Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)

Introduction− The non-energy use of high-range carbons (anthracite) has great potential in industries such as metallurgy and in the synthesis of new carbonaceous materials. However, before being used in these applications, they must be treated to remove impurities or unwanted compounds. Objective− T...

Full description

Autores:
Lugo Martinez, Wilmer Alexander
Avila, Huber
Vanegas, Marley
Albis Arrieta, Alberto Ricardo
Ardila, Marco
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5812
Acceso en línea:
http://hdl.handle.net/11323/5812
https://doi.org/10.17981/ingecuc.15.2.2019.05
https://repositorio.cuc.edu.co/
Palabra clave:
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_bc50c2b58c208bb3e6578d678dbf1dab
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5812
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)
dc.title.translated.spa.fl_str_mv Evaluation of the chemical demineralization of semianthracites from mines located in Boyacá and Santander (Colombia)
title Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)
spellingShingle Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)
title_short Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)
title_full Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)
title_fullStr Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)
title_full_unstemmed Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)
title_sort Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)
dc.creator.fl_str_mv Lugo Martinez, Wilmer Alexander
Avila, Huber
Vanegas, Marley
Albis Arrieta, Alberto Ricardo
Ardila, Marco
dc.contributor.author.spa.fl_str_mv Lugo Martinez, Wilmer Alexander
Avila, Huber
Vanegas, Marley
Albis Arrieta, Alberto Ricardo
Ardila, Marco
description Introduction− The non-energy use of high-range carbons (anthracite) has great potential in industries such as metallurgy and in the synthesis of new carbonaceous materials. However, before being used in these applications, they must be treated to remove impurities or unwanted compounds. Objective− To evaluate the efficiency of the process of chemical demineralization of semianthracites through the use of different acids varying the operating conditions of the process. Method− Two samples were chemically characterized: Boavita (B) and Capitanejo (C) from the Boyacá and Santander (Colombia) mines, respectively. Ash and mineral matter removal from the samples was evaluated using [HCl] = 5M, HF 40% and HCl 38% at two different reaction times (45 and 60 minutes) and two particle sizes of the material (250 and 500 µm). Results− The minimum values of ash content (bs) reached through the demineralization process for samples B and C, were 0.65 and 0.76% respectively, which were obtained with a particle size of 250 µm and 60 minutes of exposure in each of the acids used in this study. Conclusions− A smaller particle size increases the contact surface and improves the degree of demineralization, regardless of the time of exposure to acids. The efficiency of the chemical benefit shows yields in the reduction of silicates, aluminates and aluminosilicates to 100%, while for ferric minerals it is above 50%.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-10-01
dc.date.accessioned.none.fl_str_mv 2020-01-13T19:13:27Z
dc.date.available.none.fl_str_mv 2020-01-13T19:13:27Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Wilmer Alexander Lugo-Martínez; Huber Yesid Avila-Rios; Marley Cecilia Vanegas-Chamorro; Alberto Albis-Arrieta; Marco Antonio ArdilaBarragán. “Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)” INGE CUC, vol. 15, no. 2, pp. 47-55, 2019. DOI: http://doi.org/10.17981/ingecuc.15.2.2019.05
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/5812
dc.identifier.url.spa.fl_str_mv https://doi.org/10.17981/ingecuc.15.2.2019.05
dc.identifier.doi.spa.fl_str_mv 10.17981/ingecuc.15.2.2019.05
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.pissn.spa.fl_str_mv 0122-6517
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Wilmer Alexander Lugo-Martínez; Huber Yesid Avila-Rios; Marley Cecilia Vanegas-Chamorro; Alberto Albis-Arrieta; Marco Antonio ArdilaBarragán. “Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)” INGE CUC, vol. 15, no. 2, pp. 47-55, 2019. DOI: http://doi.org/10.17981/ingecuc.15.2.2019.05
10.17981/ingecuc.15.2.2019.05
2382-4700
Corporación Universidad de la Costa
0122-6517
REDICUC - Repositorio CUC
url http://hdl.handle.net/11323/5812
https://doi.org/10.17981/ingecuc.15.2.2019.05
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartofseries.spa.fl_str_mv INGE CUC; Vol. 15, Núm. 2 (2019)
dc.relation.ispartofjournal.spa.fl_str_mv INGE CUC
INGE CUC
dc.relation.references.spa.fl_str_mv [1] J. M. Andrésen, C. E. Burgess, P. J. Pappano and H. H. Schobert, “New directions for non-fuel uses of anthracites,” Fuel Processing Technology, vol. 85, no. 12, pp. 1373–1392, Aug. 2004. https://doi.org/10.1016/j.fuproc.2003.05.001
[2] W. Xia, G. Xie and Y. Peng, “Recent advances in beneficiation for low rank coals,” Powder Technol., vol. 277, pp. 206–221, Jun. 2015. https://doi.org/10.1016/j.powtec.2015.03.003
[3] I. M. Mejia-Villarreal, “Producción de carbón ultralimpio por desmineralización física y química”, M. S. thesis, Dept. Ing. quim., Universidad del Valle, Cali, Colombia, 2004.
