Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)
Introduction− The non-energy use of high-range carbons (anthracite) has great potential in industries such as metallurgy and in the synthesis of new carbonaceous materials. However, before being used in these applications, they must be treated to remove impurities or unwanted compounds. Objective− T...
- Autores:
-
Lugo Martinez, Wilmer Alexander
Avila, Huber
Vanegas, Marley
Albis Arrieta, Alberto Ricardo
Ardila, Marco
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5812
- Acceso en línea:
- https://hdl.handle.net/11323/5812
https://doi.org/10.17981/ingecuc.15.2.2019.05
https://repositorio.cuc.edu.co/
- Palabra clave:
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_bc50c2b58c208bb3e6578d678dbf1dab |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5812 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia) |
dc.title.translated.spa.fl_str_mv |
Evaluation of the chemical demineralization of semianthracites from mines located in Boyacá and Santander (Colombia) |
title |
Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia) |
spellingShingle |
Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia) |
title_short |
Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia) |
title_full |
Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia) |
title_fullStr |
Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia) |
title_full_unstemmed |
Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia) |
title_sort |
Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia) |
dc.creator.fl_str_mv |
Lugo Martinez, Wilmer Alexander Avila, Huber Vanegas, Marley Albis Arrieta, Alberto Ricardo Ardila, Marco |
dc.contributor.author.spa.fl_str_mv |
Lugo Martinez, Wilmer Alexander Avila, Huber Vanegas, Marley Albis Arrieta, Alberto Ricardo Ardila, Marco |
description |
Introduction− The non-energy use of high-range carbons (anthracite) has great potential in industries such as metallurgy and in the synthesis of new carbonaceous materials. However, before being used in these applications, they must be treated to remove impurities or unwanted compounds. Objective− To evaluate the efficiency of the process of chemical demineralization of semianthracites through the use of different acids varying the operating conditions of the process. Method− Two samples were chemically characterized: Boavita (B) and Capitanejo (C) from the Boyacá and Santander (Colombia) mines, respectively. Ash and mineral matter removal from the samples was evaluated using [HCl] = 5M, HF 40% and HCl 38% at two different reaction times (45 and 60 minutes) and two particle sizes of the material (250 and 500 µm). Results− The minimum values of ash content (bs) reached through the demineralization process for samples B and C, were 0.65 and 0.76% respectively, which were obtained with a particle size of 250 µm and 60 minutes of exposure in each of the acids used in this study. Conclusions− A smaller particle size increases the contact surface and improves the degree of demineralization, regardless of the time of exposure to acids. The efficiency of the chemical benefit shows yields in the reduction of silicates, aluminates and aluminosilicates to 100%, while for ferric minerals it is above 50%. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-10-01 |
dc.date.accessioned.none.fl_str_mv |
2020-01-13T19:13:27Z |
dc.date.available.none.fl_str_mv |
2020-01-13T19:13:27Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Wilmer Alexander Lugo-Martínez; Huber Yesid Avila-Rios; Marley Cecilia Vanegas-Chamorro; Alberto Albis-Arrieta; Marco Antonio ArdilaBarragán. “Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)” INGE CUC, vol. 15, no. 2, pp. 47-55, 2019. DOI: http://doi.org/10.17981/ingecuc.15.2.2019.05 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5812 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.17981/ingecuc.15.2.2019.05 |
dc.identifier.doi.spa.fl_str_mv |
