Investigating gene methylation signatures for fetal intolerance prediction

Pregnancy is a complicated and long procedure during one or more offspring development inside a woman. A short period of oxygen shortage after birth is quite normal for most babies and does not threaten their health. However, if babies have to suffer from a long period of oxygen shortage, then this...

Full description

Autores:
Zhang, Yu-Hang
Li, Zhandong
Zeng, Tao
Chen, Lei
Li, Hao
Gamarra, Margarita
MansourI, Romany F.
Escorcia-Gutierrez, Jose
Huang, Tao
Cai, Yu-Dong
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8267
Acceso en línea:
https://hdl.handle.net/11323/8267
https://doi.org/10.1371/journal.pone.0250032
https://repositorio.cuc.edu.co/
Palabra clave:
Methylation
Gene expression
Pregnancy
Biomarkers
Blood
Oxygen
Biopsy
Support vector machines
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_bc4968045e2cf1f6a52dc0bc46eb210e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8267
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Investigating gene methylation signatures for fetal intolerance prediction
title Investigating gene methylation signatures for fetal intolerance prediction
spellingShingle Investigating gene methylation signatures for fetal intolerance prediction
Methylation
Gene expression
Pregnancy
Biomarkers
Blood
Oxygen
Biopsy
Support vector machines
title_short Investigating gene methylation signatures for fetal intolerance prediction
title_full Investigating gene methylation signatures for fetal intolerance prediction
title_fullStr Investigating gene methylation signatures for fetal intolerance prediction
title_full_unstemmed Investigating gene methylation signatures for fetal intolerance prediction
title_sort Investigating gene methylation signatures for fetal intolerance prediction
dc.creator.fl_str_mv Zhang, Yu-Hang
Li, Zhandong
Zeng, Tao
Chen, Lei
Li, Hao
Gamarra, Margarita
MansourI, Romany F.
Escorcia-Gutierrez, Jose
Huang, Tao
Cai, Yu-Dong
dc.contributor.author.spa.fl_str_mv Zhang, Yu-Hang
Li, Zhandong
Zeng, Tao
Chen, Lei
Li, Hao
Gamarra, Margarita
MansourI, Romany F.
Escorcia-Gutierrez, Jose
Huang, Tao
Cai, Yu-Dong
dc.subject.eng.fl_str_mv Methylation
Gene expression
Pregnancy
Biomarkers
Blood
Oxygen
Biopsy
Support vector machines
topic Methylation
Gene expression
Pregnancy
Biomarkers
Blood
Oxygen
Biopsy
Support vector machines
description Pregnancy is a complicated and long procedure during one or more offspring development inside a woman. A short period of oxygen shortage after birth is quite normal for most babies and does not threaten their health. However, if babies have to suffer from a long period of oxygen shortage, then this condition is an indication of pathological fetal intolerance, which probably causes their death. The identification of the pathological fetal intolerance from the physical oxygen shortage is one of the important clinical problems in obstetrics for a long time. The clinical syndromes typically manifest five symptoms that indicate that the baby may suffer from fetal intolerance. At present, liquid biopsy combined with high-throughput sequencing or mass spectrum techniques provides a quick approach to detect real-time alteration in the peripheral blood at multiple levels with the rapid development of molecule sequencing technologies. Gene methylation is functionally correlated with gene expression; thus, the combination of gene methylation and expression information would help in screening out the key regulators for the pathogenesis of fetal intolerance. We combined gene methylation and expression features together and screened out the optimal features, including gene expression or methylation signatures, for fetal intolerance prediction for the first time. In addition, we applied various computational methods to construct a comprehensive computational pipeline to identify the potential biomarkers for fetal intolerance dependent on the liquid biopsy samples. We set up qualitative and quantitative computational models for the prediction for fetal intolerance during pregnancy. Moreover, we provided a new prospective for the detailed pathological mechanism of fetal intolerance. This work can provide a solid foundation for further experimental research and contribute to the application of liquid biopsy in antenatal care.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-20T18:12:42Z
dc.date.available.none.fl_str_mv 2021-05-20T18:12:42Z
dc.date.issued.none.fl_str_mv 2021-04-22
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1932-6203
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8267
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1371/journal.pone.0250032
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1932-6203
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8267
https://doi.org/10.1371/journal.pone.0250032
