Choosing the most suitable classifier For supporting assistive technology adoption In people with Parkinson’s disease: a fuzzy Multi-criteria approach

Parkinson’s disease (PD) is the second most common neurodegenerative disorder which requires a long-term, interdisciplinary disease management. While there remains no cure for Parkinson’s disease, treatments are available to help reduce the main symptoms and maintain quality of life for as long as p...

Full description

Autores:
Ortíz-Barrios, Miguel
Cleland, Ian
Donnelly, Mark
Greer, Jonathan
Petrillo, Antonella
Fernández-Mendoza, Zaury
Jaramillo-Rueda, Natalia
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6904
Acceso en línea:
https://hdl.handle.net/11323/6904
https://repositorio.cuc.edu.co/
Palabra clave:
Parkinson’s disease (PD)
Technology adoption
Fuzzy Analytic Hierarchy Process (FAHP)
Decision making trial
Evaluation laboratory
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_bc8e04f155c5937aa275c14b249b7bed
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6904
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Choosing the most suitable classifier For supporting assistive technology adoption In people with Parkinson’s disease: a fuzzy Multi-criteria approach
title Choosing the most suitable classifier For supporting assistive technology adoption In people with Parkinson’s disease: a fuzzy Multi-criteria approach
spellingShingle Choosing the most suitable classifier For supporting assistive technology adoption In people with Parkinson’s disease: a fuzzy Multi-criteria approach
Parkinson’s disease (PD)
Technology adoption
Fuzzy Analytic Hierarchy Process (FAHP)
Decision making trial
Evaluation laboratory
title_short Choosing the most suitable classifier For supporting assistive technology adoption In people with Parkinson’s disease: a fuzzy Multi-criteria approach
title_full Choosing the most suitable classifier For supporting assistive technology adoption In people with Parkinson’s disease: a fuzzy Multi-criteria approach
title_fullStr Choosing the most suitable classifier For supporting assistive technology adoption In people with Parkinson’s disease: a fuzzy Multi-criteria approach
title_full_unstemmed Choosing the most suitable classifier For supporting assistive technology adoption In people with Parkinson’s disease: a fuzzy Multi-criteria approach
title_sort Choosing the most suitable classifier For supporting assistive technology adoption In people with Parkinson’s disease: a fuzzy Multi-criteria approach
dc.creator.fl_str_mv Ortíz-Barrios, Miguel
Cleland, Ian
Donnelly, Mark
Greer, Jonathan
Petrillo, Antonella
Fernández-Mendoza, Zaury
Jaramillo-Rueda, Natalia
dc.contributor.author.spa.fl_str_mv Ortíz-Barrios, Miguel
Cleland, Ian
Donnelly, Mark
Greer, Jonathan
Petrillo, Antonella
Fernández-Mendoza, Zaury
Jaramillo-Rueda, Natalia
dc.subject.spa.fl_str_mv Parkinson’s disease (PD)
Technology adoption
Fuzzy Analytic Hierarchy Process (FAHP)
Decision making trial
Evaluation laboratory
topic Parkinson’s disease (PD)
Technology adoption
Fuzzy Analytic Hierarchy Process (FAHP)
Decision making trial
Evaluation laboratory
description Parkinson’s disease (PD) is the second most common neurodegenerative disorder which requires a long-term, interdisciplinary disease management. While there remains no cure for Parkinson’s disease, treatments are available to help reduce the main symptoms and maintain quality of life for as long as possible. Owing to the global burden faced by chronic conditions such as PD, Assistive technologies (AT’s) are becoming an increasingly common prescribed form of treatment. Low adoption is hampering the potential of digital technologies within health and social care. It is then necessary to employ classification algorithms have been developed for differentiating adopters and non-adopters of these technologies; thereby, potential negative effects on people with PD and cost overruns can be further minimized. This paper bridges this gap by extending the Multi-criteria decision-making approach adopted in technology adoption modeling for people with dementia. First, the fuzzy Analytic Hierarchy Process (FAHP) is applied to estimate the initial relative weights of criteria and sub-criteria. Then, the Decisionmaking Trial and Evaluation Laboratory (DEMATEL) is used for evaluating the interrelations and feedback among criteria and sub-criteria. The Technique for Order of Preferences by Similarity to Ideal Solution (TOPSIS) is finally implemented to rank three classifiers (Lazy IBk – knearest neighbors, Naïve bayes, and J48 decision tree) according to their ability to model technology adoption. A real case study considering is presented to validate the proposed approach.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-11T00:20:22Z
dc.date.available.none.fl_str_mv 2020-08-11T00:20:22Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6904
dc.identifier.doi.spa.fl_str_mv DOI https://doi.org/10.1007/978-3-030-49907-5_28
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/6904
https://repositorio.cuc.edu.co/
identifier_str_mv DOI https://doi.org/10.1007/978-3-030-49907-5_28
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Lecture Notes in Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-030-49907-5_28
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/9ca1501c-29b6-408c-b58e-8225f5f54354/download
https://repositorio.cuc.edu.co/bitstreams/ea84dd1b-d269-4ab0-a6f3-7eddfd022ce8/download
https://repositorio.cuc.edu.co/bitstreams/a711ec99-a88f-4adb-89ae-eb4dba506ea6/download
https://repositorio.cuc.edu.co/bitstreams/6b32a7bb-bd45-4bc9-8363-0a56efe01565/download
https://repositorio.cuc.edu.co/bitstreams/4fdd30b3-5906-4a35-8309-b74de6ff3110/download
bitstream.checksum.fl_str_mv 2cc78691cced1c85fd479942bebb8398
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
b7845259f8538bff1e0b3f78b1af3970
bdaa7bd55fdedac8685d251097797028
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166837694627840
spelling Ortíz-Barrios, MiguelCleland, IanDonnelly, MarkGreer, JonathanPetrillo, AntonellaFernández-Mendoza, ZauryJaramillo-Rueda, Natalia2020-08-11T00:20:22Z2020-08-11T00:20:22Z2020https://hdl.handle.net/11323/6904DOI https://doi.org/10.1007/978-3-030-49907-5_28Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Parkinson’s disease (PD) is the second most common neurodegenerative disorder which requires a long-term, interdisciplinary disease management. While there remains no cure for Parkinson’s disease, treatments are available to help reduce the main symptoms and maintain quality of life for as long as possible. Owing to the global burden faced by chronic conditions such as PD, Assistive technologies (AT’s) are becoming an increasingly common prescribed form of treatment. Low adoption is hampering the potential of digital technologies within health and social care. It is then necessary to employ classification algorithms have been developed for differentiating adopters and non-adopters of these technologies; thereby, potential negative effects on people with PD and cost overruns can be further minimized. This paper bridges this gap by extending the Multi-criteria decision-making approach adopted in technology adoption modeling for people with dementia. First, the fuzzy Analytic Hierarchy Process (FAHP) is applied to estimate the initial relative weights of criteria and sub-criteria. Then, the Decisionmaking Trial and Evaluation Laboratory (DEMATEL) is used for evaluating the interrelations and feedback among criteria and sub-criteria. The Technique for Order of Preferences by Similarity to Ideal Solution (TOPSIS) is finally implemented to rank three classifiers (Lazy IBk – knearest neighbors, Naïve bayes, and J48 decision tree) according to their ability to model technology adoption. A real case study considering is presented to validate the proposed approach.Ortíz-Barrios, MiguelCleland, IanDonnelly, MarkGreer, JonathanPetrillo, AntonellaFernández-Mendoza, ZauryJaramillo-Rueda, NataliaengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lecture Notes in Computer Sciencehttps://link.springer.com/chapter/10.1007/978-3-030-49907-5_28Parkinson’s disease (PD)Technology adoptionFuzzy Analytic Hierarchy Process (FAHP)Decision making trialEvaluation laboratoryChoosing the most suitable classifier For supporting assistive technology adoption In people with Parkinson’s disease: a fuzzy Multi-criteria approachArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALChoosing the Most Suitable Classifier.pdfChoosing the Most Suitable Classifier.pdfapplication/pdf136094https://repositorio.cuc.edu.co/bitstreams/9ca1501c-29b6-408c-b58e-8225f5f54354/download2cc78691cced1c85fd479942bebb8398MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/ea84dd1b-d269-4ab0-a6f3-7eddfd022ce8/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/a711ec99-a88f-4adb-89ae-eb4dba506ea6/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILChoosing the Most Suitable Classifier.pdf.jpgChoosing the Most Suitable Classifier.pdf.jpgimage/jpeg61037https://repositorio.cuc.edu.co/bitstreams/6b32a7bb-bd45-4bc9-8363-0a56efe01565/downloadb7845259f8538bff1e0b3f78b1af3970MD54TEXTChoosing the Most Suitable Classifier.pdf.txtChoosing the Most Suitable Classifier.pdf.txttext/plain2082https://repositorio.cuc.edu.co/bitstreams/4fdd30b3-5906-4a35-8309-b74de6ff3110/downloadbdaa7bd55fdedac8685d251097797028MD5511323/6904oai:repositorio.cuc.edu.co:11323/69042024-09-17 14:16:15.938http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==