10.17981/ingecuc.15.2.2019.05 |
dc.identifier.eissn.spa.fl_str_mv |
2382-4700 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.pissn.spa.fl_str_mv |
0122-6517 |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Wilmer Alexander Lugo-Martínez; Huber Yesid Avila-Rios; Marley Cecilia Vanegas-Chamorro; Alberto Albis-Arrieta; Marco Antonio ArdilaBarragán. “Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)” INGE CUC, vol. 15, no. 2, pp. 47-55, 2019. DOI: http://doi.org/10.17981/ingecuc.15.2.2019.05 10.17981/ingecuc.15.2.2019.05 2382-4700 Corporación Universidad de la Costa 0122-6517 REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5812 https://doi.org/10.17981/ingecuc.15.2.2019.05 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.spa.fl_str_mv |
INGE CUC; Vol. 15, Núm. 2 (2019) |
dc.relation.ispartofjournal.spa.fl_str_mv |
INGE CUC INGE CUC |
dc.relation.references.spa.fl_str_mv |
[1] J. M. Andrésen, C. E. Burgess, P. J. Pappano and H. H. Schobert, “New directions for non-fuel uses of anthracites,” Fuel Processing Technology, vol. 85, no. 12, pp. 1373–1392, Aug. 2004. https://doi.org/10.1016/j.fuproc.2003.05.001 [2] W. Xia, G. Xie and Y. Peng, “Recent advances in beneficiation for low rank coals,” Powder Technol., vol. 277, pp. 206–221, Jun. 2015. https://doi.org/10.1016/j.powtec.2015.03.003 [3] I. M. Mejia-Villarreal, “Producción de carbón ultralimpio por desmineralización física y química”, M. S. thesis, Dept. Ing. quim., Universidad del Valle, Cali, Colombia, 2004. [4] M. Alfaro-Domínguez, F. J. Higes-Rolando, M. L. RojasCervantes and V. Gómez-Serrano, “Demineralisation of semi-anthracite char with molten salts/HCl. Effects on the porous texture and reactivity in air,” Appl. Surf. Sci., vol. 252, no. 17, pp. 6005–6008, Jun. 2006. https://doi. org/10.1016/j.apsusc.2005.11.002 [5] J. W. Leonard, Coal preparation. Society for Mining, Englewood, Colorado, USA: Metallurgy and Exploration, 1991. [6] M. C. Vanegas Chamorro, “Estudio del mecanismo de grafitización de antracitas sudafricanas,” M. S. thesis, Dept. Ing. quim., Universidad de Oviedo, Oviedo, España, 2012. [7] P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu and B. D. Pandey, “Demineralization of low grade coal - A review,” Renew. Sustain. Energy Rev., vol. 41, pp. 745–761, Jan. 2015. https://doi.org/10.1016/j.rser.2014.08.072 [8] S. K. Behera, S. Chakraborty and B. C. Meikap, “Chemical demineralization of high ash Indian coal by using alkali and acid solutions,” Fuel, vol. 196, pp. 102–109, May. 2017. https://doi.org/10.1016/j.fuel.2017.01.088 [9] M. K. Saini, P. K. Srivastava and N. Choudhury, “Development of Moisture and Ash Based Correlation for the Estimation of Mineral Matter in High Ash Indian Coal,” Int. J. Clean Coal Energy, vol. 4, no. 2, pp. 33–42, May. 2015. https://doi.org/10.4236/ijcce.2015.42004 [10] B. C. Smith, Infrared Spectral Interpretation: A Systematic Approach. Boca Raton, Florida, USA: CRC Press Taylor and Francis Group, 1998. [11] A. M. Puziy, O. I. Poddubnaya, A. Martínez-Alonso, A. Castro-Muñiz, F. Suárez-García and J. M. D. Tascón, “Oxygen and phosphorus enriched carbons from lignocellulosic material,” Carbon N. Y., vol. 45, no. 10, pp. 1941–1950, Sep. 2007. https://doi.org/10.1016/j.carbon.2007.06.014 [12] H. Machnikowska, A. Krztoń, and J. Machnikowski, “The characterization of coal macerals by diffuse reflectance infrared spectroscopy,” Fuel, vol. 81, no. 2, pp. 245–252, Jan. 2002. https://doi.org/10.1016/S0016-2361(01)00125- 9 [13] G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts. Hoboken, Nueva Jersey, USA: John Wiley & Sons, 2004. [14] P. C. Painter, M. Starsinic, E. Squires and A. A. Davis, “Concerning the 1600 cm−1 region in the i.r. spectrum of coal,” Fuel, vol. 62, no. 6, pp. 742–744, Jun. 1983. https:// doi.org/10.1016/0016-2361(83)90317-4 [15] S. zhang, z. Chen, X. Chen and X. Gong, “Effects of ash/ K2CO3/Fe2O3 on ignition temperature and combustion rate of demineralized anthracite,” J. of Fuel Chemistry and Technol., vol. 42, no. 2, pp. 166-174, Feb. 2014. https:// doi.org/10.1016/S1872-5813(14)60013-X [16] X. Gong and S. zhang, “Changes in char structure due to inorganic matters during anthracite pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 127, pp. 170-175, Sept. 2017. https://doi.org/10.1016/j.jaap.2017.08.011 [17] P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu and B. D. Pandey, “Demineralization of low grade coal- A review,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 745-761, Jan. 2015. https://doi.org/10.1016/j. rser.2014.08.072 |
dc.relation.citationendpage.none.fl_str_mv |
55 |
dc.relation.citationstartpage.none.fl_str_mv |
47 |
dc.relation.citationstartpage.spa.fl_str_mv |
Antracitas Beneficio químico Materia mineral Desmineralización Ácido clorhídrico Ácido fluorhídrico |
dc.relation.citationstartpage.eng.fl_str_mv |
Anthracite Chemical beneficiat Mineral matter Demineralization Hydrochloric acid Hydrofluoric acid |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationvolume.spa.fl_str_mv |
15 |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
INGE CUC |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
INGE CUC |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/1840 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/54cc3c4e-b3e6-4f1a-bf82-a6f7197189da/download https://repositorio.cuc.edu.co/bitstreams/163a8c1c-097d-4a44-96a8-be524630603d/download https://repositorio.cuc.edu.co/bitstreams/76f6c4c0-91fe-4c96-b342-9696551034bb/download https://repositorio.cuc.edu.co/bitstreams/d6cbf7b9-30b2-488a-b56c-df900f7ed3d0/download https://repositorio.cuc.edu.co/bitstreams/876dae6e-8ef5-4182-b416-aaa2e1af093f/download |
bitstream.checksum.fl_str_mv |
7ffdbedc6fa652c3fee01e379ed78039 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 d46c2b37de43a288d0dadba48a36809d f2e32d12e1aecb089f475c62a5a0bba6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760844128649216 |
spelling |
Lugo Martinez, Wilmer AlexanderAvila, HuberVanegas, MarleyAlbis Arrieta, Alberto RicardoArdila, Marco2020-01-13T19:13:27Z2020-01-13T19:13:27Z2019-10-01Wilmer Alexander Lugo-Martínez; Huber Yesid Avila-Rios; Marley Cecilia Vanegas-Chamorro; Alberto Albis-Arrieta; Marco Antonio ArdilaBarragán. “Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)” INGE CUC, vol. 15, no. 2, pp. 47-55, 2019. DOI: http://doi.org/10.17981/ingecuc.15.2.2019.05https://hdl.handle.net/11323/5812https://doi.org/10.17981/ingecuc.15.2.2019.0510.17981/ingecuc.15.2.2019.052382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introduction− The non-energy use of high-range carbons (anthracite) has great potential in industries such as metallurgy and in the synthesis of new carbonaceous materials. However, before being used in these applications, they must be treated to remove impurities or unwanted compounds. Objective− To evaluate the efficiency of the process of chemical demineralization of semianthracites through the use of different acids varying the operating conditions of the process. Method− Two samples were chemically characterized: Boavita (B) and Capitanejo (C) from the Boyacá and Santander (Colombia) mines, respectively. Ash and mineral matter removal from the samples was evaluated using [HCl] = 5M, HF 40% and HCl 38% at two different reaction times (45 and 60 minutes) and two particle sizes of the material (250 and 500 µm). Results− The minimum values of ash content (bs) reached through the demineralization process for samples B and C, were 0.65 and 0.76% respectively, which were obtained with a particle size of 250 µm and 60 minutes of exposure in each of the acids used in this study. Conclusions− A smaller particle size increases the contact surface and improves the degree of demineralization, regardless of the time of exposure to acids. The efficiency of the chemical benefit shows yields in the reduction of silicates, aluminates and aluminosilicates to 100%, while for ferric minerals it is above 50%.Introducción− El uso no energético de carbones de alto rango (antracitas) tiene un gran potencial en industrias tales como la metalurgia y en la síntesis de nuevos materiales carbonosos. Sin embargo, antes de su uso en estas aplicaciones, estos deben ser tratados para eliminar impurezas o compuestos no deseados. Objetivo− Evaluar la eficiencia del proceso de desmineralización química de semiantracitas mediante el uso de diferentes ácidos variando las condiciones de operación del proceso. Metodología− Se realizó la caracterización química de dos muestras: Boavita (B) y Capitanejo (C) provenientes de minas de Boyacá y Santander (Colombia), respectivamente. Se evaluó la remoción de cenizas y materia mineral de las muestras utilizando [HCl] = 5M, HF 40% y HCl 38% a dos diferentes tiempos de reacción (45 y 60 minutos) y dos tamaños de partícula del material (250 y 500 µm). Resultados− Los valores mínimos de contenido de cenizas (bs) alcanzados mediante el proceso de desmineralización para las muestras B y C, fueron 0,65 y 0,76% respectivamente, los cuales se obtuvieron con tamaño de partícula de 250 µm y 60 minutos de exposición en cada uno de los ácidos empleados en este estudio. Conclusiones− A menor tamaño de partícula se incrementa la superficie de contacto y mejora el grado de desmineralización, independientemente del tiempo de exposición a los ácidos. La eficiencia del beneficio químico muestra rendimientos en la reducción de silicatos, aluminatos y aluminosilicatos al 100%, mientras que para minerales férricos está por encima del 50%.Lugo Martinez, Wilmer Alexander-will be generated-orcid-0000-0002-7957-6090-600Avila, Huber-will be generated-orcid-0000-0001-9039-1516-600Vanegas, Marley-will be generated-orcid-0000-0002-0513-7554-600Albis Arrieta, Alberto Ricardo-will be generated-orcid-0000-0003-1758-1385-600Ardila, Marco-will be generated-orcid-0000-0002-0251-7527-6009 páginasapplication/pdfspaCorporación Universidad de la CostaINGE CUC; Vol. 15, Núm. 2 (2019)INGE CUCINGE CUC[1] J. M. Andrésen, C. E. Burgess, P. J. Pappano and H. H. Schobert, “New directions for non-fuel uses of anthracites,” Fuel Processing Technology, vol. 85, no. 12, pp. 1373–1392, Aug. 2004. https://doi.org/10.1016/j.fuproc.2003.05.001[2] W. Xia, G. Xie and Y. Peng, “Recent advances in beneficiation for low rank coals,” Powder Technol., vol. 277, pp. 206–221, Jun. 2015. https://doi.org/10.1016/j.powtec.2015.03.003[3] I. M. Mejia-Villarreal, “Producción de carbón ultralimpio por desmineralización física y química”, M. S. thesis, Dept. Ing. quim., Universidad del Valle, Cali, Colombia, 2004.[4] M. Alfaro-Domínguez, F. J. Higes-Rolando, M. L. RojasCervantes and V. Gómez-Serrano, “Demineralisation of semi-anthracite char with molten salts/HCl. Effects on the porous texture and reactivity in air,” Appl. Surf. Sci., vol. 252, no. 17, pp. 6005–6008, Jun. 2006. https://doi. org/10.1016/j.apsusc.2005.11.002[5] J. W. Leonard, Coal preparation. Society for Mining, Englewood, Colorado, USA: Metallurgy and Exploration, 1991.[6] M. C. Vanegas Chamorro, “Estudio del mecanismo de grafitización de antracitas sudafricanas,” M. S. thesis, Dept. Ing. quim., Universidad de Oviedo, Oviedo, España, 2012.[7] P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu and B. D. Pandey, “Demineralization of low grade coal - A review,” Renew. Sustain. Energy Rev., vol. 41, pp. 745–761, Jan. 2015. https://doi.org/10.1016/j.rser.2014.08.072[8] S. K. Behera, S. Chakraborty and B. C. Meikap, “Chemical demineralization of high ash Indian coal by using alkali and acid solutions,” Fuel, vol. 196, pp. 102–109, May. 2017. https://doi.org/10.1016/j.fuel.2017.01.088[9] M. K. Saini, P. K. Srivastava and N. Choudhury, “Development of Moisture and Ash Based Correlation for the Estimation of Mineral Matter in High Ash Indian Coal,” Int. J. Clean Coal Energy, vol. 4, no. 2, pp. 33–42, May. 2015. https://doi.org/10.4236/ijcce.2015.42004[10] B. C. Smith, Infrared Spectral Interpretation: A Systematic Approach. Boca Raton, Florida, USA: CRC Press Taylor and Francis Group, 1998.[11] A. M. Puziy, O. I. Poddubnaya, A. Martínez-Alonso, A. Castro-Muñiz, F. Suárez-García and J. M. D. Tascón, “Oxygen and phosphorus enriched carbons from lignocellulosic material,” Carbon N. Y., vol. 45, no. 10, pp. 1941–1950, Sep. 2007. https://doi.org/10.1016/j.carbon.2007.06.014[12] H. Machnikowska, A. Krztoń, and J. Machnikowski, “The characterization of coal macerals by diffuse reflectance infrared spectroscopy,” Fuel, vol. 81, no. 2, pp. 245–252, Jan. 2002. https://doi.org/10.1016/S0016-2361(01)00125- 9[13] G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts. Hoboken, Nueva Jersey, USA: John Wiley & Sons, 2004.[14] P. C. Painter, M. Starsinic, E. Squires and A. A. Davis, “Concerning the 1600 cm−1 region in the i.r. spectrum of coal,” Fuel, vol. 62, no. 6, pp. 742–744, Jun. 1983. https:// doi.org/10.1016/0016-2361(83)90317-4[15] S. zhang, z. Chen, X. Chen and X. Gong, “Effects of ash/ K2CO3/Fe2O3 on ignition temperature and combustion rate of demineralized anthracite,” J. of Fuel Chemistry and Technol., vol. 42, no. 2, pp. 166-174, Feb. 2014. https:// doi.org/10.1016/S1872-5813(14)60013-X[16] X. Gong and S. zhang, “Changes in char structure due to inorganic matters during anthracite pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 127, pp. 170-175, Sept. 2017. https://doi.org/10.1016/j.jaap.2017.08.011[17] P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu and B. D. Pandey, “Demineralization of low grade coal- A review,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 745-761, Jan. 2015. https://doi.org/10.1016/j. rser.2014.08.0725547AntracitasBeneficio químicoMateria mineralDesmineralizaciónÁcido clorhídricoÁcido fluorhídricoAnthraciteChemical beneficiatMineral matterDemineralizationHydrochloric acidHydrofluoric acid215INGE CUCCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2INGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1840Evaluación de la desmineralización química de semiantracitas provenientes de minas ubicadas en Boyacá y Santander (Colombia)Evaluation of the chemical demineralization of semianthracites from mines located in Boyacá and Santander (Colombia)Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALEvaluación de la desmineralización química de semiantrcitas provenientes de minas ubicadas en Boyacá y Santander (Colombia).pdfEvaluación de la desmineralización química de semiantrcitas provenientes de minas ubicadas en Boyacá y Santander (Colombia).pdfapplication/pdf566900https://repositorio.cuc.edu.co/bitstreams/54cc3c4e-b3e6-4f1a-bf82-a6f7197189da/download7ffdbedc6fa652c3fee01e379ed78039MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/163a8c1c-097d-4a44-96a8-be524630603d/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/76f6c4c0-91fe-4c96-b342-9696551034bb/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILEvaluación de la desmineralización química de semiantrcitas provenientes de minas ubicadas en Boyacá y Santander (Colombia).pdf.jpgEvaluación de la desmineralización química de semiantrcitas provenientes de minas ubicadas en Boyacá y Santander (Colombia).pdf.jpgimage/jpeg85842https://repositorio.cuc.edu.co/bitstreams/d6cbf7b9-30b2-488a-b56c-df900f7ed3d0/downloadd46c2b37de43a288d0dadba48a36809dMD55TEXTEvaluación de la desmineralización química de semiantrcitas provenientes de minas ubicadas en Boyacá y Santander (Colombia).pdf.txtEvaluación de la desmineralización química de semiantrcitas provenientes de minas ubicadas en Boyacá y Santander (Colombia).pdf.txttext/plain40032https://repositorio.cuc.edu.co/bitstreams/876dae6e-8ef5-4182-b416-aaa2e1af093f/downloadf2e32d12e1aecb089f475c62a5a0bba6MD5611323/5812oai:repositorio.cuc.edu.co:11323/58122024-09-17 14:09:42.039http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |