Hydrodynamics and impact geometry.” Coastal Eng. 141: 24–35. https://doi.org/10.1016/j .coastaleng.2018.08.016 Devis-Morales, A., R. A. Montoya-Sánchez, G. Bernal, and A. F. Osorio. 2017. “Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications.” Appl. Ocean Res. 69: 10– 26. https://doi.org/10.1016/j.apor.2017.09.012. Dong, G., H. Chen, and Y. Ma. 2014. “Parameterization of nonlinear shallow water waves over sloping bottoms.” Coastal Eng. 94: 23–32. https://doi.org/10.1016/j.coastaleng.2014.08.012 Elhakeem, A., W. Elshorbagy, and T. Bleninger. 2015. “Long-term hydrodynamic modeling of the Arabian Gulf.” Mar. Pollut. Bull. 94 (1–2): 19–36. https://doi.org/10.1016/j.marpolbul.2015.03.020. Escobar, C. A. 2011. “Relevancia de procesos costeros en la hidrodinámica del Golfo de Urabá (Caribe colombiano).” Bull. Mar. Coastal Res. 40 (2): 327–346. FEMA and NOAA (Federal Emergency Management Agency and National Oceanic and Atmospheric Administration). 2012. FEMA P-646: Guidelines for design of structures for vertical evacuation from tsunamis. Redwood City, CA: Applied Technology Council. Fragasso, J., L. Moro, L. M. Lye, and B. W. T. Quinton. 2019. “Characterization of resilient mounts for marine diesel engines: Prediction of static response via nonlinear analysis and response surface methodology.” Ocean Eng. 171: 14–24. https://doi.org/10.1016/j .oceaneng.2018.10.051 Garcia, M., I. Ramirez, M. Verlaan, and J. Castillo. 2015. “Application of a three-dimensional hydrodynamic model for San Quintin Bay, B.C., Mexico. Validation and calibration using OpenDA.” J. Comput. Appl. Math. 273: 428–437. https://doi.org/10.1016/j.cam.2014.05.003. Hanley, M. E., et al. 2014. “Shifting sands? Coastal protection by sand banks, beaches and dunes.” Coastal Eng. 87: 136–146. https://doi.org /10.1016/j.coastaleng.2013.10.020. Hasselmann, K. 1962. “On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory.” J. Fluid Mech. 12 (4): 481–500. https://doi.org/10.1017/S0022112062000373. Hasselmann, K. 1963a. “On the non-linear energy transfer in a gravity wave spectrum Part 2. Conservation theorems; wave-particle analogy; irreversibility.” J. Fluid Mech. 15 (2): 273–281. https://doi.org/10 .1017/S0022112063000239. Hasselmann, K. 1963b. “On the non-linear energy transfer in a gravitywave spectrum. Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum.” J. Fluid Mech. 15 (3): 385–398. https://doi.org/10.1017/S002211206300032X. Hasselmann, K., et al. 1973. “Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP).” Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift 8 (12): 93. Holthuijsen, L. H. 2010. Waves in oceanic and coastal waters. Cambridge, UK: Cambridge University Press. Ji, C., Q. Zhang, and Y. Wu. 2018. “An empirical formula for maximum wave setup based on a coupled wave-current model.” Ocean Eng. 147: 215–226. https://doi.org/10.1016/j.oceaneng.2017.10.021 Le Provost, C., M. L. Genco, F. Lyard, P. Vincent, and P. Canceil. 1994. “Spectroscopy of the world ocean tides from a finite element hydrodynamic model.” J. Geophys. Res. 99 (C12): 24777–24797. https://doi.org /10.1029/94JC01381. Liu, S., Y. Li, and G. Li. 2007. “Wave current forces on the pile group of base foundation for the East Sea Bridge, China.” J. Hydrodyn. 19 (6): 661–670. https://doi.org/10.1016/S1001-6058(08)60001-3. Locarnini, R. A., et al. 2013. World ocean atlas 2013, Volume 1: Temperature. NOAA Atlas NESDIS 73. Silver Spring, MD: U.S. Department of Commerce Lucas, C., and C. Guedes Soares. 