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Bondas T, Eriksson K (2001) Women’s lived experiences of pregnancy: A tapestry of joy and suffering. Qualitative Health Research 11: 824–840. https://doi.org/10.1177/104973201129119415 PMID: 11710080
2. Macklin R (2010) Enrolling pregnant women in biomedical research. The Lancet 375: 632–633. https:// doi.org/10.1016/s0140-6736(10)60257-7 PMID: 20198725
3. Yap S-C, Drenthen W, Pieper PG, Moons P, Mulder BJ, et al. (2008) Risk of complications during pregnancy in women with congenital aortic stenosis. International journal of cardiology 126: 240–246. https://doi.org/10.1016/j.ijcard.2007.03.134 PMID: 17482293
4. Linne Y (2004) Effects of obesity on women’s reproduction and complications during pregnancy. Obesity reviews 5: 137–143. https://doi.org/10.1111/j.1467-789X.2004.00147.x PMID: 15245382
5. Dietl J (2005) Maternal obesity and complications during pregnancy. Journal of perinatal medicine 33: 100–105. https://doi.org/10.1515/JPM.2005.018 PMID: 15843256
6. Wood SL, Newton JM, Wang L, Lesser K (2014) Borderline Amniotic Fluid Index and Its Relation to Fetal Intolerance of Labor: A 2-Center Retrospective Cohort Study. Journal of Ultrasound in Medicine 33: 705–711. https://doi.org/10.7863/ultra.33.4.705 PMID: 24658952
7. Sermer M, Naylor CD, Gare DJ, Kenshole AB, Ritchie J, et al. (1995) Impact of increasing carbohydrate intolerance on maternal-fetal outcomes in 3637 women without gestational diabetes: the Toronto TriHospital Gestational Diabetes Project. American journal of obstetrics and gynecology 173: 146–156. https://doi.org/10.1016/0002-9378(95)90183-3 PMID: 7631672
8. Sacks D (1993) Fetal macrosomia and gestational diabetes: what’s the problem? Obstetrics and gynecology 81: 775–781. PMID: 8469471
9. Lockshin MD, Druzin ML, Goei S, Qamar T, Magid MS, et al. (1985) Antibody to cardiolipin as a predictor of fetal distress or death in pregnant patients with systemic lupus erythematosus. New England Journal of Medicine 313: 152–156. https://doi.org/10.1056/NEJM198507183130304 PMID: 3925336
10. Impey L (1993) Severe hypotension and fetal distress following sublingual administration of nifedipine to a patient with severe pregnancy induced hypertension at 33 weeks. BJOG: An International Journal of Obstetrics & Gynaecology 100: 959–961. https://doi.org/10.1111/j.1471-0528.1993.tb15120.xPMID: 8217985
11. Laurin J, Lingman G, Marsa´l K, Persson P (1987) Fetal blood flow in pregnancies complicated by intrauterine growth retardation. Obstetrics and Gynecology 69: 895–902. PMID: 3554065
12. Heitzer E, Haque IS, Roberts CE, Speicher MR (2019) Current and future perspectives of liquid biopsies in genomics-driven oncology. Nature Reviews Genetics 20: 71–88. https://doi.org/10.1038/s41576-018-0071-5 PMID: 30410101
13. San Lucas F, Allenson K, Bernard V, Castillo J, Kim D, et al. (2016) Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. Annals of Oncology 27: 635–641. https://doi.org/10.1093/annonc/mdv604 PMID: 26681674
14. Kim Y, Jeon J, Mejia S, Yao CQ, Ignatchenko V, et al. (2016) Targeted proteomics identifies liquidbiopsy signatures for extracapsular prostate cancer. Nature communications 7: 1–10. https://doi.org/ 10.1038/ncomms11906 PMID: 27350604
15. Ying W, Jingli F, Wei SW, Li WL (2010) Genomic imprinting status of IGF-II and H19 in placentas of fetal growth restriction patients. J Genet 89: 213–216. https://doi.org/10.1007/s12041-010-0027-9 PMID: 20861572
16. Knight AK, Conneely KN, Kilaru V, Cobb D, Payne JL, et al. (2018) SLC9B1 methylation predicts fetal intolerance of labor. Epigenetics 13: 33–39. https://doi.org/10.1080/15592294.2017.1411444 PMID: 29235940
17. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16: 321–357.
18. Kursa M, Rudnicki W (2010) Feature Selection with the Boruta Package. Journal of Statistical Software, Articles 36: 1–13.
19. Peng HC, Long FH, Ding C (2005) Feature selection based on mutual information: Criteria of maxdependency, max-relevance, and min-redundancy. Ieee Transactions on Pattern Analysis And Machine Intelligence 27: 1226–1238. https://doi.org/10.1109/TPAMI.2005.159 PMID: 16119262
20. Pan X, Li H, Zeng T, Li Z, Chen L, et al. (2021) Identification of protein subcellular localization with network and functional embeddings. Frontiers in Genetics 11: 626500. https://doi.org/10.3389/fgene. 2020.626500 PMID: 33584818
21. Zhang Y-H, Li H, Zeng T, Chen L, Li Z, et al. (2021) Identifying transcriptomic signatures and rules for SARS-CoV-2 infection. Frontiers in Cell and Developmental Biology 8: 627302. https://doi.org/10.3389/ fcell.2020.627302 PMID: 33505977
22. Zhao X, Chen L, Lu J (2018) A similarity-based method for prediction of drug side effects with heterogeneous information. Mathematical Biosciences 306: 136–144. https://doi.org/10.1016/j.mbs.2018.09. 010 PMID: 30296417
23. Liu HA, Setiono R (1998) Incremental feature selection. Applied Intelligence 9: 217–230.
24. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection; 1995. Lawrence Erlbaum Associates Ltd. pp. 1137–1145.
25. Breiman L (2001) Random forests. Machine learning 45: 5–32.
26. Jia Y, Zhao R, Chen L (2020) Similarity-Based Machine Learning Model for Predicting the Metabolic Pathways of Compounds. IEEE Access 8: 130687–130696.
27. Liang H, Chen L, Zhao X, Zhang X (2020) Prediction of drug side effects with a refined negative sample selection strategy. Computational and Mathematical Methods in Medicine 2020: 1573543. https://doi. org/10.1155/2020/1573543 PMID: 32454877
28. Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20: 273–297.
29. Zhou J-P, Chen L, Guo Z-H (2020) iATC-NRAKEL: An efficient multi-label classifier for recognizing anatomical therapeutic chemical classes of drugs. Bioinformatics 36: 1391–1396. https://doi.org/10.1093/ bioinformatics/btz757 PMID: 31593226
30. Zhou J-P, Chen L, Wang T, Liu M (2020) iATC-FRAKEL: A simple multi-label web-server for recognizing anatomical therapeutic chemical classes of drugs with their fingerprints only. Bioinformatics 36: 3568–3569. https://doi.org/10.1093/bioinformatics/btaa166 PMID: 32154836
31. Zhu Y, Hu B, Chen L, Dai Q (2021) iMPTCE-Hnetwork: a multi-label classifier for identifying metabolic pathway types of chemicals and enzymes with a heterogeneous network. Computational and Mathematical Methods in Medicine 2021: 6683051. https://doi.org/10.1155/2021/6683051 PMID: 33488764
32. Frank E, Hall M, Trigg L, Holmes G, Witten IH (2004) Data mining in bioinformatics using Weka. Bioinformatics 20: 2479–2481. https://doi.org/10.1093/bioinformatics/bth261 PMID: 15073010
33. Witten IH, Frank E (2005) Data Mining: Practical machine learning tools and techniques: Morgan Kaufmann Pub.
34. Cohen WW (1995) Fast Effective Rule Induction. Twelfth International Conference on Machine Learning. pp. 115–123.
35. Matthews B (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure 405: 442–451. https://doi.org/10.1016/ 0005-2795(75)90109-9 PMID: 1180967
36. Zhang Y-H, Zeng T, Chen L, Huang T, Cai Y-D (2021) Detecting the multiomics signatures of factorspecific inflammatory effects on airway smooth muscles. Frontiers in Genetics 11: 599970. https://doi. org/10.3389/fgene.2020.599970 PMID: 33519902
37. Liu H, Hu B, Chen L, Lu L (2020) Identifying protein subcellular location with embedding features learned from networks. Current Proteomics.
38. Kumar PL, James PF (2015) Identification and characterization of methylation-dependent/independent DNA regulatory elements in the human SLC9B1 gene. Gene 561: 235–248. https://doi.org/10.1016/j. gene.2015.02.050 PMID: 25701605
39. Hargan Calvopina JD (2016) Mechanisms of demethylation in primordial germ cells and the importance of stage-specific demethylation in safeguarding against precocious differentiation: UCLA. https://doi. org/10.1016/j.devcel.2016.07.019 PMID: 27618282
40. Auclair G, Borgel J, Sanz LA, Vallet J, Guibert S, et al. (2016) EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos. Genome research 26: 192–202. https://doi.org/10.1101/gr. 198291.115 PMID: 26576615
41. Nishioka M, Bundo M, Koike S, Takizawa R, Kakiuchi C, et al. (2013) Comprehensive DNA methylation analysis of peripheral blood cells derived from patients with first-episode schizophrenia. Journal of human genetics 58: 91–97. https://doi.org/10.1038/jhg.2012.140 PMID: 23235336
42. Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, et al. (2014) Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Translational psychiatry 4: e339– e339. https://doi.org/10.1038/tp.2013.111 PMID: 24399042
43. Houseman EA, Kim S, Kelsey KT, Wiencke JK (2015) DNA methylation in whole blood: uses and challenges. Current environmental health reports 2: 145–154. https://doi.org/10.1007/s40572-015-0050-3 PMID: 26231364
44. Abdolmaleky HM, Zhou J-R, Thiagalingam S (2015) An update on the epigenetics of psychotic diseases and autism. Epigenomics 7: 427–449. https://doi.org/10.2217/epi.14.85 PMID: 26077430
45. Zaki M, Boyd P, Impey L, Roberts A, Chamberlain P (2007) Congenital myotonic dystrophy: prenatal ultrasound findings and pregnancy outcome. Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 29: 284–288. https:// doi.org/10.1002/uog.3859 PMID: 17238150
46. Panigrahy N, Lingappa L, Ramadevi AR, Venkatlakshmi A (2016) Congenital disorder of glycosylation (CDG) presenting as non-immune hydrops fetalis. The Indian Journal of Pediatrics 83: 359–360. https://doi.org/10.1007/s12098-015-1895-z PMID: 26365158
47. Poquet H, Faivre L, El Chehadeh S, Morton J, McMullan D, et al. (2017) Further Evidence for Dlgap2 as strong Autism Spectrum disorders/intellectual disability candidate gene. Autism Open Access 6: 2.
48. Chertkow-Deutsher Y, Cohen H, Klein E, Ben-Shachar D (2010) DNA methylation in vulnerability to post-traumatic stress in rats: evidence for the role of the post-synaptic density protein Dlgap2. International Journal of Neuropsychopharmacology 13: 347–359. https://doi.org/10.1017/ S146114570999071X PMID: 19793403
49. Hivert M-F, Cardenas A, Allard C, Doyon M, Powe CE, et al. (2020) Interplay of Placental DNA Methylation and Maternal Insulin Sensitivity in Pregnancy. Diabetes 69: 484–492. https://doi.org/10.2337/ db19-0798 PMID: 31882564
50. De Felice B, Manfellotto F, Palumbo A, Troisi J, Zullo F, et al. (2015) Genome–wide microRNA expression profiling in placentas from pregnant women exposed to BPA. BMC medical genomics 8: 56. https://doi.org/10.1186/s12920-015-0131-z PMID: 26345457
51. Luo ZC, Nuyt AM, Delvin E, Fraser WD, Julien P, et al. (2013) Maternal and fetal leptin, adiponectin levels and associations with fetal insulin sensitivity. Obesity 21: 210–216. https://doi.org/10.1002/oby. 20250 PMID: 23505188
52. El Mallah K, Narchi H, Kulaylat N, Shaban M (1997) Gestational and pre-gestational diabetes: comparison of maternal and fetal characteristics and outcome. International Journal of Gynecology & Obstetrics 58: 203–209. https://doi.org/10.1016/s0020-7292(97)00084-2 PMID: 9252256
53. Donat S, Lourenc¸o M, Paolini A, Otten C, Renz M, et al. (2018) Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis. Elife 7: e28939. https://doi.org/10.7554/ eLife.28939 PMID: 29364115
54. Ramos CJ, Antonetti DA (2017) The role of small GTPases and EPAC-Rap signaling in the regulation of the blood-brain and blood-retinal barriers. Tissue barriers 5: e1339768. https://doi.org/10.1080/ 21688370.2017.1339768 PMID: 28632993
55. Groenendijk BC, Hierck BP, Gittenberger-de Groot AC, Poelmann RE (2004) Development-related changes in the expression of shear stress responsive genes KLF-2, ET-1, and NOS-3 in the developing cardiovascular system of chicken embryos. Developmental dynamics: an official publication of the American Association of Anatomists 230: 57–68.
56. Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy following fetal distress: a clinical and electroencephalographic study. Archives of neurology 33: 696–705. https://doi.org/10.1001/archneur.1976. 00500100030012 PMID: 987769
57. Chung D, Sim Y, Park K, Yi S, Shin J, et al. (2001) Spectral analysis of fetal heart rate variability as a predictor of intrapartum fetal distress. International Journal of Gynecology & Obstetrics 73: 109–116.
58. Zuspan FP, Quilligan E, Iams JD, van Geijn HP (1979) Predictors of intrapartum fetal distress: The role of electronic fetal monitoring: Report of the National Institute of Child Health and Human Development Consensus Development Task Force. American Journal of Obstetrics & Gynecology 135: 287–291.
59. Vieira SE, Bando SY, de Paulis M, Oliveira DB, Thomazelli LM, et al. (2019) Distinct transcriptional modules in the peripheral blood mononuclear cells response to human respiratory syncytial virus or to human rhinovirus in hospitalized infants with bronchiolitis. PloS one 14: e0213501. https://doi.org/10.1371/journal.pone.0213501 PMID: 30845274
60. Lim JH, Kang Y-J, Lee BY, Han YJ, Chung JH, et al. (2019) Epigenome-wide base-resolution profiling of DNA methylation in chorionic villi of fetuses with Down syndrome by methyl-capture sequencing. Clinical Epigenetics 11: 180. https://doi.org/10.1186/s13148-019-0756-4 PMID: 31801612
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv PLoS ONE
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250032#:~:text=In%202018%2C%20an%20independent%20study,functionally%20correlated%20with%20gene%20expression.
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/6a84158b-6922-4a2c-a848-1544065d6593/download
https://repositorio.cuc.edu.co/bitstreams/1bec25c2-31dc-454b-bd1b-59e116cbeb76/download
https://repositorio.cuc.edu.co/bitstreams/1ee3fdfd-4bda-46d0-a8ef-facec52975c1/download
https://repositorio.cuc.edu.co/bitstreams/c71f7076-06f1-4df1-b44a-b66d2506202c/download
https://repositorio.cuc.edu.co/bitstreams/ef149a75-7844-41c3-be21-c3408647a725/download
bitstream.checksum.fl_str_mv efa74af2899903913a45527c18e1144e
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
c80e63bf15d7e4f35de09fc71327b848
0dc9aa1c780ede0d99be30645779df37
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166872211652608
spelling Zhang, Yu-HangLi, ZhandongZeng, TaoChen, LeiLi, HaoGamarra, MargaritaMansourI, Romany F.Escorcia-Gutierrez, JoseHuang, TaoCai, Yu-Dong2021-05-20T18:12:42Z2021-05-20T18:12:42Z2021-04-221932-6203https://hdl.handle.net/11323/8267https://doi.org/10.1371/journal.pone.0250032Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Pregnancy is a complicated and long procedure during one or more offspring development inside a woman. A short period of oxygen shortage after birth is quite normal for most babies and does not threaten their health. However, if babies have to suffer from a long period of oxygen shortage, then this condition is an indication of pathological fetal intolerance, which probably causes their death. The identification of the pathological fetal intolerance from the physical oxygen shortage is one of the important clinical problems in obstetrics for a long time. The clinical syndromes typically manifest five symptoms that indicate that the baby may suffer from fetal intolerance. At present, liquid biopsy combined with high-throughput sequencing or mass spectrum techniques provides a quick approach to detect real-time alteration in the peripheral blood at multiple levels with the rapid development of molecule sequencing technologies. Gene methylation is functionally correlated with gene expression; thus, the combination of gene methylation and expression information would help in screening out the key regulators for the pathogenesis of fetal intolerance. We combined gene methylation and expression features together and screened out the optimal features, including gene expression or methylation signatures, for fetal intolerance prediction for the first time. In addition, we applied various computational methods to construct a comprehensive computational pipeline to identify the potential biomarkers for fetal intolerance dependent on the liquid biopsy samples. We set up qualitative and quantitative computational models for the prediction for fetal intolerance during pregnancy. Moreover, we provided a new prospective for the detailed pathological mechanism of fetal intolerance. This work can provide a solid foundation for further experimental research and contribute to the application of liquid biopsy in antenatal care.Zhang, Yu-Hang-will be generated-orcid-0000-0003-3825-0796-600Li, ZhandongZeng, TaoChen, LeiLi, HaoGamarra, Margarita-will be generated-orcid-0000-0003-1834-2984-600MansourI, Romany F.Escorcia-Gutierrez, Jose-will be generated-orcid-0000-0003-0518-3187-600Huang, Tao-will be generated-orcid-0000-0003-1975-9693-600Cai, Yu-Dongapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PLoS ONEhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250032#:~:text=In%202018%2C%20an%20independent%20study,functionally%20correlated%20with%20gene%20expression.MethylationGene expressionPregnancyBiomarkersBloodOxygenBiopsySupport vector machinesInvestigating gene methylation signatures for fetal intolerance predictionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Bondas T, Eriksson K (2001) Women’s lived experiences of pregnancy: A tapestry of joy and suffering. Qualitative Health Research 11: 824–840. https://doi.org/10.1177/104973201129119415 PMID: 117100802. Macklin R (2010) Enrolling pregnant women in biomedical research. The Lancet 375: 632–633. https:// doi.org/10.1016/s0140-6736(10)60257-7 PMID: 201987253. Yap S-C, Drenthen W, Pieper PG, Moons P, Mulder BJ, et al. (2008) Risk of complications during pregnancy in women with congenital aortic stenosis. International journal of cardiology 126: 240–246. https://doi.org/10.1016/j.ijcard.2007.03.134 PMID: 174822934. Linne Y (2004) Effects of obesity on women’s reproduction and complications during pregnancy. Obesity reviews 5: 137–143. https://doi.org/10.1111/j.1467-789X.2004.00147.x PMID: 152453825. Dietl J (2005) Maternal obesity and complications during pregnancy. Journal of perinatal medicine 33: 100–105. https://doi.org/10.1515/JPM.2005.018 PMID: 158432566. Wood SL, Newton JM, Wang L, Lesser K (2014) Borderline Amniotic Fluid Index and Its Relation to Fetal Intolerance of Labor: A 2-Center Retrospective Cohort Study. Journal of Ultrasound in Medicine 33: 705–711. https://doi.org/10.7863/ultra.33.4.705 PMID: 246589527. Sermer M, Naylor CD, Gare DJ, Kenshole AB, Ritchie J, et al. (1995) Impact of increasing carbohydrate intolerance on maternal-fetal outcomes in 3637 women without gestational diabetes: the Toronto TriHospital Gestational Diabetes Project. American journal of obstetrics and gynecology 173: 146–156. https://doi.org/10.1016/0002-9378(95)90183-3 PMID: 76316728. Sacks D (1993) Fetal macrosomia and gestational diabetes: what’s the problem? Obstetrics and gynecology 81: 775–781. PMID: 84694719. Lockshin MD, Druzin ML, Goei S, Qamar T, Magid MS, et al. (1985) Antibody to cardiolipin as a predictor of fetal distress or death in pregnant patients with systemic lupus erythematosus. New England Journal of Medicine 313: 152–156. https://doi.org/10.1056/NEJM198507183130304 PMID: 392533610. Impey L (1993) Severe hypotension and fetal distress following sublingual administration of nifedipine to a patient with severe pregnancy induced hypertension at 33 weeks. BJOG: An International Journal of Obstetrics & Gynaecology 100: 959–961. https://doi.org/10.1111/j.1471-0528.1993.tb15120.xPMID: 821798511. Laurin J, Lingman G, Marsa´l K, Persson P (1987) Fetal blood flow in pregnancies complicated by intrauterine growth retardation. Obstetrics and Gynecology 69: 895–902. PMID: 355406512. Heitzer E, Haque IS, Roberts CE, Speicher MR (2019) Current and future perspectives of liquid biopsies in genomics-driven oncology. Nature Reviews Genetics 20: 71–88. https://doi.org/10.1038/s41576-018-0071-5 PMID: 3041010113. San Lucas F, Allenson K, Bernard V, Castillo J, Kim D, et al. (2016) Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. Annals of Oncology 27: 635–641. https://doi.org/10.1093/annonc/mdv604 PMID: 2668167414. Kim Y, Jeon J, Mejia S, Yao CQ, Ignatchenko V, et al. (2016) Targeted proteomics identifies liquidbiopsy signatures for extracapsular prostate cancer. Nature communications 7: 1–10. https://doi.org/ 10.1038/ncomms11906 PMID: 2735060415. Ying W, Jingli F, Wei SW, Li WL (2010) Genomic imprinting status of IGF-II and H19 in placentas of fetal growth restriction patients. J Genet 89: 213–216. https://doi.org/10.1007/s12041-010-0027-9 PMID: 2086157216. Knight AK, Conneely KN, Kilaru V, Cobb D, Payne JL, et al. (2018) SLC9B1 methylation predicts fetal intolerance of labor. Epigenetics 13: 33–39. https://doi.org/10.1080/15592294.2017.1411444 PMID: 2923594017. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16: 321–357.18. Kursa M, Rudnicki W (2010) Feature Selection with the Boruta Package. Journal of Statistical Software, Articles 36: 1–13.19. Peng HC, Long FH, Ding C (2005) Feature selection based on mutual information: Criteria of maxdependency, max-relevance, and min-redundancy. Ieee Transactions on Pattern Analysis And Machine Intelligence 27: 1226–1238. https://doi.org/10.1109/TPAMI.2005.159 PMID: 1611926220. Pan X, Li H, Zeng T, Li Z, Chen L, et al. (2021) Identification of protein subcellular localization with network and functional embeddings. Frontiers in Genetics 11: 626500. https://doi.org/10.3389/fgene. 2020.626500 PMID: 3358481821. Zhang Y-H, Li H, Zeng T, Chen L, Li Z, et al. (2021) Identifying transcriptomic signatures and rules for SARS-CoV-2 infection. Frontiers in Cell and Developmental Biology 8: 627302. https://doi.org/10.3389/ fcell.2020.627302 PMID: 3350597722. Zhao X, Chen L, Lu J (2018) A similarity-based method for prediction of drug side effects with heterogeneous information. Mathematical Biosciences 306: 136–144. https://doi.org/10.1016/j.mbs.2018.09. 010 PMID: 3029641723. Liu HA, Setiono R (1998) Incremental feature selection. Applied Intelligence 9: 217–230.24. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection; 1995. Lawrence Erlbaum Associates Ltd. pp. 1137–1145.25. Breiman L (2001) Random forests. Machine learning 45: 5–32.26. Jia Y, Zhao R, Chen L (2020) Similarity-Based Machine Learning Model for Predicting the Metabolic Pathways of Compounds. IEEE Access 8: 130687–130696.27. Liang H, Chen L, Zhao X, Zhang X (2020) Prediction of drug side effects with a refined negative sample selection strategy. Computational and Mathematical Methods in Medicine 2020: 1573543. https://doi. org/10.1155/2020/1573543 PMID: 3245487728. Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20: 273–297.29. Zhou J-P, Chen L, Guo Z-H (2020) iATC-NRAKEL: An efficient multi-label classifier for recognizing anatomical therapeutic chemical classes of drugs. Bioinformatics 36: 1391–1396. https://doi.org/10.1093/ bioinformatics/btz757 PMID: 3159322630. Zhou J-P, Chen L, Wang T, Liu M (2020) iATC-FRAKEL: A simple multi-label web-server for recognizing anatomical therapeutic chemical classes of drugs with their fingerprints only. Bioinformatics 36: 3568–3569. https://doi.org/10.1093/bioinformatics/btaa166 PMID: 3215483631. Zhu Y, Hu B, Chen L, Dai Q (2021) iMPTCE-Hnetwork: a multi-label classifier for identifying metabolic pathway types of chemicals and enzymes with a heterogeneous network. Computational and Mathematical Methods in Medicine 2021: 6683051. https://doi.org/10.1155/2021/6683051 PMID: 3348876432. Frank E, Hall M, Trigg L, Holmes G, Witten IH (2004) Data mining in bioinformatics using Weka. Bioinformatics 20: 2479–2481. https://doi.org/10.1093/bioinformatics/bth261 PMID: 1507301033. Witten IH, Frank E (2005) Data Mining: Practical machine learning tools and techniques: Morgan Kaufmann Pub.34. Cohen WW (1995) Fast Effective Rule Induction. Twelfth International Conference on Machine Learning. pp. 115–123.35. Matthews B (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure 405: 442–451. https://doi.org/10.1016/ 0005-2795(75)90109-9 PMID: 118096736. Zhang Y-H, Zeng T, Chen L, Huang T, Cai Y-D (2021) Detecting the multiomics signatures of factorspecific inflammatory effects on airway smooth muscles. Frontiers in Genetics 11: 599970. https://doi. org/10.3389/fgene.2020.599970 PMID: 3351990237. Liu H, Hu B, Chen L, Lu L (2020) Identifying protein subcellular location with embedding features learned from networks. Current Proteomics.38. Kumar PL, James PF (2015) Identification and characterization of methylation-dependent/independent DNA regulatory elements in the human SLC9B1 gene. Gene 561: 235–248. https://doi.org/10.1016/j. gene.2015.02.050 PMID: 2570160539. Hargan Calvopina JD (2016) Mechanisms of demethylation in primordial germ cells and the importance of stage-specific demethylation in safeguarding against precocious differentiation: UCLA. https://doi. org/10.1016/j.devcel.2016.07.019 PMID: 2761828240. Auclair G, Borgel J, Sanz LA, Vallet J, Guibert S, et al. (2016) EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos. Genome research 26: 192–202. https://doi.org/10.1101/gr. 198291.115 PMID: 2657661541. Nishioka M, Bundo M, Koike S, Takizawa R, Kakiuchi C, et al. (2013) Comprehensive DNA methylation analysis of peripheral blood cells derived from patients with first-episode schizophrenia. Journal of human genetics 58: 91–97. https://doi.org/10.1038/jhg.2012.140 PMID: 2323533642. Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, et al. (2014) Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Translational psychiatry 4: e339– e339. https://doi.org/10.1038/tp.2013.111 PMID: 2439904243. Houseman EA, Kim S, Kelsey KT, Wiencke JK (2015) DNA methylation in whole blood: uses and challenges. Current environmental health reports 2: 145–154. https://doi.org/10.1007/s40572-015-0050-3 PMID: 2623136444. Abdolmaleky HM, Zhou J-R, Thiagalingam S (2015) An update on the epigenetics of psychotic diseases and autism. Epigenomics 7: 427–449. https://doi.org/10.2217/epi.14.85 PMID: 2607743045. Zaki M, Boyd P, Impey L, Roberts A, Chamberlain P (2007) Congenital myotonic dystrophy: prenatal ultrasound findings and pregnancy outcome. Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 29: 284–288. https:// doi.org/10.1002/uog.3859 PMID: 1723815046. Panigrahy N, Lingappa L, Ramadevi AR, Venkatlakshmi A (2016) Congenital disorder of glycosylation (CDG) presenting as non-immune hydrops fetalis. The Indian Journal of Pediatrics 83: 359–360. https://doi.org/10.1007/s12098-015-1895-z PMID: 2636515847. Poquet H, Faivre L, El Chehadeh S, Morton J, McMullan D, et al. (2017) Further Evidence for Dlgap2 as strong Autism Spectrum disorders/intellectual disability candidate gene. Autism Open Access 6: 2.48. Chertkow-Deutsher Y, Cohen H, Klein E, Ben-Shachar D (2010) DNA methylation in vulnerability to post-traumatic stress in rats: evidence for the role of the post-synaptic density protein Dlgap2. International Journal of Neuropsychopharmacology 13: 347–359. https://doi.org/10.1017/ S146114570999071X PMID: 1979340349. Hivert M-F, Cardenas A, Allard C, Doyon M, Powe CE, et al. (2020) Interplay of Placental DNA Methylation and Maternal Insulin Sensitivity in Pregnancy. Diabetes 69: 484–492. https://doi.org/10.2337/ db19-0798 PMID: 3188256450. De Felice B, Manfellotto F, Palumbo A, Troisi J, Zullo F, et al. (2015) Genome–wide microRNA expression profiling in placentas from pregnant women exposed to BPA. BMC medical genomics 8: 56. https://doi.org/10.1186/s12920-015-0131-z PMID: 2634545751. Luo ZC, Nuyt AM, Delvin E, Fraser WD, Julien P, et al. (2013) Maternal and fetal leptin, adiponectin levels and associations with fetal insulin sensitivity. Obesity 21: 210–216. https://doi.org/10.1002/oby. 20250 PMID: 2350518852. El Mallah K, Narchi H, Kulaylat N, Shaban M (1997) Gestational and pre-gestational diabetes: comparison of maternal and fetal characteristics and outcome. International Journal of Gynecology & Obstetrics 58: 203–209. https://doi.org/10.1016/s0020-7292(97)00084-2 PMID: 925225653. Donat S, Lourenc¸o M, Paolini A, Otten C, Renz M, et al. (2018) Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis. Elife 7: e28939. https://doi.org/10.7554/ eLife.28939 PMID: 2936411554. Ramos CJ, Antonetti DA (2017) The role of small GTPases and EPAC-Rap signaling in the regulation of the blood-brain and blood-retinal barriers. Tissue barriers 5: e1339768. https://doi.org/10.1080/ 21688370.2017.1339768 PMID: 2863299355. Groenendijk BC, Hierck BP, Gittenberger-de Groot AC, Poelmann RE (2004) Development-related changes in the expression of shear stress responsive genes KLF-2, ET-1, and NOS-3 in the developing cardiovascular system of chicken embryos. Developmental dynamics: an official publication of the American Association of Anatomists 230: 57–68.56. Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy following fetal distress: a clinical and electroencephalographic study. Archives of neurology 33: 696–705. https://doi.org/10.1001/archneur.1976. 00500100030012 PMID: 98776957. Chung D, Sim Y, Park K, Yi S, Shin J, et al. (2001) Spectral analysis of fetal heart rate variability as a predictor of intrapartum fetal distress. International Journal of Gynecology & Obstetrics 73: 109–116.58. Zuspan FP, Quilligan E, Iams JD, van Geijn HP (1979) Predictors of intrapartum fetal distress: The role of electronic fetal monitoring: Report of the National Institute of Child Health and Human Development Consensus Development Task Force. American Journal of Obstetrics & Gynecology 135: 287–291.59. Vieira SE, Bando SY, de Paulis M, Oliveira DB, Thomazelli LM, et al. (2019) Distinct transcriptional modules in the peripheral blood mononuclear cells response to human respiratory syncytial virus or to human rhinovirus in hospitalized infants with bronchiolitis. PloS one 14: e0213501. https://doi.org/10.1371/journal.pone.0213501 PMID: 3084527460. Lim JH, Kang Y-J, Lee BY, Han YJ, Chung JH, et al. (2019) Epigenome-wide base-resolution profiling of DNA methylation in chorionic villi of fetuses with Down syndrome by methyl-capture sequencing. Clinical Epigenetics 11: 180. https://doi.org/10.1186/s13148-019-0756-4 PMID: 31801612PublicationORIGINALInvestigating gene methylation signatures for fetal intolerance prediction.pdfInvestigating gene methylation signatures for fetal intolerance prediction.pdfapplication/pdf749172https://repositorio.cuc.edu.co/bitstreams/6a84158b-6922-4a2c-a848-1544065d6593/downloadefa74af2899903913a45527c18e1144eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/1bec25c2-31dc-454b-bd1b-59e116cbeb76/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/1ee3fdfd-4bda-46d0-a8ef-facec52975c1/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILInvestigating gene methylation signatures for fetal intolerance prediction.pdf.jpgInvestigating gene methylation signatures for fetal intolerance prediction.pdf.jpgimage/jpeg73717https://repositorio.cuc.edu.co/bitstreams/c71f7076-06f1-4df1-b44a-b66d2506202c/downloadc80e63bf15d7e4f35de09fc71327b848MD54TEXTInvestigating gene methylation signatures for fetal intolerance prediction.pdf.txtInvestigating gene methylation signatures for fetal intolerance prediction.pdf.txttext/plain42831https://repositorio.cuc.edu.co/bitstreams/ef149a75-7844-41c3-be21-c3408647a725/download0dc9aa1c780ede0d99be30645779df37MD5511323/8267oai:repositorio.cuc.edu.co:11323/82672024-09-17 14:20:22.27http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==