[4] M. Alfaro-Domínguez, F. J. Higes-Rolando, M. L. RojasCervantes and V. Gómez-Serrano, “Demineralisation of semi-anthracite char with molten salts/HCl. Effects on the porous texture and reactivity in air,” Appl. Surf. Sci., vol. 252, no. 17, pp. 6005–6008, Jun. 2006. https://doi. org/10.1016/j.apsusc.2005.11.002
[5] J. W. Leonard, Coal preparation. Society for Mining, Englewood, Colorado, USA: Metallurgy and Exploration, 1991.
[6] M. C. Vanegas Chamorro, “Estudio del mecanismo de grafitización de antracitas sudafricanas,” M. S. thesis, Dept. Ing. quim., Universidad de Oviedo, Oviedo, España, 2012.
[7] P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu and B. D. Pandey, “Demineralization of low grade coal - A review,” Renew. Sustain. Energy Rev., vol. 41, pp. 745–761, Jan. 2015. https://doi.org/10.1016/j.rser.2014.08.072
[8] S. K. Behera, S. Chakraborty and B. C. Meikap, “Chemical demineralization of high ash Indian coal by using alkali and acid solutions,” Fuel, vol. 196, pp. 102–109, May. 2017. https://doi.org/10.1016/j.fuel.2017.01.088
[9] M. K. Saini, P. K. Srivastava and N. Choudhury, “Development of Moisture and Ash Based Correlation for the Estimation of Mineral Matter in High Ash Indian Coal,” Int. J. Clean Coal Energy, vol. 4, no. 2, pp. 33–42, May. 2015. https://doi.org/10.4236/ijcce.2015.42004
[10] B. C. Smith, Infrared Spectral Interpretation: A Systematic Approach. Boca Raton, Florida, USA: CRC Press Taylor and Francis Group, 1998.
[11] A. M. Puziy, O. I. Poddubnaya, A. Martínez-Alonso, A. Castro-Muñiz, F. Suárez-García and J. M. D. Tascón, “Oxygen and phosphorus enriched carbons from lignocellulosic material,” Carbon N. Y., vol. 45, no. 10, pp. 1941–1950, Sep. 2007. https://doi.org/10.1016/j.carbon.2007.06.014
[12] H. Machnikowska, A. Krztoń, and J. Machnikowski, “The characterization of coal macerals by diffuse reflectance infrared spectroscopy,” Fuel, vol. 81, no. 2, pp. 245–252, Jan. 2002. https://doi.org/10.1016/S0016-2361(01)00125- 9
[13] G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts. Hoboken, Nueva Jersey, USA: John Wiley & Sons, 2004.
[14] P. C. Painter, M. Starsinic, E. Squires and A. A. Davis, “Concerning the 1600 cm−1 region in the i.r. spectrum of coal,” Fuel, vol. 62, no. 6, pp. 742–744, Jun. 1983. https:// doi.org/10.1016/0016-2361(83)90317-4
[15] S. zhang, z. Chen, X. Chen and X. Gong, “Effects of ash/ K2CO3/Fe2O3 on ignition temperature and combustion rate of demineralized anthracite,” J. of Fuel Chemistry and Technol., vol. 42, no. 2, pp. 166-174, Feb. 2014. https:// doi.org/10.1016/S1872-5813(14)60013-X
[16] X. Gong and S. zhang, “Changes in char structure due to inorganic matters during anthracite pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 127, pp. 170-175, Sept. 2017. https://doi.org/10.1016/j.jaap.2017.08.011
[17] P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu and B. D. Pandey, “Demineralization of low grade coal- A review,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 745-761, Jan. 2015. https://doi.org/10.1016/j. rser.2014.08.072
dc.relation.citationendpage.none.fl_str_mv 55
dc.relation.citationstartpage.none.fl_str_mv 47
dc.relation.citationstartpage.spa.fl_str_mv Antracitas
Beneficio químico
Materia mineral
Desmineralización
Ácido clorhídrico
Ácido fluorhídrico
dc.relation.citationstartpage.eng.fl_str_mv Anthracite
Chemical beneficiat
Mineral matter
Demineralization
Hydrochloric acid
Hydrofluoric acid
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.ispartofjournalabbrev.spa.fl_str_mv INGE CUC
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv INGE CUC
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1840
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/5812/1/Evaluaci%c3%b3n%20de%20la%20desmineralizaci%c3%b3n%20qu%c3%admica%20de%20semiantrcitas%20provenientes%20de%20minas%20ubicadas%20en%20Boyac%c3%a1%20y%20Santander%20%28Colombia%29.pdf
https://repositorio.cuc.edu.co/bitstream/11323/5812/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/5812/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/5812/5/Evaluaci%c3%b3n%20de%20la%20desmineralizaci%c3%b3n%20qu%c3%admica%20de%20semiantrcitas%20provenientes%20de%20minas%20ubicadas%20en%20Boyac%c3%a1%20y%20Santander%20%28Colombia%29.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/5812/6/Evaluaci%c3%b3n%20de%20la%20desmineralizaci%c3%b3n%20qu%c3%admica%20de%20semiantrcitas%20provenientes%20de%20minas%20ubicadas%20en%20Boyac%c3%a1%20y%20Santander%20%28Colombia%29.pdf.txt
bitstream.checksum.fl_str_mv 7ffdbedc6fa652c3fee01e379ed78039
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
d46c2b37de43a288d0dadba48a36809d
f2e32d12e1aecb089f475c62a5a0bba6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400180171505664
spelling Lugo Martinez, Wilmer Alexander213ea20f7fb73fb7506ad0a752882c59Avila, Huber140e767c8567271b6acdf889fed81ee0Vanegas, Marleyebee766cf479f3a7170a176f22184acbAlbis Arrieta, Alberto Ricardo2e00c766fe3f403593f6ed55ab3cc8deArdila, Marco014452a216109e724930f2888ec5b7712020-01-13T19:13:27Z2020-01-13T19:13:27Z2019-10-01Wilmer Alexander Lugo-Martínez; Huber Yesid Avila-Rios; Marley Cecilia Vanegas-Chamorro; Alberto Albis-Arrieta; Marco Antonio ArdilaBarragán. “Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)” INGE CUC, vol. 15, no. 2, pp. 47-55, 2019. DOI: http://doi.org/10.17981/ingecuc.15.2.2019.05http://hdl.handle.net/11323/5812https://doi.org/10.17981/ingecuc.15.2.2019.0510.17981/ingecuc.15.2.2019.052382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introduction− The non-energy use of high-range carbons (anthracite) has great potential in industries such as metallurgy and in the synthesis of new carbonaceous materials. However, before being used in these applications, they must be treated to remove impurities or unwanted compounds. Objective− To evaluate the efficiency of the process of chemical demineralization of semianthracites through the use of different acids varying the operating conditions of the process. Method− Two samples were chemically characterized: Boavita (B) and Capitanejo (C) from the Boyacá and Santander (Colombia) mines, respectively. Ash and mineral matter removal from the samples was evaluated using [HCl] = 5M, HF 40% and HCl 38% at two different reaction times (45 and 60 minutes) and two particle sizes of the material (250 and 500 µm). Results− The minimum values of ash content (bs) reached through the demineralization process for samples B and C, were 0.65 and 0.76% respectively, which were obtained with a particle size of 250 µm and 60 minutes of exposure in each of the acids used in this study. Conclusions− A smaller particle size increases the contact surface and improves the degree of demineralization, regardless of the time of exposure to acids. The efficiency of the chemical benefit shows yields in the reduction of silicates, aluminates and aluminosilicates to 100%, while for ferric minerals it is above 50%.Introducción− El uso no energético de carbones de alto rango (antracitas) tiene un gran potencial en industrias tales como la metalurgia y en la síntesis de nuevos materiales carbonosos. Sin embargo, antes de su uso en estas aplicaciones, estos deben ser tratados para eliminar impurezas o compuestos no deseados. Objetivo− Evaluar la eficiencia del proceso de desmineralización química de semiantracitas mediante el uso de diferentes ácidos variando las condiciones de operación del proceso. Metodología− Se realizó la caracterización química de dos muestras: Boavita (B) y Capitanejo (C) provenientes de minas de Boyacá y Santander (Colombia), respectivamente. Se evaluó la remoción de cenizas y materia mineral de las muestras utilizando [HCl] = 5M, HF 40% y HCl 38% a dos diferentes tiempos de reacción (45 y 60 minutos) y dos tamaños de partícula del material (250 y 500 µm). Resultados− Los valores mínimos de contenido de cenizas (bs) alcanzados mediante el proceso de desmineralización para las muestras B y C, fueron 0,65 y 0,76% respectivamente, los cuales se obtuvieron con tamaño de partícula de 250 µm y 60 minutos de exposición en cada uno de los ácidos empleados en este estudio. Conclusiones− A menor tamaño de partícula se incrementa la superficie de contacto y mejora el grado de desmineralización, independientemente del tiempo de exposición a los ácidos. La eficiencia del beneficio químico muestra rendimientos en la reducción de silicatos, aluminatos y aluminosilicatos al 100%, mientras que para minerales férricos está por encima del 50%.9 páginasapplication/pdfspaCorporación Universidad de la CostaINGE CUC; Vol. 15, Núm. 2 (2019)INGE CUCINGE CUC[1] J. M. Andrésen, C. E. Burgess, P. J. Pappano and H. H. Schobert, “New directions for non-fuel uses of anthracites,” Fuel Processing Technology, vol. 85, no. 12, pp. 1373–1392, Aug. 2004. https://doi.org/10.1016/j.fuproc.2003.05.001[2] W. Xia, G. Xie and Y. Peng, “Recent advances in beneficiation for low rank coals,” Powder Technol., vol. 277, pp. 206–221, Jun. 2015. https://doi.org/10.1016/j.powtec.2015.03.003[3] I. M. Mejia-Villarreal, “Producción de carbón ultralimpio por desmineralización física y química”, M. S. thesis, Dept. Ing. quim., Universidad del Valle, Cali, Colombia, 2004.[4] M. Alfaro-Domínguez, F. J. Higes-Rolando, M. L. RojasCervantes and V. Gómez-Serrano, “Demineralisation of semi-anthracite char with molten salts/HCl. Effects on the porous texture and reactivity in air,” Appl. Surf. Sci., vol. 252, no. 17, pp. 6005–6008, Jun. 2006. https://doi. org/10.1016/j.apsusc.2005.11.002[5] J. W. Leonard, Coal preparation. Society for Mining, Englewood, Colorado, USA: Metallurgy and Exploration, 1991.[6] M. C. Vanegas Chamorro, “Estudio del mecanismo de grafitización de antracitas sudafricanas,” M. S. thesis, Dept. Ing. quim., Universidad de Oviedo, Oviedo, España, 2012.[7] P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu and B. D. Pandey, “Demineralization of low grade coal - A review,” Renew. Sustain. Energy Rev., vol. 41, pp. 745–761, Jan. 2015. https://doi.org/10.1016/j.rser.2014.08.072[8] S. K. Behera, S. Chakraborty and B. C. Meikap, “Chemical demineralization of high ash Indian coal by using alkali and acid solutions,” Fuel, vol. 196, pp. 102–109, May. 2017. https://doi.org/10.1016/j.fuel.2017.01.088[9] M. K. Saini, P. K. Srivastava and N. Choudhury, “Development of Moisture and Ash Based Correlation for the Estimation of Mineral Matter in High Ash Indian Coal,” Int. J. Clean Coal Energy, vol. 4, no. 2, pp. 33–42, May. 2015. https://doi.org/10.4236/ijcce.2015.42004[10] B. C. Smith, Infrared Spectral Interpretation: A Systematic Approach. Boca Raton, Florida, USA: CRC Press Taylor and Francis Group, 1998.[11] A. M. Puziy, O. I. Poddubnaya, A. Martínez-Alonso, A. Castro-Muñiz, F. Suárez-García and J. M. D. Tascón, “Oxygen and phosphorus enriched carbons from lignocellulosic material,” Carbon N. Y., vol. 45, no. 10, pp. 1941–1950, Sep. 2007. https://doi.org/10.1016/j.carbon.2007.06.014[12] H. Machnikowska, A. Krztoń, and J. Machnikowski, “The characterization of coal macerals by diffuse reflectance infrared spectroscopy,” Fuel, vol. 81, no. 2, pp. 245–252, Jan. 2002. https://doi.org/10.1016/S0016-2361(01)00125- 9[13] G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts. Hoboken, Nueva Jersey, USA: John Wiley & Sons, 2004.[14] P. C. Painter, M. Starsinic, E. Squires and A. A. Davis, “Concerning the 1600 cm−1 region in the i.r. spectrum of coal,” Fuel, vol. 62, no. 6, pp. 742–744, Jun. 1983. https:// doi.org/10.1016/0016-2361(83)90317-4[15] S. zhang, z. Chen, X. Chen and X. Gong, “Effects of ash/ K2CO3/Fe2O3 on ignition temperature and combustion rate of demineralized anthracite,” J. of Fuel Chemistry and Technol., vol. 42, no. 2, pp. 166-174, Feb. 2014. https:// doi.org/10.1016/S1872-5813(14)60013-X[16] X. Gong and S. zhang, “Changes in char structure due to inorganic matters during anthracite pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 127, pp. 170-175, Sept. 2017. https://doi.org/10.1016/j.jaap.2017.08.011[17] P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu and B. D. Pandey, “Demineralization of low grade coal- A review,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 745-761, Jan. 2015. https://doi.org/10.1016/j. rser.2014.08.0725547AntracitasBeneficio químicoMateria mineralDesmineralizaciónÁcido clorhídricoÁcido fluorhídricoAnthraciteChemical beneficiatMineral matterDemineralizationHydrochloric acidHydrofluoric acid215INGE CUCCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2INGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1840Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)Evaluation of the chemical demineralization of semianthracites from mines located in Boyacá and Santander (Colombia)Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionORIGINALEvaluación de la desmineralización química de semiantrcitas provenientes de minas ubicadas en Boyacá y Santander (Colombia).pdfEvaluación de la desmineralización química de semiantrcitas provenientes de minas ubicadas en Boyacá y Santander (Colombia).pdfapplication/pdf566900https://repositorio.cuc.edu.co/bitstream/11323/5812/1/Evaluaci%c3%b3n%20de%20la%20desmineralizaci%c3%b3n%20qu%c3%admica%20de%20semiantrcitas%20provenientes%20de%20minas%20ubicadas%20en%20Boyac%c3%a1%20y%20Santander%20%28Colombia%29.pdf7ffdbedc6fa652c3fee01e379ed78039MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/5812/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstream/11323/5812/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAILEvaluación de la desmineralización química de semiantrcitas provenientes de minas ubicadas en Boyacá y Santander (Colombia).pdf.jpgEvaluación de la desmineralización química de semiantrcitas provenientes de minas ubicadas en Boyacá y Santander (Colombia).pdf.jpgimage/jpeg85842https://repositorio.cuc.edu.co/bitstream/11323/5812/5/Evaluaci%c3%b3n%20de%20la%20desmineralizaci%c3%b3n%20qu%c3%admica%20de%20semiantrcitas%20provenientes%20de%20minas%20ubicadas%20en%20Boyac%c3%a1%20y%20Santander%20%28Colombia%29.pdf.jpgd46c2b37de43a288d0dadba48a36809dMD55open accessTEXTEvaluación de la desmineralización química de semiantrcitas provenientes de minas ubicadas en Boyacá y Santander (Colombia).pdf.txtEvaluación de la desmineralización química de semiantrcitas provenientes de minas ubicadas en Boyacá y Santander (Colombia).pdf.txttext/plain40032https://repositorio.cuc.edu.co/bitstream/11323/5812/6/Evaluaci%c3%b3n%20de%20la%20desmineralizaci%c3%b3n%20qu%c3%admica%20de%20semiantrcitas%20provenientes%20de%20minas%20ubicadas%20en%20Boyac%c3%a1%20y%20Santander%20%28Colombia%29.pdf.txtf2e32d12e1aecb089f475c62a5a0bba6MD56open access11323/5812oai:repositorio.cuc.edu.co:11323/58122023-12-14 15:55:57.057CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=