Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis
Molecular changes that affect mitochondrial glycolysis have been associated with the maintenance of tumor cells. Some metabolic factors have already been described as predictors of disease severity and outcomes. This systematic review was conducted to answer the question: Is the glycolytic pathway c...
- Autores:
-
Mattos, Sergio
Diel, Leonardo Francisco
Bittencourt, Leonardo
Schnorr, Carlos Eduardo
Aurina Gonçalves, Francisca
Bernardi, L
LAMERS, MARCELO
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8764
- Acceso en línea:
- https://hdl.handle.net/11323/8764
https://repositorio.cuc.edu.co/
- Palabra clave:
- Oral cancer
Survival
Prognosis
Disease-free survival
Energy metabolism
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_bc7c3f0b99181965e7ae44c250e8d25c |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8764 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis |
title |
Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis |
spellingShingle |
Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis Oral cancer Survival Prognosis Disease-free survival Energy metabolism |
title_short |
Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis |
title_full |
Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis |
title_fullStr |
Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis |
title_full_unstemmed |
Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis |
title_sort |
Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis |
dc.creator.fl_str_mv |
Mattos, Sergio Diel, Leonardo Francisco Bittencourt, Leonardo Schnorr, Carlos Eduardo Aurina Gonçalves, Francisca Bernardi, L LAMERS, MARCELO |
dc.contributor.author.spa.fl_str_mv |
Mattos, Sergio Diel, Leonardo Francisco Bittencourt, Leonardo Schnorr, Carlos Eduardo Aurina Gonçalves, Francisca Bernardi, L LAMERS, MARCELO |
dc.subject.spa.fl_str_mv |
Oral cancer Survival Prognosis Disease-free survival Energy metabolism |
topic |
Oral cancer Survival Prognosis Disease-free survival Energy metabolism |
description |
Molecular changes that affect mitochondrial glycolysis have been associated with the maintenance of tumor cells. Some metabolic factors have already been described as predictors of disease severity and outcomes. This systematic review was conducted to answer the question: Is the glycolytic pathway correlated with the prognosis of oral squamous cell carcinoma (OSCC)? A search strategy was developed to retrieve studies in English from PubMed, Scopus, and ISI Web of Knowledge using keywords related to squamous cell carcinoma, survival, and glycolytic pathway, with no restriction of publication date. The search retrieved 1273 publications. After the titles and abstracts were analyzed, 27 studies met inclusion criteria. Studies were divided into groups according to two subtopics, glycolytic pathways and diagnosis, which describe the glycolytic profile of OSCC tumors. Several components of tumor energy metabolism found in this review are important predictors of survival of patients with OSCC. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-30T21:20:15Z |
dc.date.available.none.fl_str_mv |
2021-09-30T21:20:15Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
0100-879X 1414-431X |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8764 |
dc.identifier.doi.spa.fl_str_mv |
doi: 10.1590/1414-431X202010504 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0100-879X 1414-431X doi: 10.1590/1414-431X202010504 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8764 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 2016; 16: 635–649, doi: 10.1038/nrc.2016.77. 2. Ishikawa S, Sugimoto M, Kitabatake K, Sugano A, Nakamura M, Kaneko M, et al. Identification of salivary metabolomic biomarkers for oral cancer screening. Sci Rep 2016; 6: 31520, doi: 10.1038/srep31520. 3. Scully C, Bagan J. Oral squamous cell carcinoma overview. Oral Oncol 2009; 45: 301–308, doi: 10.1016/j.oraloncology. 2009.01.004. 4. Chen L, Yang Y, Liu S, Piao L, Zhang Y, Lin Z, et al. High expression of leucine zipper-EF-hand containing transmembrane protein 1 predicts poor prognosis in head and neck squamous cell carcinoma. BioMed Res Int 2014; 2014: 850316, doi: 10.1155/2014/850316. 5. Baffy G, Derdak Z, Robson SC. Mitochondrial recoupling: a novel therapeutic strategy for cancer? Br J Cancer 2011; 105: 469–474, doi: 10.1038/bjc.2011.245. 6. Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeuticperspective. Nat Rev Clin Oncol 2017; 14: 11–31, doi: 10.1038/nrclinonc.2016.60. 7. Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, et al. Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 2011; 13: 81–97, doi: 10.1593/neo.101102. 8. Tanaka T, Ishigamori R. Understanding carcinogenesis for fighting oral cancer. J Oncol 2011; 2011: 603740. 9. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10: 671–684, doi: 10.1038/nrd3504. 10. Cochran WG. The combination of estimates from different experiments. Biometrics 1954; 10: 101–129, doi: 10.2307/3001666. 11. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–560, doi: 10.1136/bmj.327.7414.557. 12. Chen SW, Chou CT, Chang CC, Li YJ, Chen ST, Lin IC, et al. HMGCS2 enhances invasion and metastasis via direct interaction with PPARalpha to activate Src signaling in colorectal cancer and oral cancer. Oncotarget 2017; 8:22460–22476, doi: 10.18632/oncotarget.13006. 13. Grimm M, Alexander D, Munz A, Hoffmann J, Reinert S. Increased LDH5 expression is associated with lymph node metastasis and outcome in oral squamous cell carcinoma. Clin Exp Metastasis 2013; 30: 529–540, doi: 10.1007/s10585-012-9557-2. 14. Grimm M, Munz A, Teriete P, Nadtotschi T, Reinert S. GLUT1(+)/TKTL1(+) coexpression predicts poor outcome in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 117: 743–753, doi: 10.1016/j.oooo.2014. 02.007. 15. Kondo Y, Yoshikawa K, Omura Y, Shinohara A, Kazaoka Y, Sano J, et al. Clinicopathological significance of carbonic anhydrase 9, glucose transporter-1, Ki-67 and p53 expression in oral squamous cell carcinoma. Oncol Rep 2011; 25:1227–1233, doi: 10.3892/or.2011.1216. 16. Kunkel M, Förster GJ, Reichert TE, Jeong JH, Benz P, Bartenstein P, et al. Detection of recurrent oral squamous cell carcinoma by [18 F]-2-fluorodeoxyglucose-positron emission tomography: implications for prognosis and patient management. Cancer 2003; 98: 2257–2265, doi: 10.1002/ cncr.11763. 17. Li YJ, Huang TH, Hsiao M, Lin BR, Cheng SJ, Yang CN, et al. Suppression of fructose-bisphosphate aldolase C expression as a predictor of advanced oral squamous cell carcinoma. Head Neck 2016; 38: E1075–E1085, doi: 10.1002/hed.24161. 18. Ohba S, Fujii H, Ito S, Fujimaki M, Matsumoto F, Furukawa M, et al. Overexpression of GLUT-1 in the invasion front is associated with depth of oral squamous cell carcinoma and prognosis. J Oral Pathol Med 2009; 39: 74–78, doi: 10.1111/j.1600-0714.2009.00814.x. 19. Sun W, Zhang X, Ding X, Li H, Geng M, Xie Z, et al. Lactate dehydrogenase B is associated with the response to neoadjuvant chemotherapy in oral squamous cell carcinoma. PloS One 2015; 10: e0125976, doi: 10.1371/journal.pone.0125976. 20. Wang Y, Zhang X, Zhang Y, Zhu Y, Yuan C, Qi B, et al. Overexpression of pyruvate kinase M2 associates with aggressive clinicopathological features and unfavorable prognosis in oral squamous cell carcinoma. Cancer Biol Ther 2015; 16: 839–845, doi: 10.1080/15384047.2015.1030551. 21. Eckert A, Lautner M, Schütze A, Taubert H, Schubert J,Bilkenroth U. Coexpression of hypoxia-inducible factor-1 alpha and glucose transporter-1 is associated with poor prognosis in oral squamous cell carcinoma patients. Histopathology 2011; 58: 1136–1147, doi: 10.1111/j.1365-2559. 2011.03806.x. 22. Kunkel M, Forster GJ, Reichert TE, Kutzner J, Benz P, Bartenstein P, et al. Radiation response non-invasively imaged by [18F]FDG-PET predicts local tumor control and survival in advanced oral squamous cell carcinoma. Oral Oncol 2003; 39: 170–177, doi: 10.1016/S1368-8375(02)00087-8. 23. Grimm M, Schmitt S, Teriete P, Biegner T, Stenzl A, Hennenlotter J, et al. A biomarker based detection and characterization of carcinomas exploiting two fundamental biophysical mechanisms in mammalian cells. BMC Cancer 2013; 13: 569, doi: 10.1186/1471-2407-13-569. 24. Abd El-Hafez YG, Moustafa HM, Khalil HF, Liao CT, Yen TC. Total lesion glycolysis: a possible new prognostic parameter in oral cavity squamous cell carcinoma. Oral Oncol 2013; 49: 261–268, doi: 10.1016/j.oraloncology.2012.09.005. 25. Cho JK, Hyun SH, Choi N, Kim MJ, Padera TP, Choi JY, et al. Significance of lymph node metastasis in cancer dissemination of head and neck cancer. Transl Oncol 2015;8: 119–125, doi: 10.1016/j.tranon.2015.03.001. 26. Hasegawa O, Satomi T, Kono M, Watanabe M, Ikehata N, Chikazu D. Correlation between the malignancy and prognosis of oral squamous cell carcinoma in the maximum standardized uptake value. Odontology 2019; 107: 237–243, doi: 10.1007/s10266-018-0379-9. 27. Hofele C, Freier K, Thiele OC, Haberkorn U, Buchmann I. High 2-[18F]fluoro-2-deoxy-d-glucose (18FDG) uptake measured by positron emission tomography is associated with reduced overall survival in patients with oral squamous cell carcinoma. Oral Oncol 2009; 45: 963–967, doi: 10.1016/j. oraloncology.2009.06.008. 28. Joo YH, Yoo IR, Cho KJ, Park JO, Nam IC, Kim MS. Extracapsular spread and FDG PET/CT correlations in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2013; 42: 158–163, doi: 10.1016/j.ijom.2012.11.006. 29. Kunkel M, Helisch A, Reichert TE, Jeong JH, Buchholz HG, Benz P, et al. Clinical and prognostic value of [18F]FDGPET for surveillance of oral squamous cell carcinoma after surgical salvage therapy. Oral Oncol 2006; 42: 297–305, doi: 10.1016/j.oraloncology.2005.08.004. 30. Morand GB, Vital DG, Kudura K, Werner J, Stoeckli SJ, Huber GF, et al. Maximum standardized uptake value (SUVmax) of primary tumor predicts occult neck metastasis in oral cancer. Sci Rep 2018; 8: 11817, doi: 10.1038/s41598- 018-30111-7. 31. Shimizu M, Mitsudo K, Koike I, Taguri M, Iwai T, Koizumi T, et al. Prognostic value of 2-[18 F]fluoro-2-deoxy-D-glucose positron emission tomography for patients with oral squamous cell carcinoma treated with retrograde superselective intra-arterial chemotherapy and daily concurrent radiotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121: 239–247, doi: 10.1016/j.oooo.2015.10.018. 32. Suzuki H, Hasegawa Y, Terada A, Hyodo I, Nakashima T, Nishio M, et al. FDG-PET predicts survival and distant metastasis in oral squamous cell carcinoma. Oral Oncol 2009; 45: 569–573, doi: 10.1016/j.oraloncology.2008.07.009. 33. Suzuki H, Fukuyama R, Hasegawa Y, Tamaki T, Nishio M, Nakashima T, et al. Tumor thickness, depth of invasion, and Bcl-2 expression are correlated with FDG-uptake in oral squamous cell carcinomas. Oral Oncol 2009; 45: 891–897, doi: 10.1016/j.oraloncology.2009.03.009. 34. Suzuki H, Tamaki T, Nishio M, Beppu S, Mukoyama N, Hanai N, et al. Peak of standardized uptake value in oral cancer predicts survival adjusting for pathological stage. In Vivo 2018; 32: 1193–1198, doi: 10.21873/invivo.11363. 35. Yamaga E, Toriihara A, Nakamura S, Asai S, Fujioka T, Yoshimura R, et al. Clinical usefulness of 2-deoxy-2-[18F] fluoro-d-glucose-positron emission tomography/computed tomography for assessing early oral squamous cell carcinoma (cT1-2N0M0). Jpn J Clin Oncol 2018; 48: 633–639, doi: 10.1093/jjco/hyy065. 36. Zhang H, Seikaly H, Abele JT, Jeffery DT, Harris JR, O’Connell DA. Metabolic tumour volume as a prognostic factor for oral cavity squamous cell carcinoma treated with primary surgery. J Otolaryngol Head Neck Surg 2014; 43: 33. 37. Kim M, Higuchi T, Nakajima T, Andriana P, Hirasawa H, Tokue A, et al. 18F-FDG and 18F-FAMT PET-derived metabolic parameters predict outcome of oral squamous cell carcinoma. Oral Radiol 2019; 35: 308–314, doi:10.1007/s11282-019-00377-2. 38. Kimura M, Kato I, Ishibashi K, Shibata A, Nishiwaki S, Fukumura M, et al. The prognostic significance of intratumoral heterogeneity of 18F-FDG uptake in patients with oral cavity squamous cell carcinoma. Eur J Radiol 2019; 114: 99–104, doi: 10.1016/j.ejrad.2019.03.004. 39. Genden EM, Ferlito A, Silver CE, Takes RP, Suarez C, Owen RP, et al. Contemporary management of cancer of the oral cavity. Eur Arch Otorhinolaryngol 2010; 267: 1001–1017, doi: 10.1007/s00405-010-1206-2. 40. Ram H, Sarkar J, Kumar H, Konwar R, Bhatt ML, Mohammad S. Oral cancer: risk factors and molecular pathogenesis. J Maxillofac Oral Surg 2011; 10: 132–137, doi: 10.1007/s12663-011-0195-z. 41. Li CX, Sun JL, Gong ZC, Lin ZQ, Liu H. Prognostic value of GLUT-1 expression in oral squamous cell carcinoma. A prisma-compliant meta-analysis. Medicine (Baltimore) 2016; 95: e5324, doi: 10.1097/MD.0000000000005324. 42. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 2008; 8: 705–713, doi: 10.1038/nrc2468. 43. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674, doi: 10.1016/j.cell. 2011.02.013. 44. Koukourakis MI, Giatromanolaki A, Simopoulos C, Polychronidis A, Sivridis E. Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clin Exp Metastasis 2005; 22: 25–30, doi: 10.1007/s10585-005-2343-7. 45. Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int 2013; 13: 89, doi: 10.1186/1475-2867-13-89. 46. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 2008; 13: 472–482, doi: 10.1016/j.ccr.2008.05.005. 47. Xu Q, Tu J, Dou C, Zhang J, Yang L, Liu X, et al. HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma. Mol Cancer 2017; 16: 178, doi: 10.1186/s12943-017-0748-y. 48. Hamabe A, Konno M, Tanuma N, Shima H, Tsunekuni K, Kawamoto K, et al. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc Natl Acad Sci USA 2014; 111: 15526– 15531, doi: 10.1073/pnas.1407717111. 49. Huang C, Huang Z, Bai P, Luo G, Zhao X, Wang X. Expression of pyruvate kinase M2 in human bladder cancer and its correlation with clinical parameters and prognosis. Onco Targets Ther 2018; 11: 2075–2082, doi: 10.2147/OTT. S152999. 50. Wang C, Jiang J, Ji J, Cai Q, Chen X, Yu Y, et al. PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer. Sci Rep 2017; 7: 2886, doi: 10.1038/s41598-017-03031-1. 51. Turner DM, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 2014; 1843: 2563–2582, doi: 10.1016/j.bbamcr.2014.05.014. 52. Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med 2016; 213: 337–354, doi: 10.1084/jem.20150900. 53. Lau AN, Vander Heiden GM. Metabolism in the tumor microenvironment. Ann Rev Cancer Biol 2019; 4: 17–40, doi: 10.1146/annurev-cancerbio-030419-033333. 54. Krockenberger M, Honig A, Rieger L, Coy JF, Sutterlin M, Kapp M, et al. Transketolase-like 1 expression correlates with subtypes of ovarian cancer and the presence of distant metastases. Int J Gynecol Cancer 2007; 17: 101–106, doi:10.1111/j.1525-1438.2007.00799.x. 55. Coy JF. EDIM-TKTL1/Apo10 blood test: an innate immune system based liquid biopsy for the early detection, characterization and targeted treatment of cancer. Int J Mol Sci 2017; 18: 878, doi: 10.3390/ijms18040878. 56. Song Y, Liu D, He G. TKTL1 and p63 are biomarkers for the poor prognosis of gastric cancer patients. Cancer Biomark 2015; 15: 591–597, doi: 10.3233/CBM-150499. 57. Su SG, Yang M, Zhang MF, Peng QZ, Li MY, Liu LP, et al. miR-107-mediated decrease of HMGCS2 indicates poor outcomes and promotes cell migration in hepatocellular carcinoma. Int J Biochem Cell Biol 2017; 91: 53–59, doi:10.1016/j.biocel.2017.08.016. 58. Ross JS, Tse T, Zarin DA, Xu H, Zhou L, Krumholz HM. Publication of NIH funded trials registered in ClinicalTrials. gov: cross sectional analysis. BMJ 2012; 344: d7292, doi:10.1136/bmj.d7292. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Brazilian Journal of Medical and Biological Research |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://pubmed.ncbi.nlm.nih.gov/33503201/ |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/cb35efa8-b5e3-4c94-abd9-65d99deb8802/download https://repositorio.cuc.edu.co/bitstreams/55e7e837-8b03-41f5-87f8-6a9adf70cb58/download https://repositorio.cuc.edu.co/bitstreams/344d73cf-547d-4e6c-bfe4-670dcb510adb/download https://repositorio.cuc.edu.co/bitstreams/47cfa136-ec3f-4999-a2ca-82322c7a1129/download https://repositorio.cuc.edu.co/bitstreams/438a1bf2-2a79-46ca-b9d9-6cbf1768a44d/download |
bitstream.checksum.fl_str_mv |
a08c4c287bf4dbe9f71d53a7f906f103 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 141c7c70be01d617be4ecb24db6c411e 2c1d43e78ce41d3ecae1df2fd0c557db |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760683017043968 |
spelling |
Mattos, SergioDiel, Leonardo FranciscoBittencourt, LeonardoSchnorr, Carlos EduardoAurina Gonçalves, FranciscaBernardi, LLAMERS, MARCELO2021-09-30T21:20:15Z2021-09-30T21:20:15Z20210100-879X1414-431Xhttps://hdl.handle.net/11323/8764doi: 10.1590/1414-431X202010504Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Molecular changes that affect mitochondrial glycolysis have been associated with the maintenance of tumor cells. Some metabolic factors have already been described as predictors of disease severity and outcomes. This systematic review was conducted to answer the question: Is the glycolytic pathway correlated with the prognosis of oral squamous cell carcinoma (OSCC)? A search strategy was developed to retrieve studies in English from PubMed, Scopus, and ISI Web of Knowledge using keywords related to squamous cell carcinoma, survival, and glycolytic pathway, with no restriction of publication date. The search retrieved 1273 publications. After the titles and abstracts were analyzed, 27 studies met inclusion criteria. Studies were divided into groups according to two subtopics, glycolytic pathways and diagnosis, which describe the glycolytic profile of OSCC tumors. Several components of tumor energy metabolism found in this review are important predictors of survival of patients with OSCC.Mattos, Sergio-will be generated-orcid-0000-0001-6628-8797-600Diel, Leonardo Francisco-will be generated-orcid-0000-0003-1526-2575-600Bittencourt, Leonardo-will be generated-orcid-0000-0001-9649-556X-600Schnorr, Carlos Eduardo-will be generated-orcid-0000-0002-2047-2107-600Aurina Gonçalves, Francisca-will be generated-orcid-0000-0001-8019-1684-600Bernardi, LLAMERS, MARCELO-will be generated-orcid-0000-0001-5296-5662-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Brazilian Journal of Medical and Biological Researchhttps://pubmed.ncbi.nlm.nih.gov/33503201/Oral cancerSurvivalPrognosisDisease-free survivalEnergy metabolismGlycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysisArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 2016; 16: 635–649, doi: 10.1038/nrc.2016.77.2. Ishikawa S, Sugimoto M, Kitabatake K, Sugano A, Nakamura M, Kaneko M, et al. Identification of salivary metabolomic biomarkers for oral cancer screening. Sci Rep 2016; 6: 31520, doi: 10.1038/srep31520.3. Scully C, Bagan J. Oral squamous cell carcinoma overview. Oral Oncol 2009; 45: 301–308, doi: 10.1016/j.oraloncology. 2009.01.004.4. Chen L, Yang Y, Liu S, Piao L, Zhang Y, Lin Z, et al. High expression of leucine zipper-EF-hand containing transmembrane protein 1 predicts poor prognosis in head and neck squamous cell carcinoma. BioMed Res Int 2014; 2014: 850316, doi: 10.1155/2014/850316.5. Baffy G, Derdak Z, Robson SC. Mitochondrial recoupling: a novel therapeutic strategy for cancer? Br J Cancer 2011; 105: 469–474, doi: 10.1038/bjc.2011.245.6. Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeuticperspective. Nat Rev Clin Oncol 2017; 14: 11–31, doi: 10.1038/nrclinonc.2016.60.7. Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, et al. Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 2011; 13: 81–97, doi: 10.1593/neo.101102.8. Tanaka T, Ishigamori R. Understanding carcinogenesis for fighting oral cancer. J Oncol 2011; 2011: 603740.9. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10: 671–684, doi: 10.1038/nrd3504.10. Cochran WG. The combination of estimates from different experiments. Biometrics 1954; 10: 101–129, doi: 10.2307/3001666.11. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–560, doi: 10.1136/bmj.327.7414.557.12. Chen SW, Chou CT, Chang CC, Li YJ, Chen ST, Lin IC, et al. HMGCS2 enhances invasion and metastasis via direct interaction with PPARalpha to activate Src signaling in colorectal cancer and oral cancer. Oncotarget 2017; 8:22460–22476, doi: 10.18632/oncotarget.13006.13. Grimm M, Alexander D, Munz A, Hoffmann J, Reinert S. Increased LDH5 expression is associated with lymph node metastasis and outcome in oral squamous cell carcinoma. Clin Exp Metastasis 2013; 30: 529–540, doi: 10.1007/s10585-012-9557-2.14. Grimm M, Munz A, Teriete P, Nadtotschi T, Reinert S. GLUT1(+)/TKTL1(+) coexpression predicts poor outcome in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 117: 743–753, doi: 10.1016/j.oooo.2014. 02.007.15. Kondo Y, Yoshikawa K, Omura Y, Shinohara A, Kazaoka Y, Sano J, et al. Clinicopathological significance of carbonic anhydrase 9, glucose transporter-1, Ki-67 and p53 expression in oral squamous cell carcinoma. Oncol Rep 2011; 25:1227–1233, doi: 10.3892/or.2011.1216.16. Kunkel M, Förster GJ, Reichert TE, Jeong JH, Benz P, Bartenstein P, et al. Detection of recurrent oral squamous cell carcinoma by [18 F]-2-fluorodeoxyglucose-positron emission tomography: implications for prognosis and patient management. Cancer 2003; 98: 2257–2265, doi: 10.1002/ cncr.11763.17. Li YJ, Huang TH, Hsiao M, Lin BR, Cheng SJ, Yang CN, et al. Suppression of fructose-bisphosphate aldolase C expression as a predictor of advanced oral squamous cell carcinoma. Head Neck 2016; 38: E1075–E1085, doi: 10.1002/hed.24161.18. Ohba S, Fujii H, Ito S, Fujimaki M, Matsumoto F, Furukawa M, et al. Overexpression of GLUT-1 in the invasion front is associated with depth of oral squamous cell carcinoma and prognosis. J Oral Pathol Med 2009; 39: 74–78, doi: 10.1111/j.1600-0714.2009.00814.x.19. Sun W, Zhang X, Ding X, Li H, Geng M, Xie Z, et al. Lactate dehydrogenase B is associated with the response to neoadjuvant chemotherapy in oral squamous cell carcinoma. PloS One 2015; 10: e0125976, doi: 10.1371/journal.pone.0125976.20. Wang Y, Zhang X, Zhang Y, Zhu Y, Yuan C, Qi B, et al. Overexpression of pyruvate kinase M2 associates with aggressive clinicopathological features and unfavorable prognosis in oral squamous cell carcinoma. Cancer Biol Ther 2015; 16: 839–845, doi: 10.1080/15384047.2015.1030551.21. Eckert A, Lautner M, Schütze A, Taubert H, Schubert J,Bilkenroth U. Coexpression of hypoxia-inducible factor-1 alpha and glucose transporter-1 is associated with poor prognosis in oral squamous cell carcinoma patients. Histopathology 2011; 58: 1136–1147, doi: 10.1111/j.1365-2559. 2011.03806.x.22. Kunkel M, Forster GJ, Reichert TE, Kutzner J, Benz P, Bartenstein P, et al. Radiation response non-invasively imaged by [18F]FDG-PET predicts local tumor control and survival in advanced oral squamous cell carcinoma. Oral Oncol 2003; 39: 170–177, doi: 10.1016/S1368-8375(02)00087-8.23. Grimm M, Schmitt S, Teriete P, Biegner T, Stenzl A, Hennenlotter J, et al. A biomarker based detection and characterization of carcinomas exploiting two fundamental biophysical mechanisms in mammalian cells. BMC Cancer 2013; 13: 569, doi: 10.1186/1471-2407-13-569.24. Abd El-Hafez YG, Moustafa HM, Khalil HF, Liao CT, Yen TC. Total lesion glycolysis: a possible new prognostic parameter in oral cavity squamous cell carcinoma. Oral Oncol 2013; 49: 261–268, doi: 10.1016/j.oraloncology.2012.09.005.25. Cho JK, Hyun SH, Choi N, Kim MJ, Padera TP, Choi JY, et al. Significance of lymph node metastasis in cancer dissemination of head and neck cancer. Transl Oncol 2015;8: 119–125, doi: 10.1016/j.tranon.2015.03.001.26. Hasegawa O, Satomi T, Kono M, Watanabe M, Ikehata N, Chikazu D. Correlation between the malignancy and prognosis of oral squamous cell carcinoma in the maximum standardized uptake value. Odontology 2019; 107: 237–243, doi: 10.1007/s10266-018-0379-9.27. Hofele C, Freier K, Thiele OC, Haberkorn U, Buchmann I. High 2-[18F]fluoro-2-deoxy-d-glucose (18FDG) uptake measured by positron emission tomography is associated with reduced overall survival in patients with oral squamous cell carcinoma. Oral Oncol 2009; 45: 963–967, doi: 10.1016/j. oraloncology.2009.06.008.28. Joo YH, Yoo IR, Cho KJ, Park JO, Nam IC, Kim MS. Extracapsular spread and FDG PET/CT correlations in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2013; 42: 158–163, doi: 10.1016/j.ijom.2012.11.006.29. Kunkel M, Helisch A, Reichert TE, Jeong JH, Buchholz HG, Benz P, et al. Clinical and prognostic value of [18F]FDGPET for surveillance of oral squamous cell carcinoma after surgical salvage therapy. Oral Oncol 2006; 42: 297–305, doi: 10.1016/j.oraloncology.2005.08.004.30. Morand GB, Vital DG, Kudura K, Werner J, Stoeckli SJ, Huber GF, et al. Maximum standardized uptake value (SUVmax) of primary tumor predicts occult neck metastasis in oral cancer. Sci Rep 2018; 8: 11817, doi: 10.1038/s41598- 018-30111-7.31. Shimizu M, Mitsudo K, Koike I, Taguri M, Iwai T, Koizumi T, et al. Prognostic value of 2-[18 F]fluoro-2-deoxy-D-glucose positron emission tomography for patients with oral squamous cell carcinoma treated with retrograde superselective intra-arterial chemotherapy and daily concurrent radiotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121: 239–247, doi: 10.1016/j.oooo.2015.10.018.32. Suzuki H, Hasegawa Y, Terada A, Hyodo I, Nakashima T, Nishio M, et al. FDG-PET predicts survival and distant metastasis in oral squamous cell carcinoma. Oral Oncol 2009; 45: 569–573, doi: 10.1016/j.oraloncology.2008.07.009.33. Suzuki H, Fukuyama R, Hasegawa Y, Tamaki T, Nishio M, Nakashima T, et al. Tumor thickness, depth of invasion, and Bcl-2 expression are correlated with FDG-uptake in oral squamous cell carcinomas. Oral Oncol 2009; 45: 891–897, doi: 10.1016/j.oraloncology.2009.03.009.34. Suzuki H, Tamaki T, Nishio M, Beppu S, Mukoyama N, Hanai N, et al. Peak of standardized uptake value in oral cancer predicts survival adjusting for pathological stage. In Vivo 2018; 32: 1193–1198, doi: 10.21873/invivo.11363.35. Yamaga E, Toriihara A, Nakamura S, Asai S, Fujioka T, Yoshimura R, et al. Clinical usefulness of 2-deoxy-2-[18F] fluoro-d-glucose-positron emission tomography/computed tomography for assessing early oral squamous cell carcinoma (cT1-2N0M0). Jpn J Clin Oncol 2018; 48: 633–639, doi: 10.1093/jjco/hyy065.36. Zhang H, Seikaly H, Abele JT, Jeffery DT, Harris JR, O’Connell DA. Metabolic tumour volume as a prognostic factor for oral cavity squamous cell carcinoma treated with primary surgery. J Otolaryngol Head Neck Surg 2014; 43: 33.37. Kim M, Higuchi T, Nakajima T, Andriana P, Hirasawa H, Tokue A, et al. 18F-FDG and 18F-FAMT PET-derived metabolic parameters predict outcome of oral squamous cell carcinoma. Oral Radiol 2019; 35: 308–314, doi:10.1007/s11282-019-00377-2.38. Kimura M, Kato I, Ishibashi K, Shibata A, Nishiwaki S, Fukumura M, et al. The prognostic significance of intratumoral heterogeneity of 18F-FDG uptake in patients with oral cavity squamous cell carcinoma. Eur J Radiol 2019; 114: 99–104, doi: 10.1016/j.ejrad.2019.03.004.39. Genden EM, Ferlito A, Silver CE, Takes RP, Suarez C, Owen RP, et al. Contemporary management of cancer of the oral cavity. Eur Arch Otorhinolaryngol 2010; 267: 1001–1017, doi: 10.1007/s00405-010-1206-2.40. Ram H, Sarkar J, Kumar H, Konwar R, Bhatt ML, Mohammad S. Oral cancer: risk factors and molecular pathogenesis. J Maxillofac Oral Surg 2011; 10: 132–137, doi: 10.1007/s12663-011-0195-z.41. Li CX, Sun JL, Gong ZC, Lin ZQ, Liu H. Prognostic value of GLUT-1 expression in oral squamous cell carcinoma. A prisma-compliant meta-analysis. Medicine (Baltimore) 2016; 95: e5324, doi: 10.1097/MD.0000000000005324.42. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 2008; 8: 705–713, doi: 10.1038/nrc2468.43. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674, doi: 10.1016/j.cell. 2011.02.013.44. Koukourakis MI, Giatromanolaki A, Simopoulos C, Polychronidis A, Sivridis E. Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clin Exp Metastasis 2005; 22: 25–30, doi: 10.1007/s10585-005-2343-7.45. Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int 2013; 13: 89, doi: 10.1186/1475-2867-13-89.46. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 2008; 13: 472–482, doi: 10.1016/j.ccr.2008.05.005.47. Xu Q, Tu J, Dou C, Zhang J, Yang L, Liu X, et al. HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma. Mol Cancer 2017; 16: 178, doi: 10.1186/s12943-017-0748-y.48. Hamabe A, Konno M, Tanuma N, Shima H, Tsunekuni K, Kawamoto K, et al. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc Natl Acad Sci USA 2014; 111: 15526– 15531, doi: 10.1073/pnas.1407717111.49. Huang C, Huang Z, Bai P, Luo G, Zhao X, Wang X. Expression of pyruvate kinase M2 in human bladder cancer and its correlation with clinical parameters and prognosis. Onco Targets Ther 2018; 11: 2075–2082, doi: 10.2147/OTT. S152999.50. Wang C, Jiang J, Ji J, Cai Q, Chen X, Yu Y, et al. PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer. Sci Rep 2017; 7: 2886, doi: 10.1038/s41598-017-03031-1.51. Turner DM, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 2014; 1843: 2563–2582, doi: 10.1016/j.bbamcr.2014.05.014.52. Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med 2016; 213: 337–354, doi: 10.1084/jem.20150900.53. Lau AN, Vander Heiden GM. Metabolism in the tumor microenvironment. Ann Rev Cancer Biol 2019; 4: 17–40, doi: 10.1146/annurev-cancerbio-030419-033333.54. Krockenberger M, Honig A, Rieger L, Coy JF, Sutterlin M, Kapp M, et al. Transketolase-like 1 expression correlates with subtypes of ovarian cancer and the presence of distant metastases. Int J Gynecol Cancer 2007; 17: 101–106, doi:10.1111/j.1525-1438.2007.00799.x.55. Coy JF. EDIM-TKTL1/Apo10 blood test: an innate immune system based liquid biopsy for the early detection, characterization and targeted treatment of cancer. Int J Mol Sci 2017; 18: 878, doi: 10.3390/ijms18040878.56. Song Y, Liu D, He G. TKTL1 and p63 are biomarkers for the poor prognosis of gastric cancer patients. Cancer Biomark 2015; 15: 591–597, doi: 10.3233/CBM-150499.57. Su SG, Yang M, Zhang MF, Peng QZ, Li MY, Liu LP, et al. miR-107-mediated decrease of HMGCS2 indicates poor outcomes and promotes cell migration in hepatocellular carcinoma. Int J Biochem Cell Biol 2017; 91: 53–59, doi:10.1016/j.biocel.2017.08.016.58. Ross JS, Tse T, Zarin DA, Xu H, Zhou L, Krumholz HM. Publication of NIH funded trials registered in ClinicalTrials. gov: cross sectional analysis. BMJ 2012; 344: d7292, doi:10.1136/bmj.d7292.PublicationORIGINALGlycolytic pathway candidate markers in the.pdfGlycolytic pathway candidate markers in the.pdfapplication/pdf999607https://repositorio.cuc.edu.co/bitstreams/cb35efa8-b5e3-4c94-abd9-65d99deb8802/downloada08c4c287bf4dbe9f71d53a7f906f103MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/55e7e837-8b03-41f5-87f8-6a9adf70cb58/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/344d73cf-547d-4e6c-bfe4-670dcb510adb/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILGlycolytic pathway candidate markers in the.pdf.jpgGlycolytic pathway candidate markers in the.pdf.jpgimage/jpeg67539https://repositorio.cuc.edu.co/bitstreams/47cfa136-ec3f-4999-a2ca-82322c7a1129/download141c7c70be01d617be4ecb24db6c411eMD54TEXTGlycolytic pathway candidate markers in the.pdf.txtGlycolytic pathway candidate markers in the.pdf.txttext/plain40142https://repositorio.cuc.edu.co/bitstreams/438a1bf2-2a79-46ca-b9d9-6cbf1768a44d/download2c1d43e78ce41d3ecae1df2fd0c557dbMD5511323/8764oai:repositorio.cuc.edu.co:11323/87642024-09-16 16:47:49.207http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |