Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis

Molecular changes that affect mitochondrial glycolysis have been associated with the maintenance of tumor cells. Some metabolic factors have already been described as predictors of disease severity and outcomes. This systematic review was conducted to answer the question: Is the glycolytic pathway c...

Full description

Autores:
Mattos, Sergio
Diel, Leonardo Francisco
Bittencourt, Leonardo
Schnorr, Carlos Eduardo
Aurina Gonçalves, Francisca
Bernardi, L
LAMERS, MARCELO
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8764
Acceso en línea:
https://hdl.handle.net/11323/8764
https://repositorio.cuc.edu.co/
Palabra clave:
Oral cancer
Survival
Prognosis
Disease-free survival
Energy metabolism
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_bc7c3f0b99181965e7ae44c250e8d25c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8764
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis
title Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis
spellingShingle Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis
Oral cancer
Survival
Prognosis
Disease-free survival
Energy metabolism
title_short Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis
title_full Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis
title_fullStr Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis
title_full_unstemmed Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis
title_sort Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis
dc.creator.fl_str_mv Mattos, Sergio
Diel, Leonardo Francisco
Bittencourt, Leonardo
Schnorr, Carlos Eduardo
Aurina Gonçalves, Francisca
Bernardi, L
LAMERS, MARCELO
dc.contributor.author.spa.fl_str_mv Mattos, Sergio
Diel, Leonardo Francisco
Bittencourt, Leonardo
Schnorr, Carlos Eduardo
Aurina Gonçalves, Francisca
Bernardi, L
LAMERS, MARCELO
dc.subject.spa.fl_str_mv Oral cancer
Survival
Prognosis
Disease-free survival
Energy metabolism
topic Oral cancer
Survival
Prognosis
Disease-free survival
Energy metabolism
description Molecular changes that affect mitochondrial glycolysis have been associated with the maintenance of tumor cells. Some metabolic factors have already been described as predictors of disease severity and outcomes. This systematic review was conducted to answer the question: Is the glycolytic pathway correlated with the prognosis of oral squamous cell carcinoma (OSCC)? A search strategy was developed to retrieve studies in English from PubMed, Scopus, and ISI Web of Knowledge using keywords related to squamous cell carcinoma, survival, and glycolytic pathway, with no restriction of publication date. The search retrieved 1273 publications. After the titles and abstracts were analyzed, 27 studies met inclusion criteria. Studies were divided into groups according to two subtopics, glycolytic pathways and diagnosis, which describe the glycolytic profile of OSCC tumors. Several components of tumor energy metabolism found in this review are important predictors of survival of patients with OSCC.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-30T21:20:15Z
dc.date.available.none.fl_str_mv 2021-09-30T21:20:15Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0100-879X
1414-431X
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8764
dc.identifier.doi.spa.fl_str_mv doi: 10.1590/1414-431X202010504
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0100-879X
1414-431X
doi: 10.1590/1414-431X202010504
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8764
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 2016; 16: 635–649, doi: 10.1038/nrc.2016.77.
2. Ishikawa S, Sugimoto M, Kitabatake K, Sugano A, Nakamura M, Kaneko M, et al. Identification of salivary metabolomic biomarkers for oral cancer screening. Sci Rep 2016; 6: 31520, doi: 10.1038/srep31520.
3. Scully C, Bagan J. Oral squamous cell carcinoma overview. Oral Oncol 2009; 45: 301–308, doi: 10.1016/j.oraloncology. 2009.01.004.
4. Chen L, Yang Y, Liu S, Piao L, Zhang Y, Lin Z, et al. High expression of leucine zipper-EF-hand containing transmembrane protein 1 predicts poor prognosis in head and neck squamous cell carcinoma. BioMed Res Int 2014; 2014: 850316, doi: 10.1155/2014/850316.
5. Baffy G, Derdak Z, Robson SC. Mitochondrial recoupling: a novel therapeutic strategy for cancer? Br J Cancer 2011; 105: 469–474, doi: 10.1038/bjc.2011.245.
6. Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeuticperspective. Nat Rev Clin Oncol 2017; 14: 11–31, doi: 10.1038/nrclinonc.2016.60.
7. Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, et al. Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 2011; 13: 81–97, doi: 10.1593/neo.101102.
8. Tanaka T, Ishigamori R. Understanding carcinogenesis for fighting oral cancer. J Oncol 2011; 2011: 603740.
9. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10: 671–684, doi: 10.1038/nrd3504.
10. Cochran WG. The combination of estimates from different experiments. Biometrics 1954; 10: 101–129, doi: 10.2307/3001666.
11. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–560, doi: 10.1136/bmj.327.7414.557.
12. Chen SW, Chou CT, Chang CC, Li YJ, Chen ST, Lin IC, et al. HMGCS2 enhances invasion and metastasis via direct interaction with PPARalpha to activate Src signaling in colorectal cancer and oral cancer. Oncotarget 2017; 8:22460–22476, doi: 10.18632/oncotarget.13006.
13. Grimm M, Alexander D, Munz A, Hoffmann J, Reinert S. Increased LDH5 expression is associated with lymph node metastasis and outcome in oral squamous cell carcinoma. Clin Exp Metastasis 2013; 30: 529–540, doi: 10.1007/s10585-012-9557-2.
14. Grimm M, Munz A, Teriete P, Nadtotschi T, Reinert S. GLUT1(+)/TKTL1(+) coexpression predicts poor outcome in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 117: 743–753, doi: 10.1016/j.oooo.2014. 02.007.
15. Kondo Y, Yoshikawa K, Omura Y, Shinohara A, Kazaoka Y, Sano J, et al. Clinicopathological significance of carbonic anhydrase 9, glucose transporter-1, Ki-67 and p53 expression in oral squamous cell carcinoma. Oncol Rep 2011; 25:1227–1233, doi: 10.3892/or.2011.1216.
16. Kunkel M, Förster GJ, Reichert TE, Jeong JH, Benz P, Bartenstein P, et al. Detection of recurrent oral squamous cell carcinoma by [18 F]-2-fluorodeoxyglucose-positron emission tomography: implications for prognosis and patient management. Cancer 2003; 98: 2257–2265, doi: 10.1002/ cncr.11763.
17. Li YJ, Huang TH, Hsiao M, Lin BR, Cheng SJ, Yang CN, et al. Suppression of fructose-bisphosphate aldolase C expression as a predictor of advanced oral squamous cell carcinoma. Head Neck 2016; 38: E1075–E1085, doi: 10.1002/hed.24161.
18. Ohba S, Fujii H, Ito S, Fujimaki M, Matsumoto F, Furukawa M, et al. Overexpression of GLUT-1 in the invasion front is associated with depth of oral squamous cell carcinoma and prognosis. J Oral Pathol Med 2009; 39: 74–78, doi: 10.1111/j.1600-0714.2009.00814.x.
19. Sun W, Zhang X, Ding X, Li H, Geng M, Xie Z, et al. Lactate dehydrogenase B is associated with the response to neoadjuvant chemotherapy in oral squamous cell carcinoma. PloS One 2015; 10: e0125976, doi: 10.1371/journal.pone.0125976.
20. Wang Y, Zhang X, Zhang Y, Zhu Y, Yuan C, Qi B, et al. Overexpression of pyruvate kinase M2 associates with aggressive clinicopathological features and unfavorable prognosis in oral squamous cell carcinoma. Cancer Biol Ther 2015; 16: 839–845, doi: 10.1080/15384047.2015.1030551.
21. Eckert A, Lautner M, Schütze A, Taubert H, Schubert J,Bilkenroth U. Coexpression of hypoxia-inducible factor-1 alpha and glucose transporter-1 is associated with poor prognosis in oral squamous cell carcinoma patients. Histopathology 2011; 58: 1136–1147, doi: 10.1111/j.1365-2559. 2011.03806.x.
22. Kunkel M, Forster GJ, Reichert TE, Kutzner J, Benz P, Bartenstein P, et al. Radiation response non-invasively imaged by [18F]FDG-PET predicts local tumor control and survival in advanced oral squamous cell carcinoma. Oral Oncol 2003; 39: 170–177, doi: 10.1016/S1368-8375(02)00087-8.
23. Grimm M, Schmitt S, Teriete P, Biegner T, Stenzl A, Hennenlotter J, et al. A biomarker based detection and characterization of carcinomas exploiting two fundamental biophysical mechanisms in mammalian cells. BMC Cancer 2013; 13: 569, doi: 10.1186/1471-2407-13-569.
24. Abd El-Hafez YG, Moustafa HM, Khalil HF, Liao CT, Yen TC. Total lesion glycolysis: a possible new prognostic parameter in oral cavity squamous cell carcinoma. Oral Oncol 2013; 49: 261–268, doi: 10.1016/j.oraloncology.2012.09.005.
25. Cho JK, Hyun SH, Choi N, Kim MJ, Padera TP, Choi JY, et al. Significance of lymph node metastasis in cancer dissemination of head and neck cancer. Transl Oncol 2015;8: 119–125, doi: 10.1016/j.tranon.2015.03.001.
26. Hasegawa O, Satomi T, Kono M, Watanabe M, Ikehata N, Chikazu D. Correlation between the malignancy and prognosis of oral squamous cell carcinoma in the maximum standardized uptake value. Odontology 2019; 107: 237–243, doi: 10.1007/s10266-018-0379-9.
27. Hofele C, Freier K, Thiele OC, Haberkorn U, Buchmann I. High 2-[18F]fluoro-2-deoxy-d-glucose (18FDG) uptake measured by positron emission tomography is associated with reduced overall survival in patients with oral squamous cell carcinoma. Oral Oncol 2009; 45: 963–967, doi: 10.1016/j. oraloncology.2009.06.008.
28. Joo YH, Yoo IR, Cho KJ, Park JO, Nam IC, Kim MS. Extracapsular spread and FDG PET/CT correlations in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2013; 42: 158–163, doi: 10.1016/j.ijom.2012.11.006.
29. Kunkel M, Helisch A, Reichert TE, Jeong JH, Buchholz HG, Benz P, et al. Clinical and prognostic value of [18F]FDGPET for surveillance of oral squamous cell carcinoma after surgical salvage therapy. Oral Oncol 2006; 42: 297–305, doi: 10.1016/j.oraloncology.2005.08.004.
30. Morand GB, Vital DG, Kudura K, Werner J, Stoeckli SJ, Huber GF, et al. Maximum standardized uptake value (SUVmax) of primary tumor predicts occult neck metastasis in oral cancer. Sci Rep 2018; 8: 11817, doi: 10.1038/s41598- 018-30111-7.
31. Shimizu M, Mitsudo K, Koike I, Taguri M, Iwai T, Koizumi T, et al. Prognostic value of 2-[18 F]fluoro-2-deoxy-D-glucose positron emission tomography for patients with oral squamous cell carcinoma treated with retrograde superselective intra-arterial chemotherapy and daily concurrent radiotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121: 239–247, doi: 10.1016/j.oooo.2015.10.018.
32. Suzuki H, Hasegawa Y, Terada A, Hyodo I, Nakashima T, Nishio M, et al. FDG-PET predicts survival and distant metastasis in oral squamous cell carcinoma. Oral Oncol 2009; 45: 569–573, doi: 10.1016/j.oraloncology.2008.07.009.
33. Suzuki H, Fukuyama R, Hasegawa Y, Tamaki T, Nishio M, Nakashima T, et al. Tumor thickness, depth of invasion, and Bcl-2 expression are correlated with FDG-uptake in oral squamous cell carcinomas. Oral Oncol 2009; 45: 891–897, doi: 10.1016/j.oraloncology.2009.03.009.
34. Suzuki H, Tamaki T, Nishio M, Beppu S, Mukoyama N, Hanai N, et al. Peak of standardized uptake value in oral cancer predicts survival adjusting for pathological stage. In Vivo 2018; 32: 1193–1198, doi: 10.21873/invivo.11363.
35. Yamaga E, Toriihara A, Nakamura S, Asai S, Fujioka T, Yoshimura R, et al. Clinical usefulness of 2-deoxy-2-[18F] fluoro-d-glucose-positron emission tomography/computed tomography for assessing early oral squamous cell carcinoma (cT1-2N0M0). Jpn J Clin Oncol 2018; 48: 633–639, doi: 10.1093/jjco/hyy065.
36. Zhang H, Seikaly H, Abele JT, Jeffery DT, Harris JR, O’Connell DA. Metabolic tumour volume as a prognostic factor for oral cavity squamous cell carcinoma treated with primary surgery. J Otolaryngol Head Neck Surg 2014; 43: 33.
37. Kim M, Higuchi T, Nakajima T, Andriana P, Hirasawa H, Tokue A, et al. 18F-FDG and 18F-FAMT PET-derived metabolic parameters predict outcome of oral squamous cell carcinoma. Oral Radiol 2019; 35: 308–314, doi:10.1007/s11282-019-00377-2.
38. Kimura M, Kato I, Ishibashi K, Shibata A, Nishiwaki S, Fukumura M, et al. The prognostic significance of intratumoral heterogeneity of 18F-FDG uptake in patients with oral cavity squamous cell carcinoma. Eur J Radiol 2019; 114: 99–104, doi: 10.1016/j.ejrad.2019.03.004.
39. Genden EM, Ferlito A, Silver CE, Takes RP, Suarez C, Owen RP, et al. Contemporary management of cancer of the oral cavity. Eur Arch Otorhinolaryngol 2010; 267: 1001–1017, doi: 10.1007/s00405-010-1206-2.
40. Ram H, Sarkar J, Kumar H, Konwar R, Bhatt ML, Mohammad S. Oral cancer: risk factors and molecular pathogenesis. J Maxillofac Oral Surg 2011; 10: 132–137, doi: 10.1007/s12663-011-0195-z.
41. Li CX, Sun JL, Gong ZC, Lin ZQ, Liu H. Prognostic value of GLUT-1 expression in oral squamous cell carcinoma. A prisma-compliant meta-analysis. Medicine (Baltimore) 2016; 95: e5324, doi: 10.1097/MD.0000000000005324.
42. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 2008; 8: 705–713, doi: 10.1038/nrc2468.
43. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674, doi: 10.1016/j.cell. 2011.02.013.
44. Koukourakis MI, Giatromanolaki A, Simopoulos C, Polychronidis A, Sivridis E. Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clin Exp Metastasis 2005; 22: 25–30, doi: 10.1007/s10585-005-2343-7.
45. Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int 2013; 13: 89, doi: 10.1186/1475-2867-13-89.
46. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 2008; 13: 472–482, doi: 10.1016/j.ccr.2008.05.005.
47. Xu Q, Tu J, Dou C, Zhang J, Yang L, Liu X, et al. HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma. Mol Cancer 2017; 16: 178, doi: 10.1186/s12943-017-0748-y.
48. Hamabe A, Konno M, Tanuma N, Shima H, Tsunekuni K, Kawamoto K, et al. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc Natl Acad Sci USA 2014; 111: 15526– 15531, doi: 10.1073/pnas.1407717111.
49. Huang C, Huang Z, Bai P, Luo G, Zhao X, Wang X. Expression of pyruvate kinase M2 in human bladder cancer and its correlation with clinical parameters and prognosis. Onco Targets Ther 2018; 11: 2075–2082, doi: 10.2147/OTT. S152999.
50. Wang C, Jiang J, Ji J, Cai Q, Chen X, Yu Y, et al. PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer. Sci Rep 2017; 7: 2886, doi: 10.1038/s41598-017-03031-1.
51. Turner DM, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 2014; 1843: 2563–2582, doi: 10.1016/j.bbamcr.2014.05.014.
52. Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med 2016; 213: 337–354, doi: 10.1084/jem.20150900.
53. Lau AN, Vander Heiden GM. Metabolism in the tumor microenvironment. Ann Rev Cancer Biol 2019; 4: 17–40, doi: 10.1146/annurev-cancerbio-030419-033333.
54. Krockenberger M, Honig A, Rieger L, Coy JF, Sutterlin M, Kapp M, et al. Transketolase-like 1 expression correlates with subtypes of ovarian cancer and the presence of distant metastases. Int J Gynecol Cancer 2007; 17: 101–106, doi:10.1111/j.1525-1438.2007.00799.x.
55. Coy JF. EDIM-TKTL1/Apo10 blood test: an innate immune system based liquid biopsy for the early detection, characterization and targeted treatment of cancer. Int J Mol Sci 2017; 18: 878, doi: 10.3390/ijms18040878.
56. Song Y, Liu D, He G. TKTL1 and p63 are biomarkers for the poor prognosis of gastric cancer patients. Cancer Biomark 2015; 15: 591–597, doi: 10.3233/CBM-150499.
57. Su SG, Yang M, Zhang MF, Peng QZ, Li MY, Liu LP, et al. miR-107-mediated decrease of HMGCS2 indicates poor outcomes and promotes cell migration in hepatocellular carcinoma. Int J Biochem Cell Biol 2017; 91: 53–59, doi:10.1016/j.biocel.2017.08.016.
58. Ross JS, Tse T, Zarin DA, Xu H, Zhou L, Krumholz HM. Publication of NIH funded trials registered in ClinicalTrials. gov: cross sectional analysis. BMJ 2012; 344: d7292, doi:10.1136/bmj.d7292.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Brazilian Journal of Medical and Biological Research
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://pubmed.ncbi.nlm.nih.gov/33503201/
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/8764/1/Glycolytic%20pathway%20candidate%20markers%20in%20the.pdf
https://repositorio.cuc.edu.co/bitstream/11323/8764/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/8764/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/8764/4/Glycolytic%20pathway%20candidate%20markers%20in%20the.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/8764/5/Glycolytic%20pathway%20candidate%20markers%20in%20the.pdf.txt
bitstream.checksum.fl_str_mv a08c4c287bf4dbe9f71d53a7f906f103
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
141c7c70be01d617be4ecb24db6c411e
2c1d43e78ce41d3ecae1df2fd0c557db
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400024053219328
spelling Mattos, Sergio641414ca9d2e6fbca0b2138641e864ffDiel, Leonardo Franciscob6625ba9626777c0f5207a9f46d56884Bittencourt, Leonardo252c1e4ee9ae4c92db0b01dafcb94ee8Schnorr, Carlos Eduardo2b8ae605be739d729c766b18710a9e6dAurina Gonçalves, Franciscaa31e25dca7bf651c3ad169957fb94108Bernardi, L9ff428ea7b218af94114e447374bd114LAMERS, MARCELO4d507a648d41dc185fcf659faff2e3212021-09-30T21:20:15Z2021-09-30T21:20:15Z20210100-879X1414-431Xhttps://hdl.handle.net/11323/8764doi: 10.1590/1414-431X202010504Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Molecular changes that affect mitochondrial glycolysis have been associated with the maintenance of tumor cells. Some metabolic factors have already been described as predictors of disease severity and outcomes. This systematic review was conducted to answer the question: Is the glycolytic pathway correlated with the prognosis of oral squamous cell carcinoma (OSCC)? A search strategy was developed to retrieve studies in English from PubMed, Scopus, and ISI Web of Knowledge using keywords related to squamous cell carcinoma, survival, and glycolytic pathway, with no restriction of publication date. The search retrieved 1273 publications. After the titles and abstracts were analyzed, 27 studies met inclusion criteria. Studies were divided into groups according to two subtopics, glycolytic pathways and diagnosis, which describe the glycolytic profile of OSCC tumors. Several components of tumor energy metabolism found in this review are important predictors of survival of patients with OSCC.application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Brazilian Journal of Medical and Biological Researchhttps://pubmed.ncbi.nlm.nih.gov/33503201/Oral cancerSurvivalPrognosisDisease-free survivalEnergy metabolismGlycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysisArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 2016; 16: 635–649, doi: 10.1038/nrc.2016.77.2. Ishikawa S, Sugimoto M, Kitabatake K, Sugano A, Nakamura M, Kaneko M, et al. Identification of salivary metabolomic biomarkers for oral cancer screening. Sci Rep 2016; 6: 31520, doi: 10.1038/srep31520.3. Scully C, Bagan J. Oral squamous cell carcinoma overview. Oral Oncol 2009; 45: 301–308, doi: 10.1016/j.oraloncology. 2009.01.004.4. Chen L, Yang Y, Liu S, Piao L, Zhang Y, Lin Z, et al. High expression of leucine zipper-EF-hand containing transmembrane protein 1 predicts poor prognosis in head and neck squamous cell carcinoma. BioMed Res Int 2014; 2014: 850316, doi: 10.1155/2014/850316.5. Baffy G, Derdak Z, Robson SC. Mitochondrial recoupling: a novel therapeutic strategy for cancer? Br J Cancer 2011; 105: 469–474, doi: 10.1038/bjc.2011.245.6. Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeuticperspective. Nat Rev Clin Oncol 2017; 14: 11–31, doi: 10.1038/nrclinonc.2016.60.7. Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, et al. Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 2011; 13: 81–97, doi: 10.1593/neo.101102.8. Tanaka T, Ishigamori R. Understanding carcinogenesis for fighting oral cancer. J Oncol 2011; 2011: 603740.9. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10: 671–684, doi: 10.1038/nrd3504.10. Cochran WG. The combination of estimates from different experiments. Biometrics 1954; 10: 101–129, doi: 10.2307/3001666.11. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–560, doi: 10.1136/bmj.327.7414.557.12. Chen SW, Chou CT, Chang CC, Li YJ, Chen ST, Lin IC, et al. HMGCS2 enhances invasion and metastasis via direct interaction with PPARalpha to activate Src signaling in colorectal cancer and oral cancer. Oncotarget 2017; 8:22460–22476, doi: 10.18632/oncotarget.13006.13. Grimm M, Alexander D, Munz A, Hoffmann J, Reinert S. Increased LDH5 expression is associated with lymph node metastasis and outcome in oral squamous cell carcinoma. Clin Exp Metastasis 2013; 30: 529–540, doi: 10.1007/s10585-012-9557-2.14. Grimm M, Munz A, Teriete P, Nadtotschi T, Reinert S. GLUT1(+)/TKTL1(+) coexpression predicts poor outcome in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 117: 743–753, doi: 10.1016/j.oooo.2014. 02.007.15. Kondo Y, Yoshikawa K, Omura Y, Shinohara A, Kazaoka Y, Sano J, et al. Clinicopathological significance of carbonic anhydrase 9, glucose transporter-1, Ki-67 and p53 expression in oral squamous cell carcinoma. Oncol Rep 2011; 25:1227–1233, doi: 10.3892/or.2011.1216.16. Kunkel M, Förster GJ, Reichert TE, Jeong JH, Benz P, Bartenstein P, et al. Detection of recurrent oral squamous cell carcinoma by [18 F]-2-fluorodeoxyglucose-positron emission tomography: implications for prognosis and patient management. Cancer 2003; 98: 2257–2265, doi: 10.1002/ cncr.11763.17. Li YJ, Huang TH, Hsiao M, Lin BR, Cheng SJ, Yang CN, et al. Suppression of fructose-bisphosphate aldolase C expression as a predictor of advanced oral squamous cell carcinoma. Head Neck 2016; 38: E1075–E1085, doi: 10.1002/hed.24161.18. Ohba S, Fujii H, Ito S, Fujimaki M, Matsumoto F, Furukawa M, et al. Overexpression of GLUT-1 in the invasion front is associated with depth of oral squamous cell carcinoma and prognosis. J Oral Pathol Med 2009; 39: 74–78, doi: 10.1111/j.1600-0714.2009.00814.x.19. Sun W, Zhang X, Ding X, Li H, Geng M, Xie Z, et al. Lactate dehydrogenase B is associated with the response to neoadjuvant chemotherapy in oral squamous cell carcinoma. PloS One 2015; 10: e0125976, doi: 10.1371/journal.pone.0125976.20. Wang Y, Zhang X, Zhang Y, Zhu Y, Yuan C, Qi B, et al. Overexpression of pyruvate kinase M2 associates with aggressive clinicopathological features and unfavorable prognosis in oral squamous cell carcinoma. Cancer Biol Ther 2015; 16: 839–845, doi: 10.1080/15384047.2015.1030551.21. Eckert A, Lautner M, Schütze A, Taubert H, Schubert J,Bilkenroth U. Coexpression of hypoxia-inducible factor-1 alpha and glucose transporter-1 is associated with poor prognosis in oral squamous cell carcinoma patients. Histopathology 2011; 58: 1136–1147, doi: 10.1111/j.1365-2559. 2011.03806.x.22. Kunkel M, Forster GJ, Reichert TE, Kutzner J, Benz P, Bartenstein P, et al. Radiation response non-invasively imaged by [18F]FDG-PET predicts local tumor control and survival in advanced oral squamous cell carcinoma. Oral Oncol 2003; 39: 170–177, doi: 10.1016/S1368-8375(02)00087-8.23. Grimm M, Schmitt S, Teriete P, Biegner T, Stenzl A, Hennenlotter J, et al. A biomarker based detection and characterization of carcinomas exploiting two fundamental biophysical mechanisms in mammalian cells. BMC Cancer 2013; 13: 569, doi: 10.1186/1471-2407-13-569.24. Abd El-Hafez YG, Moustafa HM, Khalil HF, Liao CT, Yen TC. Total lesion glycolysis: a possible new prognostic parameter in oral cavity squamous cell carcinoma. Oral Oncol 2013; 49: 261–268, doi: 10.1016/j.oraloncology.2012.09.005.25. Cho JK, Hyun SH, Choi N, Kim MJ, Padera TP, Choi JY, et al. Significance of lymph node metastasis in cancer dissemination of head and neck cancer. Transl Oncol 2015;8: 119–125, doi: 10.1016/j.tranon.2015.03.001.26. Hasegawa O, Satomi T, Kono M, Watanabe M, Ikehata N, Chikazu D. Correlation between the malignancy and prognosis of oral squamous cell carcinoma in the maximum standardized uptake value. Odontology 2019; 107: 237–243, doi: 10.1007/s10266-018-0379-9.27. Hofele C, Freier K, Thiele OC, Haberkorn U, Buchmann I. High 2-[18F]fluoro-2-deoxy-d-glucose (18FDG) uptake measured by positron emission tomography is associated with reduced overall survival in patients with oral squamous cell carcinoma. Oral Oncol 2009; 45: 963–967, doi: 10.1016/j. oraloncology.2009.06.008.28. Joo YH, Yoo IR, Cho KJ, Park JO, Nam IC, Kim MS. Extracapsular spread and FDG PET/CT correlations in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2013; 42: 158–163, doi: 10.1016/j.ijom.2012.11.006.29. Kunkel M, Helisch A, Reichert TE, Jeong JH, Buchholz HG, Benz P, et al. Clinical and prognostic value of [18F]FDGPET for surveillance of oral squamous cell carcinoma after surgical salvage therapy. Oral Oncol 2006; 42: 297–305, doi: 10.1016/j.oraloncology.2005.08.004.30. Morand GB, Vital DG, Kudura K, Werner J, Stoeckli SJ, Huber GF, et al. Maximum standardized uptake value (SUVmax) of primary tumor predicts occult neck metastasis in oral cancer. Sci Rep 2018; 8: 11817, doi: 10.1038/s41598- 018-30111-7.31. Shimizu M, Mitsudo K, Koike I, Taguri M, Iwai T, Koizumi T, et al. Prognostic value of 2-[18 F]fluoro-2-deoxy-D-glucose positron emission tomography for patients with oral squamous cell carcinoma treated with retrograde superselective intra-arterial chemotherapy and daily concurrent radiotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121: 239–247, doi: 10.1016/j.oooo.2015.10.018.32. Suzuki H, Hasegawa Y, Terada A, Hyodo I, Nakashima T, Nishio M, et al. FDG-PET predicts survival and distant metastasis in oral squamous cell carcinoma. Oral Oncol 2009; 45: 569–573, doi: 10.1016/j.oraloncology.2008.07.009.33. Suzuki H, Fukuyama R, Hasegawa Y, Tamaki T, Nishio M, Nakashima T, et al. Tumor thickness, depth of invasion, and Bcl-2 expression are correlated with FDG-uptake in oral squamous cell carcinomas. Oral Oncol 2009; 45: 891–897, doi: 10.1016/j.oraloncology.2009.03.009.34. Suzuki H, Tamaki T, Nishio M, Beppu S, Mukoyama N, Hanai N, et al. Peak of standardized uptake value in oral cancer predicts survival adjusting for pathological stage. In Vivo 2018; 32: 1193–1198, doi: 10.21873/invivo.11363.35. Yamaga E, Toriihara A, Nakamura S, Asai S, Fujioka T, Yoshimura R, et al. Clinical usefulness of 2-deoxy-2-[18F] fluoro-d-glucose-positron emission tomography/computed tomography for assessing early oral squamous cell carcinoma (cT1-2N0M0). Jpn J Clin Oncol 2018; 48: 633–639, doi: 10.1093/jjco/hyy065.36. Zhang H, Seikaly H, Abele JT, Jeffery DT, Harris JR, O’Connell DA. Metabolic tumour volume as a prognostic factor for oral cavity squamous cell carcinoma treated with primary surgery. J Otolaryngol Head Neck Surg 2014; 43: 33.37. Kim M, Higuchi T, Nakajima T, Andriana P, Hirasawa H, Tokue A, et al. 18F-FDG and 18F-FAMT PET-derived metabolic parameters predict outcome of oral squamous cell carcinoma. Oral Radiol 2019; 35: 308–314, doi:10.1007/s11282-019-00377-2.38. Kimura M, Kato I, Ishibashi K, Shibata A, Nishiwaki S, Fukumura M, et al. The prognostic significance of intratumoral heterogeneity of 18F-FDG uptake in patients with oral cavity squamous cell carcinoma. Eur J Radiol 2019; 114: 99–104, doi: 10.1016/j.ejrad.2019.03.004.39. Genden EM, Ferlito A, Silver CE, Takes RP, Suarez C, Owen RP, et al. Contemporary management of cancer of the oral cavity. Eur Arch Otorhinolaryngol 2010; 267: 1001–1017, doi: 10.1007/s00405-010-1206-2.40. Ram H, Sarkar J, Kumar H, Konwar R, Bhatt ML, Mohammad S. Oral cancer: risk factors and molecular pathogenesis. J Maxillofac Oral Surg 2011; 10: 132–137, doi: 10.1007/s12663-011-0195-z.41. Li CX, Sun JL, Gong ZC, Lin ZQ, Liu H. Prognostic value of GLUT-1 expression in oral squamous cell carcinoma. A prisma-compliant meta-analysis. Medicine (Baltimore) 2016; 95: e5324, doi: 10.1097/MD.0000000000005324.42. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 2008; 8: 705–713, doi: 10.1038/nrc2468.43. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674, doi: 10.1016/j.cell. 2011.02.013.44. Koukourakis MI, Giatromanolaki A, Simopoulos C, Polychronidis A, Sivridis E. Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clin Exp Metastasis 2005; 22: 25–30, doi: 10.1007/s10585-005-2343-7.45. Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int 2013; 13: 89, doi: 10.1186/1475-2867-13-89.46. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 2008; 13: 472–482, doi: 10.1016/j.ccr.2008.05.005.47. Xu Q, Tu J, Dou C, Zhang J, Yang L, Liu X, et al. HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma. Mol Cancer 2017; 16: 178, doi: 10.1186/s12943-017-0748-y.48. Hamabe A, Konno M, Tanuma N, Shima H, Tsunekuni K, Kawamoto K, et al. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc Natl Acad Sci USA 2014; 111: 15526– 15531, doi: 10.1073/pnas.1407717111.49. Huang C, Huang Z, Bai P, Luo G, Zhao X, Wang X. Expression of pyruvate kinase M2 in human bladder cancer and its correlation with clinical parameters and prognosis. Onco Targets Ther 2018; 11: 2075–2082, doi: 10.2147/OTT. S152999.50. Wang C, Jiang J, Ji J, Cai Q, Chen X, Yu Y, et al. PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer. Sci Rep 2017; 7: 2886, doi: 10.1038/s41598-017-03031-1.51. Turner DM, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 2014; 1843: 2563–2582, doi: 10.1016/j.bbamcr.2014.05.014.52. Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med 2016; 213: 337–354, doi: 10.1084/jem.20150900.53. Lau AN, Vander Heiden GM. Metabolism in the tumor microenvironment. Ann Rev Cancer Biol 2019; 4: 17–40, doi: 10.1146/annurev-cancerbio-030419-033333.54. Krockenberger M, Honig A, Rieger L, Coy JF, Sutterlin M, Kapp M, et al. Transketolase-like 1 expression correlates with subtypes of ovarian cancer and the presence of distant metastases. Int J Gynecol Cancer 2007; 17: 101–106, doi:10.1111/j.1525-1438.2007.00799.x.55. Coy JF. EDIM-TKTL1/Apo10 blood test: an innate immune system based liquid biopsy for the early detection, characterization and targeted treatment of cancer. Int J Mol Sci 2017; 18: 878, doi: 10.3390/ijms18040878.56. Song Y, Liu D, He G. TKTL1 and p63 are biomarkers for the poor prognosis of gastric cancer patients. Cancer Biomark 2015; 15: 591–597, doi: 10.3233/CBM-150499.57. Su SG, Yang M, Zhang MF, Peng QZ, Li MY, Liu LP, et al. miR-107-mediated decrease of HMGCS2 indicates poor outcomes and promotes cell migration in hepatocellular carcinoma. Int J Biochem Cell Biol 2017; 91: 53–59, doi:10.1016/j.biocel.2017.08.016.58. Ross JS, Tse T, Zarin DA, Xu H, Zhou L, Krumholz HM. Publication of NIH funded trials registered in ClinicalTrials. gov: cross sectional analysis. BMJ 2012; 344: d7292, doi:10.1136/bmj.d7292.ORIGINALGlycolytic pathway candidate markers in the.pdfGlycolytic pathway candidate markers in the.pdfapplication/pdf999607https://repositorio.cuc.edu.co/bitstream/11323/8764/1/Glycolytic%20pathway%20candidate%20markers%20in%20the.pdfa08c4c287bf4dbe9f71d53a7f906f103MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/8764/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/8764/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILGlycolytic pathway candidate markers in the.pdf.jpgGlycolytic pathway candidate markers in the.pdf.jpgimage/jpeg67539https://repositorio.cuc.edu.co/bitstream/11323/8764/4/Glycolytic%20pathway%20candidate%20markers%20in%20the.pdf.jpg141c7c70be01d617be4ecb24db6c411eMD54open accessTEXTGlycolytic pathway candidate markers in the.pdf.txtGlycolytic pathway candidate markers in the.pdf.txttext/plain40142https://repositorio.cuc.edu.co/bitstream/11323/8764/5/Glycolytic%20pathway%20candidate%20markers%20in%20the.pdf.txt2c1d43e78ce41d3ecae1df2fd0c557dbMD55open access11323/8764oai:repositorio.cuc.edu.co:11323/87642023-12-14 11:41:43.94CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==