Balance de energía y exergía de un horno de cuba vertical para la producción de cal

This paper aims with methodologies and indicators for evaluating the impacts of freshwater use, the existing methods fundamentally analyze the amount of water used in relation to the impacts caused. Taking into account that there is a recognized need to consider the impacts, specifically on life cyc...

Full description

Autores:
Sagastume, Alexis
Cogollos Martínez, Juan Bautista
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6786
Acceso en línea:
https://hdl.handle.net/11323/6786
https://doi.org/10.17981/ijmsor.04.01.08
https://repositorio.cuc.edu.co/
Palabra clave:
Energy
Exergy
Efficiency
Energía
Exergía
Eficiencia
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id RCUC2_bc37bbc487d45680fa89867c0e6dac7a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6786
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Balance de energía y exergía de un horno de cuba vertical para la producción de cal
dc.title.translated.spa.fl_str_mv Energy balance and exergy of a vertical cell furnace for lime production
title Balance de energía y exergía de un horno de cuba vertical para la producción de cal
spellingShingle Balance de energía y exergía de un horno de cuba vertical para la producción de cal
Energy
Exergy
Efficiency
Energía
Exergía
Eficiencia
title_short Balance de energía y exergía de un horno de cuba vertical para la producción de cal
title_full Balance de energía y exergía de un horno de cuba vertical para la producción de cal
title_fullStr Balance de energía y exergía de un horno de cuba vertical para la producción de cal
title_full_unstemmed Balance de energía y exergía de un horno de cuba vertical para la producción de cal
title_sort Balance de energía y exergía de un horno de cuba vertical para la producción de cal
dc.creator.fl_str_mv Sagastume, Alexis
Cogollos Martínez, Juan Bautista
dc.contributor.author.spa.fl_str_mv Sagastume, Alexis
Cogollos Martínez, Juan Bautista
dc.subject.spa.fl_str_mv Energy
Exergy
Efficiency
Energía
Exergía
Eficiencia
topic Energy
Exergy
Efficiency
Energía
Exergía
Eficiencia
description This paper aims with methodologies and indicators for evaluating the impacts of freshwater use, the existing methods fundamentally analyze the amount of water used in relation to the impacts caused. Taking into account that there is a recognized need to consider the impacts, specifically on life cycle bases, the problem is that the data is considered insufficient or unreliable in the life cycle databases of water use, in addition not The method for evaluating the impact of the life cycle coincides with regard to the estimated impacts on the use of fresh water. These difficulties are highlighted and the advantages, limitations, differences in the results between different methods are analyzed, and the need for an improved methodology for evaluating the impacts of water use on life cycle bases. Quicklime production is a high energy consumer that is also characterized by high CO2 emissions. This work sets out to develop the energetic and exergetic balance of the limestone calcination process in order to identify the most influential factors in fuel consumption. The results show that the destruction of exergy during due to the combustion of the fuel and the transfer of heat and moment of the process are the most irreversible processes. The results also show that the energy and the exergy contained in the exhaust gases represent the main loss of the process. The combination of these factors represents more than 50% of the energy supplied to the process.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-09-25
dc.date.accessioned.none.fl_str_mv 2020-07-21T22:02:42Z
dc.date.available.none.fl_str_mv 2020-07-21T22:02:42Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Sagastume Gutiérrez and J. Cogollos Martínez “Balance de energía y exergía de un horno de cuba vertical para la producción de cal”, IJMSOR, vol. 4, no. 1, 2019. https://doi. org/10.17981/ijmsor.04.01.08
dc.identifier.issn.spa.fl_str_mv 2539-5416 electrónico
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6786
dc.identifier.url.spa.fl_str_mv https://doi.org/10.17981/ijmsor.04.01.08
dc.identifier.doi.spa.fl_str_mv 10.17981/ijmsor.04.01.08
dc.identifier.eissn.spa.fl_str_mv 2539-5416
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Sagastume Gutiérrez and J. Cogollos Martínez “Balance de energía y exergía de un horno de cuba vertical para la producción de cal”, IJMSOR, vol. 4, no. 1, 2019. https://doi. org/10.17981/ijmsor.04.01.08
2539-5416 electrónico
10.17981/ijmsor.04.01.08
2539-5416
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6786
https://doi.org/10.17981/ijmsor.04.01.08
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartofseries.spa.fl_str_mv IJMSOR; Vol. 4, Núm. 1 (2019)
dc.relation.ispartofjournal.spa.fl_str_mv IJMSOR: International Journal of Management Science & Operation Research
IJMSOR: International Journal of Management Science & Operation Research
dc.relation.references.spa.fl_str_mv [1] A. Sagastume, J. Van Caneghem, J. B. Cogollos and C. Vandecasteele, “Evaluation of the environmental performance of lime production in Cuba”, J Clean Prod, vol. 31, no. 1, pp. 126–136, Aug. 2012. https://doi.org/10.1016/j. jclepro.2012.02.035
[2] P. A. Ochoa, A. Sagastume, J. B. Cogollos and C. Vandecasteele, “Cleaner production in a small lime factory by means of process control”, J Clean Prod, vol. 18, no. 12, pp. 1171–1176, Aug. 2010. https://doi.org/10.1016/j.jclepro.2010.03.019
[3] R. S. Boynton, Chemistry and Technology of Lime and Limestone, New york: John Wiley & Sons, 1980.
[4] H. Ruch, “The theoretical limits of heat consumption in lime burning due to the physical and chemical laws”, ZKG Int, vol. 34, no. 1, pp. 20–26, Jan, 1981.
[5] Y. De la Peña, G. Bordeth, H. Campo, y U. Murillo, Clean Energies: An Opportunity to save the Planet, IJMSOR, vol. 3, n.º 1, pp. 21-25, dic. 2018.
[6] Duarte Forero, J., Guillín Estrada, W., & Sánchez Guerrero, J. (2018). Desarrollo de una metodología para la predicción del volumen real en la cámara de combustión de motores diésel utilizando elementos finitos. INGE CUC, 14(1), 122-132. https://doi.org/10.17981/ingecuc.14.1.2018.11.
[7] A. Sagastume and C. Vandecasteele, “Exergy-based indicators to evaluate the possibilities to reduce fuel consumption in lime production”, Energy, vol. 36, no. 5, pp. 2820–2827, May. 2011. https://doi.org/10.1016/j.energy.2011.02.023
[8] D. Sheng-xiang, x. Qing-song and Z. Jie-min, “A lime shaft kiln diagnostic expert system based on holographic monitoring and real-time simulation,” Expert Syst Apl, vol. 38, no. 12, pp. 15400–15408, Nov. 2011. https://doi. org/10.1016/j.eswa.2011.06.021
[9] M.Z. Sogut, Z. Oktay and A. Hepbasli, “Energetic and exergetic assessment of a trass mill process in a cement plant,” Energy Convers Manag, vol. 50, no. 9, pp. 2316–2323, Sep. 2009. https://doi.org/10.1016/j.enconman.2009.05.013
[10] P. Regulagadda, I. Dincer and G. F. Naterer, “Exergy analysis of a thermal power plant with measured boiler and turbine losses”, Appl Therm Eng, vol. 30, no. 8-9, pp. 970–976, Jun. 2010. https://doi.org/10.1016/j.applthermaleng.2010.01.008
[11] Z. Utlu, Z Sogut, A. Hepbasli and Z. Oktay, “Energy and exergy analyses of a raw mill in a cement production”, Appl Therm Eng, vol. 26, no. 17-18, pp. 2479–2489, Dec. 2006. https://doi.org/10.1016/j.applthermaleng.2005.11.016
[12] I. H. Aljundi, “Energy and exergy analysis of a steam power plant in Jordan”, Appl Therm Eng, vol. 29, no. 2-3, pp. 324–328, Feb. 2009. https://doi.org/10.1016/j.applthermaleng.2008.02.029
[13] A. Senegacnik, J. Oman and B. Sirok, “Analysis of calcination parameters and the temperature profile in an annular shaft kiln. Part 1: Theoretical survey”, Appl Therm Eng, vol. 27, no. 8-9, pp. 1473–1482, Jun. 2007. https://doi. org/10.1016/j.applthermaleng.2006.09.026
[14] P. L. Zuideveld and P. J. van den Berg, “Design of lime shaft kilns”, Chem Eng Sci, vol. 26, no. 6, pp. 875–883, Jun. 1971. https://doi.org/10.1016/0009-2509(71)83048-8
[15] y. A. Çengel and M. A. Boles, Thermodynamics: An Engineering Approach, 5th ed. Boston, MA, USA; McGrawHill, 2006.
[16] A. Bejan, G. Tsatsaronis and M. J. Moran, Thermal design and optimization. New york: John Wiley & Sons, 1996.
[17] C. Koroneos, G. Roumbas and N. Moussiopoulos, “Exergy analysis of cement production”, IJEX, vol. 2, no. 1, pp. 55– 68, Jan. 2005. https://doi.org/10.1504/IJEx.2005.006433
[18] H. Piringer and W. Werner, “Conversion of large-diameter single shaft kilns to lignite dust firing successfully concluded”, ZKG Int, vol. 61, no. 1, pp. 46–52, Jan. 2008.
[19] A. Bes, “Dynamic Process Simulation of Limestone Calcination in Normal Shaft Kilns”, Doctoral Thesis, ISUT, Magdeburg, de, 2006. Available: www.uni-magdeburg.de/ isut/TV/English/Research/Project/Bes.pdf
[20] A. Bes, E. Specht and G. Kehse, “Calculation of the cooling zone length and the lime discharge temperature of lime shaft kilns”, ZKG Int, vol. 60, no. 4, pp. 63–73, Jan. 2007.
[21] T. Kotas, The exergy method of thermal plant analysis, 2th ed., Krieger Publishing Company, Fla, USA, 1995.
[22] C. Chen, E. Specht and J. Kehse, “Influences of origin and material property of limestone upon its decomposition behavior in shaft kilns”, ZKG Int, vol. 60, no. 1, pp. 51–60, Jan. 2007
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 4
dc.relation.ispartofjournalabbrev.spa.fl_str_mv IJMSOR
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv IJMSOR: International Journal of Management Science & Operation Research
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv http://ijmsoridi.com/index.php/ijmsor/article/view/110
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/e9c2eb0d-2abf-4e99-90f8-d34a87aa2ed6/download
https://repositorio.cuc.edu.co/bitstreams/de648b28-fee8-41e7-9143-8afafddc68c4/download
https://repositorio.cuc.edu.co/bitstreams/3f16f03c-8416-45e7-ab78-d05cf6302ebd/download
https://repositorio.cuc.edu.co/bitstreams/71cf08b8-e616-4269-8b3e-8a25b1bfa4cd/download
https://repositorio.cuc.edu.co/bitstreams/b3a297dc-fd68-41bd-b4f2-046e7deeafd3/download
bitstream.checksum.fl_str_mv fedb095a53f414b3c96d493741922c18
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
83862b2e651b0678bb58aeffe755215b
25125632006463a6f531e5822815f1ad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760754729156608
spelling Sagastume, AlexisCogollos Martínez, Juan Bautista2020-07-21T22:02:42Z2020-07-21T22:02:42Z2019-09-25Sagastume Gutiérrez and J. Cogollos Martínez “Balance de energía y exergía de un horno de cuba vertical para la producción de cal”, IJMSOR, vol. 4, no. 1, 2019. https://doi. org/10.17981/ijmsor.04.01.082539-5416 electrónicohttps://hdl.handle.net/11323/6786https://doi.org/10.17981/ijmsor.04.01.0810.17981/ijmsor.04.01.082539-5416Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper aims with methodologies and indicators for evaluating the impacts of freshwater use, the existing methods fundamentally analyze the amount of water used in relation to the impacts caused. Taking into account that there is a recognized need to consider the impacts, specifically on life cycle bases, the problem is that the data is considered insufficient or unreliable in the life cycle databases of water use, in addition not The method for evaluating the impact of the life cycle coincides with regard to the estimated impacts on the use of fresh water. These difficulties are highlighted and the advantages, limitations, differences in the results between different methods are analyzed, and the need for an improved methodology for evaluating the impacts of water use on life cycle bases. Quicklime production is a high energy consumer that is also characterized by high CO2 emissions. This work sets out to develop the energetic and exergetic balance of the limestone calcination process in order to identify the most influential factors in fuel consumption. The results show that the destruction of exergy during due to the combustion of the fuel and the transfer of heat and moment of the process are the most irreversible processes. The results also show that the energy and the exergy contained in the exhaust gases represent the main loss of the process. The combination of these factors represents more than 50% of the energy supplied to the process.El trabajo trata las metodologías y los indicadores para la evaluación de los impactos de uso del agua dulce, los métodos existentes analizan fundamentalmente la cantidad de agua usada con relación a los impactos ocasionados. Teniendo en cuenta que hay una necesidad reconocida para considerar los impactos, específicamente sobre bases del ciclo de vida, la problemática es que se consideran insuficientes los datos o no son confiables en las bases de datos del ciclo de vida del uso del agua, además no coincide el método de valoración del impacto del ciclo de vida para lo relacionado con los impactos estimados en el uso del agua dulce, se resaltan estas dificultades y se analizan las ventajas, limitaciones, diferencias en los resultados entre diversos métodos y se observa la necesidad de una metodología perfeccionada para la evaluación de los impactos del uso del agua sobre bases del ciclo de vida. La producción de cal viva es un alto consumidor de energía que además se caracteriza por elevadas emisiones de CO2. Este trabajo se propone desarrollar el balance energético y exergético del proceso de calcinación de calizas con el objetivo de identificar los factores más influyentes en el consumo de combustible. Los resultados muestran que la destrucción de exergía durante debido a la combustión del combustible y a la transferencia de calor y momento del proceso son los procesos más irreversibles. Los resultados además muestran que la energía y la exergía contenida en los gases de escape representan la principal pérdida del proceso. La combinación de estos factores representa más del 50% de la energía suministrada al proceso.Sagastume, Alexis-will be generated-orcid-0000-0003-0188-7101-600Cogollos Martínez, Juan Bautista-will be generated-orcid-0000-0002-2785-3711-600application/pdfspaCorporación Universidad de la CostaIJMSOR; Vol. 4, Núm. 1 (2019)IJMSOR: International Journal of Management Science & Operation ResearchIJMSOR: International Journal of Management Science & Operation Research[1] A. Sagastume, J. Van Caneghem, J. B. Cogollos and C. Vandecasteele, “Evaluation of the environmental performance of lime production in Cuba”, J Clean Prod, vol. 31, no. 1, pp. 126–136, Aug. 2012. https://doi.org/10.1016/j. jclepro.2012.02.035[2] P. A. Ochoa, A. Sagastume, J. B. Cogollos and C. Vandecasteele, “Cleaner production in a small lime factory by means of process control”, J Clean Prod, vol. 18, no. 12, pp. 1171–1176, Aug. 2010. https://doi.org/10.1016/j.jclepro.2010.03.019[3] R. S. Boynton, Chemistry and Technology of Lime and Limestone, New york: John Wiley & Sons, 1980.[4] H. Ruch, “The theoretical limits of heat consumption in lime burning due to the physical and chemical laws”, ZKG Int, vol. 34, no. 1, pp. 20–26, Jan, 1981.[5] Y. De la Peña, G. Bordeth, H. Campo, y U. Murillo, Clean Energies: An Opportunity to save the Planet, IJMSOR, vol. 3, n.º 1, pp. 21-25, dic. 2018.[6] Duarte Forero, J., Guillín Estrada, W., & Sánchez Guerrero, J. (2018). Desarrollo de una metodología para la predicción del volumen real en la cámara de combustión de motores diésel utilizando elementos finitos. INGE CUC, 14(1), 122-132. https://doi.org/10.17981/ingecuc.14.1.2018.11.[7] A. Sagastume and C. Vandecasteele, “Exergy-based indicators to evaluate the possibilities to reduce fuel consumption in lime production”, Energy, vol. 36, no. 5, pp. 2820–2827, May. 2011. https://doi.org/10.1016/j.energy.2011.02.023[8] D. Sheng-xiang, x. Qing-song and Z. Jie-min, “A lime shaft kiln diagnostic expert system based on holographic monitoring and real-time simulation,” Expert Syst Apl, vol. 38, no. 12, pp. 15400–15408, Nov. 2011. https://doi. org/10.1016/j.eswa.2011.06.021[9] M.Z. Sogut, Z. Oktay and A. Hepbasli, “Energetic and exergetic assessment of a trass mill process in a cement plant,” Energy Convers Manag, vol. 50, no. 9, pp. 2316–2323, Sep. 2009. https://doi.org/10.1016/j.enconman.2009.05.013[10] P. Regulagadda, I. Dincer and G. F. Naterer, “Exergy analysis of a thermal power plant with measured boiler and turbine losses”, Appl Therm Eng, vol. 30, no. 8-9, pp. 970–976, Jun. 2010. https://doi.org/10.1016/j.applthermaleng.2010.01.008[11] Z. Utlu, Z Sogut, A. Hepbasli and Z. Oktay, “Energy and exergy analyses of a raw mill in a cement production”, Appl Therm Eng, vol. 26, no. 17-18, pp. 2479–2489, Dec. 2006. https://doi.org/10.1016/j.applthermaleng.2005.11.016[12] I. H. Aljundi, “Energy and exergy analysis of a steam power plant in Jordan”, Appl Therm Eng, vol. 29, no. 2-3, pp. 324–328, Feb. 2009. https://doi.org/10.1016/j.applthermaleng.2008.02.029[13] A. Senegacnik, J. Oman and B. Sirok, “Analysis of calcination parameters and the temperature profile in an annular shaft kiln. Part 1: Theoretical survey”, Appl Therm Eng, vol. 27, no. 8-9, pp. 1473–1482, Jun. 2007. https://doi. org/10.1016/j.applthermaleng.2006.09.026[14] P. L. Zuideveld and P. J. van den Berg, “Design of lime shaft kilns”, Chem Eng Sci, vol. 26, no. 6, pp. 875–883, Jun. 1971. https://doi.org/10.1016/0009-2509(71)83048-8[15] y. A. Çengel and M. A. Boles, Thermodynamics: An Engineering Approach, 5th ed. Boston, MA, USA; McGrawHill, 2006.[16] A. Bejan, G. Tsatsaronis and M. J. Moran, Thermal design and optimization. New york: John Wiley & Sons, 1996.[17] C. Koroneos, G. Roumbas and N. Moussiopoulos, “Exergy analysis of cement production”, IJEX, vol. 2, no. 1, pp. 55– 68, Jan. 2005. https://doi.org/10.1504/IJEx.2005.006433[18] H. Piringer and W. Werner, “Conversion of large-diameter single shaft kilns to lignite dust firing successfully concluded”, ZKG Int, vol. 61, no. 1, pp. 46–52, Jan. 2008.[19] A. Bes, “Dynamic Process Simulation of Limestone Calcination in Normal Shaft Kilns”, Doctoral Thesis, ISUT, Magdeburg, de, 2006. Available: www.uni-magdeburg.de/ isut/TV/English/Research/Project/Bes.pdf[20] A. Bes, E. Specht and G. Kehse, “Calculation of the cooling zone length and the lime discharge temperature of lime shaft kilns”, ZKG Int, vol. 60, no. 4, pp. 63–73, Jan. 2007.[21] T. Kotas, The exergy method of thermal plant analysis, 2th ed., Krieger Publishing Company, Fla, USA, 1995.[22] C. Chen, E. Specht and J. Kehse, “Influences of origin and material property of limestone upon its decomposition behavior in shaft kilns”, ZKG Int, vol. 60, no. 1, pp. 51–60, Jan. 200714IJMSORhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2IJMSOR: International Journal of Management Science & Operation Researchhttp://ijmsoridi.com/index.php/ijmsor/article/view/110EnergyExergyEfficiencyEnergíaExergíaEficienciaBalance de energía y exergía de un horno de cuba vertical para la producción de calEnergy balance and exergy of a vertical cell furnace for lime productionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALBalance de Energía y Exergía de un Horno de Cuba.pdfBalance de Energía y Exergía de un Horno de Cuba.pdfapplication/pdf1015465https://repositorio.cuc.edu.co/bitstreams/e9c2eb0d-2abf-4e99-90f8-d34a87aa2ed6/downloadfedb095a53f414b3c96d493741922c18MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/de648b28-fee8-41e7-9143-8afafddc68c4/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/3f16f03c-8416-45e7-ab78-d05cf6302ebd/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILBalance de Energía y Exergía de un Horno de Cuba.pdf.jpgBalance de Energía y Exergía de un Horno de Cuba.pdf.jpgimage/jpeg70455https://repositorio.cuc.edu.co/bitstreams/71cf08b8-e616-4269-8b3e-8a25b1bfa4cd/download83862b2e651b0678bb58aeffe755215bMD54TEXTBalance de Energía y Exergía de un Horno de Cuba.pdf.txtBalance de Energía y Exergía de un Horno de Cuba.pdf.txttext/plain30727https://repositorio.cuc.edu.co/bitstreams/b3a297dc-fd68-41bd-b4f2-046e7deeafd3/download25125632006463a6f531e5822815f1adMD5511323/6786oai:repositorio.cuc.edu.co:11323/67862024-09-17 10:59:30.857http://creativecommons.org/publicdomain/zero/1.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==