2015. “Bivariate distributions of significant wave height and mean wave period of combined sea states.” Ocean Eng. 106: 341–353. https://doi.org/10.1016/j.oceaneng.2015.07.010. Mackay, E. B. L. 2011. “Modelling and description of omnidirectional wave spectra.” In Proc., European Wave and Tidal Energy. Southampton, UK: University of Southampton Mackay, E. B. L. 2016. “A unified model for unimodal and bimodal ocean wave spectra.” Int. J. Mar. Energy 15: 17–40. https://doi.org/10.1016/j .ijome.2016.04.015 McCombs, M. P., R. P. Mulligan, and L. Boegman. 2014. “Offshore wind farm impacts on surface waves and circulation in Eastern Lake Ontario.” Coastal Eng. 93: 32–39. https://doi.org/10.1016/j.coastaleng .2014.08.001. Mesa García, J. C. 2010. “Metodología para el reanálisis de series de oleaje para el Caribe Colombiano.” M.Sc. thesis, Facultad de Minas, Universidad Nacional de Colombia. Montazeri, N., U. D. Nielsen, and J. Juncher Jensen. 2016. “Estimation of wind sea and swell using shipboard measurements—A refined parametric modelling approach.” Appl. Ocean Res. 54: 73–86. https://doi.org/10 .1016/j.apor.2015.11.004. Montgomery, D. C. 2017. Design and analysis of experiments. Hoboken, NJ: John Wiley & Sons Myrhaug, D. 2018. “Some probabilistic properties of deep water wave steepness.” Oceanologia 60 (2): 187–192. https://doi.org/10.1016/j .oceano.2017.10.003. NOAA (National Oceanic and Atmospheric Administration). 2016. “NCEP North American Regional Reanalysis: NARR.” Accessed July 4, 2020. https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html. NOAA (National Oceanic and Atmospheric Administration). 2018a. “ETOPO1 Global Relief Model.” ETOPO1 Global Relief Model. Accessed July 20, 2018. https://www.ngdc.noaa.gov/mgg/global/. NOAA (National Oceanic and Atmospheric Administration). 2018b. “NOAA WAVEWATCH III® CFSR Reanalysis Hindcasts.” NOAA WAVEWATCH III. Accessed July 20, 2018. https://polar.ncep.noaa .gov/waves/CFSR_hindcast.shtml. Ochi, M. K., and E. N. Hubble. 1976. “Six-parameter wave spectra.” In Proc., 15th Int. Conf. on Coastal Engineering, 301–328. Reston, VA: ASCE. Ortega, S., A. F. Osorio, P. Agudelo-Restrepo, and J. I. Velez. 2011. “Methodology for estimating wave power potential in places with scarce instrumentation in the Caribbean Sea.” In OCEANS 2011 IEEE, 1–5. Santander, Spain: IEEE. Pascoal, R., L. P. Perera, and C. Guedes Soares. 2017. “Estimation of directional sea spectra from ship motions in sea trials.” Ocean Eng. 132: 126–137. https://doi.org/10.1016/j.oceaneng.2017.01.020. Phillips, O. M. 1960. “On the dynamics of unsteady gravity waves of finite amplitude Part 1. The elementary interactions.” J. Fluid Mech. 9 (2): 193–217. https://doi.org/10.1017/S0022112060001043. Power, H. E., B. Gharabaghi, H. Bonakdari, B. Robertson, A. L. Atkinson, and T. E. Baldock. 2019. “Prediction of wave runup on beaches using gene-expression programming and empirical relationships.” Coastal Eng. 144: 47–61. https://doi.org/10.1016/j.coastaleng.2018.10.006. Restrepo, J. C., K. Schrottke, C. Traini, J. C. Ortíz, A. Orejarena, L. Otero, A. Higgins, and L. Marriaga. 2016. “Sediment transport and geomorphological change in a high-discharge tropical delta (Magdalena River, Colombia): Insights from a period of intense change and human intervention (1990–2010).” J. Coastal Res. 32 (3): 575–589. https://doi.org/10.2112/JCOASTRES-D-14-00263.1. Rueda Bayona, J. G. 2015. “Caracterización hidromecánica de plataformas marinas en aguas intermedias sometidas a cargas de oleaje y corriente mediante modelación numérica.” Master thesis, Facultad de Minas, Universidad Nacional de Colombia. Rueda Bayona, J. G. 2017. “Identificación de la influencia de las variaciones convectivas en la generación de cargas transitorias y su efecto hidromecánico en las estructuras Offshore.” Ph.D. thesis, Civil and Environmental Engineering Dept., Universidad del Norte. Rueda-Bayona, J. G., A. Guzmán, and R. Silva. 2020. “Genetic algorithms to determine JONSWAP spectra parameters.” Ocean Dyn. 70: 561–571. https://doi.org/10.1007/s10236-019-01341-8. Rueda-Bayona, J. G., A. F. Osorio-Arias, A. Guzmán, and G. Rivillas-Ospina. 2019. “Alternative method to determine extreme hydrodynamic forces with data limitations for offshore engineering.” J. Waterw. Port Coastal Ocean Eng. 145 (2): 05018010. https://doi .org/10.1061/(ASCE)WW.1943-5460.0000499. Sakhare, S., and M. C. Deo. 2009. “Derivation of wave spectrum using data driven methods.” Mar. Struct. 22: 594–609. https://doi.org/10.1016/j .marstruc.2008.12.004. Sanil Kumar, V., and K. Ashok Kumar. 2008. “Spectral characteristics of high shallow water waves.” Ocean Eng. 35 (8): 900–911. https://doi .org/10.1016/j.oceaneng.2008.01.016. Sun, Y., and X. Zhang. 2017. “A second order analytical solution of focused wave group interacting with a vertical wall.” Int. J. Nav. Archit. Ocean Eng. 9 (2): 160–176. https://doi.org/10.1016/j.ijnaoe .2016.09.002. Uittenbogaard, R. E., J. A. T. M. van Kester, and G. S. Stelling. 1992. Implementation of three turbulence models in 3D-TRISULA for rectangular grids. Delft, Netherlands: Delft Hydraulics. Wang, Y. 2014. “Calculating crest statistics of shallow water nonlinear waves based on standard spectra and measured data at the Poseidon platform.” Ocean Eng. 87: 16–24. https://doi.org/10.1016/j.oceaneng .2014.05.012. Wijaya, A. P., and E. Van Groesen. 2016. “Determination of the significant wave height from shadowing in synthetic radar images.” Ocean Eng. 114: 204–2015. https://doi.org/10.1016/j.oceaneng.2016.01.011. Young, D. L., and B. M. Scully. 2018. “Assessing structure sheltering via statistical analysis of AIS data.” J. Waterw. Port Coastal Ocean Eng. 144 (3): 04018002. https://doi.org/10.1061/(ASCE)WW.1943-5460 .0000445. Zanaganeh, M., S. J. Mousavi, and A. F. Etemad Shahidi. 2009. “A hybrid genetic algorithm–adaptive network-based fuzzy inference system in prediction of wave parameters.” Eng. Appl. Artif. Intell. 22 (8): 1194– 1202. https://doi.org/10.1016/j.engappai.2009.04.009. Zweng, M. M., et al. 2013. World ocean atlas 2013, Volume 2: Salinity. NOAA Atlas NESDIS 74. Silver Spring, MD: U.S. Department of Commerce. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Journal of Waterway, Port, Coastal and Ocean Engineering |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://ascelibrary.org/doi/10.1061/%28ASCE%29WW.1943-5460.0000601 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/caf3d2e8-c690-4ae1-b5ba-742ee9ac31e8/download https://repositorio.cuc.edu.co/bitstreams/d3f2b396-2e34-430c-81af-200138318725/download https://repositorio.cuc.edu.co/bitstreams/ad0a3ae7-7bc1-48d0-af4c-daac3560fbab/download https://repositorio.cuc.edu.co/bitstreams/dd2b214b-c81f-409f-9ab2-ad899b21edb9/download https://repositorio.cuc.edu.co/bitstreams/c1de3f0d-f694-4699-bf51-582326288ba7/download |
bitstream.checksum.fl_str_mv |
b046b2a06da4f370519fb1c4455efe65 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 893912e788516d191834184fd9c6d564 59333c6de42a93049d590c954a61395c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166892911591424 |
spelling |
Rueda-Bayona, Juan GabrielGuzmán, AndrésCabello Eras, Juan José2020-10-15T16:23:22Z2020-10-15T16:23:22Z2020https://hdl.handle.net/11323/71420733950XCorporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The design of marine structures requires the simulation of wave parameters that consider sea-state and water-depth transitions. Proper selection of the model coefficients (e.g., alpha and gamma of the JONSWAP spectra) is then required, because of the wave-hydrodynamic nonlinearities during these ocean processes. Therefore, the model coefficient selection should be tested using a nonlinear analysis to assess the effect of the selected spectra coefficients over the modeled wave parameters. The present study performed a design of experiment (DOE)-analysis of variance (ANOVA) and probability analysis to assess the effect of alpha and gamma parameters over the significant wave height (Hs) and peak period (Tp) during sea-state and water-depth transitions. The DOE-ANOVA demonstrated for the mean and extreme wave states of the study area that alpha and gamma parameters positively affect the Hs behavior in deep and intermediate waters. Furthermore, the standardized effects of alpha and gamma over the Tp during extreme wave states suggest quadruplets of wave-wave interactions. The joint and normal probability distributions of alpha and gamma for extreme and normal waves showed a Gaussian distribution, allowing identification of specific alpha and gamma values for the JONSWAP spectra model. The selected alpha and gamma parameters were then validated through the comparison of the modeled Hs (JONSWAP) against other local studies. Considering its relevance in design strategies for offshore structures, this research contributed to the understanding of the nonlinear effects of alpha and gamma parameters over the Hs and Tp during variations of water depth and wave states, easing the selection of the model coefficients.Rueda-Bayona, Juan Gabriel-will be generated-orcid-0000-0003-3806-2058-600Guzmán, Andrés-will be generated-orcid-0000-0003-2472-1390-600Cabello Eras, Juan José-will be generated-orcid-0000-0003-0949-0862-600engCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbJournal of Waterway, Port, Coastal and Ocean Engineeringhttps://ascelibrary.org/doi/10.1061/%28ASCE%29WW.1943-5460.0000601DOE-ANOVAJONSWAP spectraNumerical modelingProbabilityWavesSelection of jonswap spectra parameters during water-depth and sea-state transitionsPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionASCE. 2017. Minimum design loads and associated criteria for buildings and other structures. ASCE/SEI 7-16. Reston, VA: ASCE.Booij, N., R. C. Ris, and L. H. Holthuijsen. 1999. “A third-generation wave model for coastal regions: 1. Model description and validation.” J. Geophys. Res.: Oceans 104 (C4): 7649–7666. https://doi.org/10 .1029/98JC02622Boukhanovsky, A. V., and C. Guedes Soares. 2009. “Modelling of multipeaked directional wave spectra.” Appl. Ocean Res. 31 (2): 132–141. https://doi.org/10.1016/j.apor.2009.06.001.Boukhanovsky, A. V., L. J. Lopatoukhin, and C. Guedes Soares. 2007. “Spectral wave climate of the North Sea.” Appl. Ocean Res. 29 (3): 146–154. https://doi.org/10.1016/j.apor.2007.08.004.Calini, A., and C. M. Schober. 2017. “Characterizing JONSWAP rogue waves and their statistics via inverse spectral data.” Wave Motion 71: 5–17. https://doi.org/10.1016/j.wavemoti.2016.06.007.Chakrabarti, S. 2005. Handbook of offshore engineering. Amsterdam, Netherlands: Elsevier.Cifuentes, C., and M. H. Kim. 2017. “Hydrodynamic response of a cage system under waves and currents using a morison-force model.” Ocean Eng. 141: 283–294. https://doi.org/10.1016/j.oceaneng.2017.06 .055.Deltares. 2014a. Delft3D-WAVE. Simulation of short-crested waves with SWAN—User manual. Delft, Netherlands: Deltares.Deltares. 2014b. Delft3D-FLOW. Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments—User manual. Delft, Netherlands: Deltares.Derschum, C., I. Nistor, J. Stolle, and N. Goseberg. 2018. “Debris impact under extreme hydrodynamic conditions part 1: Hydrodynamics and impact geometry.” Coastal Eng. 141: 24–35. https://doi.org/10.1016/j .coastaleng.2018.08.016Devis-Morales, A., R. A. Montoya-Sánchez, G. Bernal, and A. F. Osorio. 2017. “Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications.” Appl. Ocean Res. 69: 10– 26. https://doi.org/10.1016/j.apor.2017.09.012.Dong, G., H. Chen, and Y. Ma. 2014. “Parameterization of nonlinear shallow water waves over sloping bottoms.” Coastal Eng. 94: 23–32. https://doi.org/10.1016/j.coastaleng.2014.08.012Elhakeem, A., W. Elshorbagy, and T. Bleninger. 2015. “Long-term hydrodynamic modeling of the Arabian Gulf.” Mar. Pollut. Bull. 94 (1–2): 19–36. https://doi.org/10.1016/j.marpolbul.2015.03.020.Escobar, C. A. 2011. “Relevancia de procesos costeros en la hidrodinámica del Golfo de Urabá (Caribe colombiano).” Bull. Mar. Coastal Res. 40 (2): 327–346.FEMA and NOAA (Federal Emergency Management Agency and National Oceanic and Atmospheric Administration). 2012. FEMA P-646: Guidelines for design of structures for vertical evacuation from tsunamis. Redwood City, CA: Applied Technology Council.Fragasso, J., L. Moro, L. M. Lye, and B. W. T. Quinton. 2019. “Characterization of resilient mounts for marine diesel engines: Prediction of static response via nonlinear analysis and response surface methodology.” Ocean Eng. 171: 14–24. https://doi.org/10.1016/j .oceaneng.2018.10.051Garcia, M., I. Ramirez, M. Verlaan, and J. Castillo. 2015. “Application of a three-dimensional hydrodynamic model for San Quintin Bay, B.C., Mexico. Validation and calibration using OpenDA.” J. Comput. Appl. Math. 273: 428–437. https://doi.org/10.1016/j.cam.2014.05.003.Hanley, M. E., et al. 2014. “Shifting sands? Coastal protection by sand banks, beaches and dunes.” Coastal Eng. 87: 136–146. https://doi.org /10.1016/j.coastaleng.2013.10.020.Hasselmann, K. 1962. “On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory.” J. Fluid Mech. 12 (4): 481–500. https://doi.org/10.1017/S0022112062000373.Hasselmann, K. 1963a. “On the non-linear energy transfer in a gravity wave spectrum Part 2. Conservation theorems; wave-particle analogy; irreversibility.” J. Fluid Mech. 15 (2): 273–281. https://doi.org/10 .1017/S0022112063000239.Hasselmann, K. 1963b. “On the non-linear energy transfer in a gravitywave spectrum. Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum.” J. Fluid Mech. 15 (3): 385–398. https://doi.org/10.1017/S002211206300032X.Hasselmann, K., et al. 1973. “Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP).” Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift 8 (12): 93.Holthuijsen, L. H. 2010. Waves in oceanic and coastal waters. Cambridge, UK: Cambridge University Press.Ji, C., Q. Zhang, and Y. Wu. 2018. “An empirical formula for maximum wave setup based on a coupled wave-current model.” Ocean Eng. 147: 215–226. https://doi.org/10.1016/j.oceaneng.2017.10.021Le Provost, C., M. L. Genco, F. Lyard, P. Vincent, and P. Canceil. 1994. “Spectroscopy of the world ocean tides from a finite element hydrodynamic model.” J. Geophys. Res. 99 (C12): 24777–24797. https://doi.org /10.1029/94JC01381.Liu, S., Y. Li, and G. Li. 2007. “Wave current forces on the pile group of base foundation for the East Sea Bridge, China.” J. Hydrodyn. 19 (6): 661–670. https://doi.org/10.1016/S1001-6058(08)60001-3.Locarnini, R. A., et al. 2013. World ocean atlas 2013, Volume 1: Temperature. NOAA Atlas NESDIS 73. Silver Spring, MD: U.S. Department of CommerceLucas, C., and C. Guedes Soares. 2015. “Bivariate distributions of significant wave height and mean wave period of combined sea states.” Ocean Eng. 106: 341–353. https://doi.org/10.1016/j.oceaneng.2015.07.010.Mackay, E. B. L. 2011. “Modelling and description of omnidirectional wave spectra.” In Proc., European Wave and Tidal Energy. Southampton, UK: University of SouthamptonMackay, E. B. L. 2016. “A unified model for unimodal and bimodal ocean wave spectra.” Int. J. Mar. Energy 15: 17–40. https://doi.org/10.1016/j .ijome.2016.04.015McCombs, M. P., R. P. Mulligan, and L. Boegman. 2014. “Offshore wind farm impacts on surface waves and circulation in Eastern Lake Ontario.” Coastal Eng. 93: 32–39. https://doi.org/10.1016/j.coastaleng .2014.08.001.Mesa García, J. C. 2010. “Metodología para el reanálisis de series de oleaje para el Caribe Colombiano.” M.Sc. thesis, Facultad de Minas, Universidad Nacional de Colombia.Montazeri, N., U. D. Nielsen, and J. Juncher Jensen. 2016. “Estimation of wind sea and swell using shipboard measurements—A refined parametric modelling approach.” Appl. Ocean Res. 54: 73–86. https://doi.org/10 .1016/j.apor.2015.11.004.Montgomery, D. C. 2017. Design and analysis of experiments. Hoboken, NJ: John Wiley & SonsMyrhaug, D. 2018. “Some probabilistic properties of deep water wave steepness.” Oceanologia 60 (2): 187–192. https://doi.org/10.1016/j .oceano.2017.10.003.NOAA (National Oceanic and Atmospheric Administration). 2016. “NCEP North American Regional Reanalysis: NARR.” Accessed July 4, 2020. https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html.NOAA (National Oceanic and Atmospheric Administration). 2018a. “ETOPO1 Global Relief Model.” ETOPO1 Global Relief Model. Accessed July 20, 2018. https://www.ngdc.noaa.gov/mgg/global/.NOAA (National Oceanic and Atmospheric Administration). 2018b. “NOAA WAVEWATCH III® CFSR Reanalysis Hindcasts.” NOAA WAVEWATCH III. Accessed July 20, 2018. https://polar.ncep.noaa .gov/waves/CFSR_hindcast.shtml.Ochi, M. K., and E. N. Hubble. 1976. “Six-parameter wave spectra.” In Proc., 15th Int. Conf. on Coastal Engineering, 301–328. Reston, VA: ASCE.Ortega, S., A. F. Osorio, P. Agudelo-Restrepo, and J. I. Velez. 2011. “Methodology for estimating wave power potential in places with scarce instrumentation in the Caribbean Sea.” In OCEANS 2011 IEEE, 1–5. Santander, Spain: IEEE.Pascoal, R., L. P. Perera, and C. Guedes Soares. 2017. “Estimation of directional sea spectra from ship motions in sea trials.” Ocean Eng. 132: 126–137. https://doi.org/10.1016/j.oceaneng.2017.01.020.Phillips, O. M. 1960. “On the dynamics of unsteady gravity waves of finite amplitude Part 1. The elementary interactions.” J. Fluid Mech. 9 (2): 193–217. https://doi.org/10.1017/S0022112060001043.Power, H. E., B. Gharabaghi, H. Bonakdari, B. Robertson, A. L. Atkinson, and T. E. Baldock. 2019. “Prediction of wave runup on beaches using gene-expression programming and empirical relationships.” Coastal Eng. 144: 47–61. https://doi.org/10.1016/j.coastaleng.2018.10.006.Restrepo, J. C., K. Schrottke, C. Traini, J. C. Ortíz, A. Orejarena, L. Otero, A. Higgins, and L. Marriaga. 2016. “Sediment transport and geomorphological change in a high-discharge tropical delta (Magdalena River, Colombia): Insights from a period of intense change and human intervention (1990–2010).” J. Coastal Res. 32 (3): 575–589. https://doi.org/10.2112/JCOASTRES-D-14-00263.1.Rueda Bayona, J. G. 2015. “Caracterización hidromecánica de plataformas marinas en aguas intermedias sometidas a cargas de oleaje y corriente mediante modelación numérica.” Master thesis, Facultad de Minas, Universidad Nacional de Colombia.Rueda Bayona, J. G. 2017. “Identificación de la influencia de las variaciones convectivas en la generación de cargas transitorias y su efecto hidromecánico en las estructuras Offshore.” Ph.D. thesis, Civil and Environmental Engineering Dept., Universidad del Norte.Rueda-Bayona, J. G., A. Guzmán, and R. Silva. 2020. “Genetic algorithms to determine JONSWAP spectra parameters.” Ocean Dyn. 70: 561–571. https://doi.org/10.1007/s10236-019-01341-8.Rueda-Bayona, J. G., A. F. Osorio-Arias, A. Guzmán, and G. Rivillas-Ospina. 2019. “Alternative method to determine extreme hydrodynamic forces with data limitations for offshore engineering.” J. Waterw. Port Coastal Ocean Eng. 145 (2): 05018010. https://doi .org/10.1061/(ASCE)WW.1943-5460.0000499.Sakhare, S., and M. C. Deo. 2009. “Derivation of wave spectrum using data driven methods.” Mar. Struct. 22: 594–609. https://doi.org/10.1016/j .marstruc.2008.12.004.Sanil Kumar, V., and K. Ashok Kumar. 2008. “Spectral characteristics of high shallow water waves.” Ocean Eng. 35 (8): 900–911. https://doi .org/10.1016/j.oceaneng.2008.01.016.Sun, Y., and X. Zhang. 2017. “A second order analytical solution of focused wave group interacting with a vertical wall.” Int. J. Nav. Archit. Ocean Eng. 9 (2): 160–176. https://doi.org/10.1016/j.ijnaoe .2016.09.002.Uittenbogaard, R. E., J. A. T. M. van Kester, and G. S. Stelling. 1992. Implementation of three turbulence models in 3D-TRISULA for rectangular grids. Delft, Netherlands: Delft Hydraulics.Wang, Y. 2014. “Calculating crest statistics of shallow water nonlinear waves based on standard spectra and measured data at the Poseidon platform.” Ocean Eng. 87: 16–24. https://doi.org/10.1016/j.oceaneng .2014.05.012.Wijaya, A. P., and E. Van Groesen. 2016. “Determination of the significant wave height from shadowing in synthetic radar images.” Ocean Eng. 114: 204–2015. https://doi.org/10.1016/j.oceaneng.2016.01.011.Young, D. L., and B. M. Scully. 2018. “Assessing structure sheltering via statistical analysis of AIS data.” J. Waterw. Port Coastal Ocean Eng. 144 (3): 04018002. https://doi.org/10.1061/(ASCE)WW.1943-5460 .0000445.Zanaganeh, M., S. J. Mousavi, and A. F. Etemad Shahidi. 2009. “A hybrid genetic algorithm–adaptive network-based fuzzy inference system in prediction of wave parameters.” Eng. Appl. Artif. Intell. 22 (8): 1194– 1202. https://doi.org/10.1016/j.engappai.2009.04.009.Zweng, M. M., et al. 2013. World ocean atlas 2013, Volume 2: Salinity. NOAA Atlas NESDIS 74. Silver Spring, MD: U.S. Department of Commerce.PublicationORIGINALSELECTION OF JONSWAP SPECTRA PARAMETERS DURING WATER-DEPTH AND SEA-STATE TRANSITIONS.pdfSELECTION OF JONSWAP SPECTRA PARAMETERS DURING WATER-DEPTH AND SEA-STATE TRANSITIONS.pdfapplication/pdf183757https://repositorio.cuc.edu.co/bitstreams/caf3d2e8-c690-4ae1-b5ba-742ee9ac31e8/downloadb046b2a06da4f370519fb1c4455efe65MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/d3f2b396-2e34-430c-81af-200138318725/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/ad0a3ae7-7bc1-48d0-af4c-daac3560fbab/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILSELECTION OF JONSWAP SPECTRA PARAMETERS DURING WATER-DEPTH AND SEA-STATE TRANSITIONS.pdf.jpgSELECTION OF JONSWAP SPECTRA PARAMETERS DURING WATER-DEPTH AND SEA-STATE TRANSITIONS.pdf.jpgimage/jpeg59952https://repositorio.cuc.edu.co/bitstreams/dd2b214b-c81f-409f-9ab2-ad899b21edb9/download893912e788516d191834184fd9c6d564MD54TEXTSELECTION OF JONSWAP SPECTRA PARAMETERS DURING WATER-DEPTH AND SEA-STATE TRANSITIONS.pdf.txtSELECTION OF JONSWAP SPECTRA PARAMETERS DURING WATER-DEPTH AND SEA-STATE TRANSITIONS.pdf.txttext/plain2005https://repositorio.cuc.edu.co/bitstreams/c1de3f0d-f694-4699-bf51-582326288ba7/download59333c6de42a93049d590c954a61395cMD5511323/7142oai:repositorio.cuc.edu.co:11323/71422024-09-17 14:22:57.032http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |