A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna

Profiling RNA expression in a cell-specific manner continues to be a grand challenge in biochemical research. Bioorthogonal nucleosides can be utilized to track RNA expression; however, these methods currently have limitations due to background and incorporation of analogs into undesired cells. Here...

Full description

Autores:
Nguyen, Kim
Kubota, Miles
Del Arco, Jon
Feng, Chao
Singha, Monika
Beasley, Samantha
Sakr, Jasmine
P. Gandhi, Sunil
Blurton-Jones, Mathew
Fernández Lucas, Jesus
C. Spitale, Robert
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7879
Acceso en línea:
https://hdl.handle.net/11323/7879
https://doi.org/10.1021/acschembio.0c00755
https://repositorio.cuc.edu.co/
Palabra clave:
Peptides and proteins
Genetics
Labeling
Uracil
Imaging probes
Rights
embargoedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_bc30242bc00e45f58dcd2a5d8352445d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7879
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna
title A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna
spellingShingle A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna
Peptides and proteins
Genetics
Labeling
Uracil
Imaging probes
title_short A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna
title_full A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna
title_fullStr A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna
title_full_unstemmed A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna
title_sort A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna
dc.creator.fl_str_mv Nguyen, Kim
Kubota, Miles
Del Arco, Jon
Feng, Chao
Singha, Monika
Beasley, Samantha
Sakr, Jasmine
P. Gandhi, Sunil
Blurton-Jones, Mathew
Fernández Lucas, Jesus
C. Spitale, Robert
dc.contributor.author.spa.fl_str_mv Nguyen, Kim
Kubota, Miles
Del Arco, Jon
Feng, Chao
Singha, Monika
Beasley, Samantha
Sakr, Jasmine
P. Gandhi, Sunil
Blurton-Jones, Mathew
Fernández Lucas, Jesus
C. Spitale, Robert
dc.subject.spa.fl_str_mv Peptides and proteins
Genetics
Labeling
Uracil
Imaging probes
topic Peptides and proteins
Genetics
Labeling
Uracil
Imaging probes
description Profiling RNA expression in a cell-specific manner continues to be a grand challenge in biochemical research. Bioorthogonal nucleosides can be utilized to track RNA expression; however, these methods currently have limitations due to background and incorporation of analogs into undesired cells. Herein, we design and demonstrate that uracil phosphoribosyltransferase can be engineered to match 5-vinyluracil for cell-specific metabolic labeling of RNA with exceptional specificity and stringency.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-11-21
dc.date.accessioned.none.fl_str_mv 2021-02-19T16:50:53Z
dc.date.available.none.fl_str_mv 2021-02-19T16:50:53Z
dc.date.embargoEnd.none.fl_str_mv 2021-11-21
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7879
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1021/acschembio.0c00755
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7879
https://doi.org/10.1021/acschembio.0c00755
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv https://pubs.acs.org/toc/acbcct/15/12
dc.relation.references.spa.fl_str_mv Landgraf, P., Antileo, E. R., Schuman, E. M., and Dieterich, D. C. (2015) BONCAT: metabolic labeling, click chemistry, and affinity purification of newly synthesized proteomes. Methods Mol. Biol. 1266, 199– 215, DOI: 10.1007/978-1-4939-2272-7_14
Krogager, T. P., Ernst, R. J., Elliott, T. S., Calo, L., Beranek, V., Ciabatti, E., Spillantini, M. G., Tripodi, M., Hastings, M. H., and Chin, J. W. (2018) Labeling and identifying cell-specific proteomes in the mouse brain. Nat. Biotechnol. 36 (2), 156– 159, DOI: 10.1038/nbt.4056
Ernst, R. J., Krogager, T. P., Maywood, E. S., Zanchi, R., Beranek, V., Elliott, T. S., Barry, N. P., Hastings, M. H., and Chin, J. W. (2016) Genetic code expansion in the mouse brain. Nat. Chem. Biol. 12 (10), 776– 778, DOI: 10.1038/nchembio.2160
Barrett, R. M., Liu, H. W., Jin, H., Goodman, R. H., and Cohen, M. S. (2016) Cell-specific Profiling of Nascent Proteomes Using Orthogonal Enzyme-mediated Puromycin Incorporation. ACS Chem. Biol. 11 (6), 1532– 6, DOI: 10.1021/acschembio.5b01076
Li, Z., Zhu, Y., Sun, Y., Qin, K., Liu, W., Zhou, W., and Chen, X. (2016) Nitrilase-Activatable Noncanonical Amino Acid Precursors for Cell-Selective Metabolic Labeling of Proteomes. ACS Chem. Biol. 11 (12), 3273– 3277, DOI: 10.1021/acschembio.6b00765
Triemer, T., Messikommer, A., Glasauer, S. M. K., Alzeer, J., Paulisch, M. H., and Luedtke, N. W. (2018) Superresolution imaging of individual replication forks reveals unexpected prodrug resistance mechanism. Proc. Natl. Acad. Sci. U. S. A. 115 (7), E1366– E1373, DOI: 10.1073/pnas.1714790115
Neef, A. B., Pernot, L., Schreier, V. N., Scapozza, L., and Luedtke, N. W. (2015) A Bioorthogonal Chemical Reporter of Viral Infection. Angew. Chem. 127 (27), 8022– 8025, DOI: 10.1002/ange.201500250
Hubbard, S. C., Boyce, M., McVaugh, C. T., Peehl, D. M., and Bertozzi, C. R. (2011) Cell surface glycoproteomic analysis of prostate cancer-derived PC-3 cells. Bioorg. Med. Chem. Lett. 21 (17), 4945– 50, DOI: 10.1016/j.bmcl.2011.05.045
Rabuka, D., Forstner, M. B., Groves, J. T., and Bertozzi, C. R. (2008) Noncovalent cell surface engineering: incorporation of bioactive synthetic glycopolymers into cellular membranes. J. Am. Chem. Soc. 130 (18), 5947– 53, DOI: 10.1021/ja710644g
Chang, P. V., Prescher, J. A., Hangauer, M. J., and Bertozzi, C. R. (2007) Imaging cell surface glycans with bioorthogonal chemical reporters. J. Am. Chem. Soc. 129 (27), 8400– 1, DOI: 10.1021/ja070238o
Jao, C. Y. and Salic, A. (2008) Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl. Acad. Sci. U. S. A. 105 (41), 15779– 84, DOI: 10.1073/pnas.0808480105
Zheng, Y. and Beal, P. A. (2016) Synthesis and evaluation of an alkyne-modified ATP analog for enzymatic incorporation into RNA. Bioorg. Med. Chem. Lett. 26 (7), 1799– 802, DOI: 10.1016/j.bmcl.2016.02.038
Nainar, S., Beasley, S., Fazio, M., Kubota, M., Dai, N., Correa, I. R., Jr., and Spitale, R. C. (2016) Metabolic Incorporation of Azide Functionality into Cellular RNA. ChemBioChem 17 (22), 2149– 2152, DOI: 10.1002/cbic.201600300
Hida, N., Aboukilila, M. Y., Burow, D. A., Paul, R., Greenberg, M. M., Fazio, M., Beasley, S., Spitale, R. C., and Cleary, M. D. (2017) EC-tagging allows cell type-specific RNA analysis. Nucleic Acids Res. 45 (15), e138 DOI: 10.1093/nar/gkx551
Abud, E. M., Ramirez, R. N., Martinez, E. S., Healy, L. M., Nguyen, C. H. H., Newman, S. A., Yeromin, A. V., Scarfone, V. M., Marsh, S. E., Fimbres, C., Caraway, C. A., Fote, G. M., Madany, A. M., Agrawal, A., Kayed, R., Gylys, K. H., Cahalan, M. D., Cummings, B. J., Antel, J. P., Mortazavi, A., Carson, M. J., Poon, W. W., and Blurton-Jones, M. (2017) iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron 94 (2), 278– 293, DOI: 10.1016/j.neuron.2017.03.042
Islam, K. (2018) The Bump-and-Hole Tactic: Expanding the Scope of Chemical Genetics. Cell Chem. Biol. 25 (10), 1171– 1184, DOI: 10.1016/j.chembiol.2018.07.001
Yu, H., Li, J., Wu, D., Qiu, Z., and Zhang, Y. (2010) Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev. 39 (2), 464– 73, DOI: 10.1039/B901255A
Nainar, S., Cuthbert, B. J., Lim, N. M., England, W. E., Ke, K., Sophal, K., Quechol, R., Mobley, D. L., Goulding, C. W., and Spitale, R. C. (2020) An optimized chemical-genetic method for cell-specific metabolic labeling of RNA. Nat. Methods 17 (3), 311– 318, DOI: 10.1038/s41592-019-0726-y
Wang, D., Zhang, Y., and Kleiner, R. E. (2020) Cell- and Polymerase-Selective Metabolic Labeling of Cellular RNA with 2’-Azidocytidine. J. Am. Chem. Soc. 142 (34), 14417– 14421, DOI: 10.1021/jacs.0c04566
Zhang, Y. and Kleiner, R. E. (2019) A Metabolic Engineering Approach to Incorporate Modified Pyrimidine Nucleosides into Cellular RNA. J. Am. Chem. Soc. 141 (8), 3347– 3351, DOI: 10.1021/jacs.8b11449
Xie, R., Dong, L., Du, Y., Zhu, Y., Hua, R., Zhang, C., and Chen, X. (2016) In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy. Proc. Natl. Acad. Sci. U. S. A. 113 (19), 5173– 8, DOI: 10.1073/pnas.1516524113
Vinogradov, S. V. (2007) Polymeric nanogel formulations of nucleoside analogs. Expert Opin. Drug Delivery 4 (1), 5– 17, DOI: 10.1517/17425247.4.1.5
Balimane, P. V. and Sinko, P. J. (1999) Involvement of multiple transporters in the oral absorption of nucleoside analogues. Adv. Drug Delivery Rev. 39 (1–3), 183– 209, DOI: 10.1016/S0169-409X(99)00026-5
Tomorsky, J., DeBlander, L., Kentros, C. G., Doe, C. Q., and Niell, C. M. (2017) TU-Tagging: A Method for Identifying Layer-Enriched Neuronal Genes in Developing Mouse Visual Cortex. eNeuro 4 (5), ENEURO.0181-17.2017, DOI: 10.1523/ENEURO.0181-17.2017
Gay, L., Miller, M. R., Ventura, P. B., Devasthali, V., Vue, Z., Thompson, H. L., Temple, S., Zong, H., Cleary, M. D., Stankunas, K., and Doe, C. Q. (2013) Mouse TU tagging: a chemical/genetic intersectional method for purifying cell type-specific nascent RNA. Genes Dev. 27 (1), 98– 115, DOI: 10.1101/gad.205278.112
Basnet, H., Tian, L., Ganesh, K., Huang, Y. H., Macalinao, D. G., Brogi, E., Finley, L. W., and Massague, J. (2019) Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. eLife 8, e43627 DOI: 10.7554/eLife.43627
Nguyen, K., Fazio, M., Kubota, M., Nainar, S., Feng, C., Li, X., Atwood, S. X., Bredy, T. W., and Spitale, R. C. (2017) Cell-Selective Bioorthogonal Metabolic Labeling of RNA. J. Am. Chem. Soc. 139 (6), 2148– 2151, DOI: 10.1021/jacs.6b11401
Kubota, M., Nainar, S., Parker, S. M., England, W., Furche, F., and Spitale, R. C. (2019) Expanding the Scope of RNA Metabolic Labeling with Vinyl Nucleosides and Inverse Electron-Demand Diels-Alder Chemistry. ACS Chem. Biol. 14 (8), 1698– 1707, DOI: 10.1021/acschembio.9b00079
Rieder, U. and Luedtke, N. W. (2014) Alkene-tetrazine ligation for imaging cellular DNA. Angew. Chem., Int. Ed. 53 (35), 9168– 72, DOI: 10.1002/anie.201403580
Knall, A. C. and Slugovc, C. (2013) Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem. Soc. Rev. 42 (12), 5131– 42, DOI: 10.1039/c3cs60049a
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv ACS Chemical Biology
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://pubs.acs.org/doi/10.1021/acschembio.0c00755#
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/7879/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/7879/1/A%20Bump-Hole%20Strategy%20for%20Increased%20Stringency%20of%20Cell-Specific%20Metabolic%20Labeling%20of%20RNA.pdf
https://repositorio.cuc.edu.co/bitstream/11323/7879/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/7879/4/A%20Bump-Hole%20Strategy%20for%20Increased%20Stringency%20of%20Cell-Specific%20Metabolic%20Labeling%20of%20RNA.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/7879/5/A%20Bump-Hole%20Strategy%20for%20Increased%20Stringency%20of%20Cell-Specific%20Metabolic%20Labeling%20of%20RNA.pdf.txt
bitstream.checksum.fl_str_mv e30e9215131d99561d40d6b0abbe9bad
2a5f110a2792be86d78c89f7eb5e8103
4460e5956bc1d1639be9ae6146a50347
23232a5cc6a87924040573c1025a0c55
ca05e942a4d04d1403229a30ac902aae
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400045123305472
spelling Nguyen, Kim86dcbf41e94cf17b595ebd2056ee3ee3Kubota, Miles945cd0a716c011728ed18cfd2a5d94e0Del Arco, Jon923cae3a1d238f02847617e53bdc6387Feng, Chao213cae3220370c1135cbe40714214557Singha, Monika5e35c47f6832bcb64cef021fffafd466Beasley, Samanthad16ff25f81d772f7b92a5fff12109827Sakr, Jasmine57c5828b22c227f11cfc9d4288478d48P. Gandhi, Sunild43c40f9f0ff6499d047cf10efa55df5Blurton-Jones, Mathew34d287d0814372559f0037ebf12d124eFernández Lucas, Jesusda266bb8b7b621685833d281dac21826C. Spitale, Robert7a5ecdf149321614ae3afb97dee230562021-02-19T16:50:53Z2021-02-19T16:50:53Z2020-11-212021-11-21https://hdl.handle.net/11323/7879https://doi.org/10.1021/acschembio.0c00755Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Profiling RNA expression in a cell-specific manner continues to be a grand challenge in biochemical research. Bioorthogonal nucleosides can be utilized to track RNA expression; however, these methods currently have limitations due to background and incorporation of analogs into undesired cells. Herein, we design and demonstrate that uracil phosphoribosyltransferase can be engineered to match 5-vinyluracil for cell-specific metabolic labeling of RNA with exceptional specificity and stringency.application/pdfengCorporación Universidad de la Costahttps://pubs.acs.org/toc/acbcct/15/12Landgraf, P., Antileo, E. R., Schuman, E. M., and Dieterich, D. C. (2015) BONCAT: metabolic labeling, click chemistry, and affinity purification of newly synthesized proteomes. Methods Mol. Biol. 1266, 199– 215, DOI: 10.1007/978-1-4939-2272-7_14Krogager, T. P., Ernst, R. J., Elliott, T. S., Calo, L., Beranek, V., Ciabatti, E., Spillantini, M. G., Tripodi, M., Hastings, M. H., and Chin, J. W. (2018) Labeling and identifying cell-specific proteomes in the mouse brain. Nat. Biotechnol. 36 (2), 156– 159, DOI: 10.1038/nbt.4056Ernst, R. J., Krogager, T. P., Maywood, E. S., Zanchi, R., Beranek, V., Elliott, T. S., Barry, N. P., Hastings, M. H., and Chin, J. W. (2016) Genetic code expansion in the mouse brain. Nat. Chem. Biol. 12 (10), 776– 778, DOI: 10.1038/nchembio.2160Barrett, R. M., Liu, H. W., Jin, H., Goodman, R. H., and Cohen, M. S. (2016) Cell-specific Profiling of Nascent Proteomes Using Orthogonal Enzyme-mediated Puromycin Incorporation. ACS Chem. Biol. 11 (6), 1532– 6, DOI: 10.1021/acschembio.5b01076Li, Z., Zhu, Y., Sun, Y., Qin, K., Liu, W., Zhou, W., and Chen, X. (2016) Nitrilase-Activatable Noncanonical Amino Acid Precursors for Cell-Selective Metabolic Labeling of Proteomes. ACS Chem. Biol. 11 (12), 3273– 3277, DOI: 10.1021/acschembio.6b00765Triemer, T., Messikommer, A., Glasauer, S. M. K., Alzeer, J., Paulisch, M. H., and Luedtke, N. W. (2018) Superresolution imaging of individual replication forks reveals unexpected prodrug resistance mechanism. Proc. Natl. Acad. Sci. U. S. A. 115 (7), E1366– E1373, DOI: 10.1073/pnas.1714790115Neef, A. B., Pernot, L., Schreier, V. N., Scapozza, L., and Luedtke, N. W. (2015) A Bioorthogonal Chemical Reporter of Viral Infection. Angew. Chem. 127 (27), 8022– 8025, DOI: 10.1002/ange.201500250Hubbard, S. C., Boyce, M., McVaugh, C. T., Peehl, D. M., and Bertozzi, C. R. (2011) Cell surface glycoproteomic analysis of prostate cancer-derived PC-3 cells. Bioorg. Med. Chem. Lett. 21 (17), 4945– 50, DOI: 10.1016/j.bmcl.2011.05.045Rabuka, D., Forstner, M. B., Groves, J. T., and Bertozzi, C. R. (2008) Noncovalent cell surface engineering: incorporation of bioactive synthetic glycopolymers into cellular membranes. J. Am. Chem. Soc. 130 (18), 5947– 53, DOI: 10.1021/ja710644gChang, P. V., Prescher, J. A., Hangauer, M. J., and Bertozzi, C. R. (2007) Imaging cell surface glycans with bioorthogonal chemical reporters. J. Am. Chem. Soc. 129 (27), 8400– 1, DOI: 10.1021/ja070238oJao, C. Y. and Salic, A. (2008) Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl. Acad. Sci. U. S. A. 105 (41), 15779– 84, DOI: 10.1073/pnas.0808480105Zheng, Y. and Beal, P. A. (2016) Synthesis and evaluation of an alkyne-modified ATP analog for enzymatic incorporation into RNA. Bioorg. Med. Chem. Lett. 26 (7), 1799– 802, DOI: 10.1016/j.bmcl.2016.02.038Nainar, S., Beasley, S., Fazio, M., Kubota, M., Dai, N., Correa, I. R., Jr., and Spitale, R. C. (2016) Metabolic Incorporation of Azide Functionality into Cellular RNA. ChemBioChem 17 (22), 2149– 2152, DOI: 10.1002/cbic.201600300Hida, N., Aboukilila, M. Y., Burow, D. A., Paul, R., Greenberg, M. M., Fazio, M., Beasley, S., Spitale, R. C., and Cleary, M. D. (2017) EC-tagging allows cell type-specific RNA analysis. Nucleic Acids Res. 45 (15), e138 DOI: 10.1093/nar/gkx551Abud, E. M., Ramirez, R. N., Martinez, E. S., Healy, L. M., Nguyen, C. H. H., Newman, S. A., Yeromin, A. V., Scarfone, V. M., Marsh, S. E., Fimbres, C., Caraway, C. A., Fote, G. M., Madany, A. M., Agrawal, A., Kayed, R., Gylys, K. H., Cahalan, M. D., Cummings, B. J., Antel, J. P., Mortazavi, A., Carson, M. J., Poon, W. W., and Blurton-Jones, M. (2017) iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron 94 (2), 278– 293, DOI: 10.1016/j.neuron.2017.03.042Islam, K. (2018) The Bump-and-Hole Tactic: Expanding the Scope of Chemical Genetics. Cell Chem. Biol. 25 (10), 1171– 1184, DOI: 10.1016/j.chembiol.2018.07.001Yu, H., Li, J., Wu, D., Qiu, Z., and Zhang, Y. (2010) Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev. 39 (2), 464– 73, DOI: 10.1039/B901255ANainar, S., Cuthbert, B. J., Lim, N. M., England, W. E., Ke, K., Sophal, K., Quechol, R., Mobley, D. L., Goulding, C. W., and Spitale, R. C. (2020) An optimized chemical-genetic method for cell-specific metabolic labeling of RNA. Nat. Methods 17 (3), 311– 318, DOI: 10.1038/s41592-019-0726-yWang, D., Zhang, Y., and Kleiner, R. E. (2020) Cell- and Polymerase-Selective Metabolic Labeling of Cellular RNA with 2’-Azidocytidine. J. Am. Chem. Soc. 142 (34), 14417– 14421, DOI: 10.1021/jacs.0c04566Zhang, Y. and Kleiner, R. E. (2019) A Metabolic Engineering Approach to Incorporate Modified Pyrimidine Nucleosides into Cellular RNA. J. Am. Chem. Soc. 141 (8), 3347– 3351, DOI: 10.1021/jacs.8b11449Xie, R., Dong, L., Du, Y., Zhu, Y., Hua, R., Zhang, C., and Chen, X. (2016) In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy. Proc. Natl. Acad. Sci. U. S. A. 113 (19), 5173– 8, DOI: 10.1073/pnas.1516524113Vinogradov, S. V. (2007) Polymeric nanogel formulations of nucleoside analogs. Expert Opin. Drug Delivery 4 (1), 5– 17, DOI: 10.1517/17425247.4.1.5Balimane, P. V. and Sinko, P. J. (1999) Involvement of multiple transporters in the oral absorption of nucleoside analogues. Adv. Drug Delivery Rev. 39 (1–3), 183– 209, DOI: 10.1016/S0169-409X(99)00026-5Tomorsky, J., DeBlander, L., Kentros, C. G., Doe, C. Q., and Niell, C. M. (2017) TU-Tagging: A Method for Identifying Layer-Enriched Neuronal Genes in Developing Mouse Visual Cortex. eNeuro 4 (5), ENEURO.0181-17.2017, DOI: 10.1523/ENEURO.0181-17.2017Gay, L., Miller, M. R., Ventura, P. B., Devasthali, V., Vue, Z., Thompson, H. L., Temple, S., Zong, H., Cleary, M. D., Stankunas, K., and Doe, C. Q. (2013) Mouse TU tagging: a chemical/genetic intersectional method for purifying cell type-specific nascent RNA. Genes Dev. 27 (1), 98– 115, DOI: 10.1101/gad.205278.112Basnet, H., Tian, L., Ganesh, K., Huang, Y. H., Macalinao, D. G., Brogi, E., Finley, L. W., and Massague, J. (2019) Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. eLife 8, e43627 DOI: 10.7554/eLife.43627Nguyen, K., Fazio, M., Kubota, M., Nainar, S., Feng, C., Li, X., Atwood, S. X., Bredy, T. W., and Spitale, R. C. (2017) Cell-Selective Bioorthogonal Metabolic Labeling of RNA. J. Am. Chem. Soc. 139 (6), 2148– 2151, DOI: 10.1021/jacs.6b11401Kubota, M., Nainar, S., Parker, S. M., England, W., Furche, F., and Spitale, R. C. (2019) Expanding the Scope of RNA Metabolic Labeling with Vinyl Nucleosides and Inverse Electron-Demand Diels-Alder Chemistry. ACS Chem. Biol. 14 (8), 1698– 1707, DOI: 10.1021/acschembio.9b00079Rieder, U. and Luedtke, N. W. (2014) Alkene-tetrazine ligation for imaging cellular DNA. Angew. Chem., Int. Ed. 53 (35), 9168– 72, DOI: 10.1002/anie.201403580Knall, A. C. and Slugovc, C. (2013) Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem. Soc. Rev. 42 (12), 5131– 42, DOI: 10.1039/c3cs60049aAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfACS Chemical Biologyhttps://pubs.acs.org/doi/10.1021/acschembio.0c00755#Peptides and proteinsGeneticsLabelingUracilImaging probesA bump-hole strategy for increased stringency of cell-specific metabolic labeling of rnaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/7879/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessORIGINALA Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA.pdfA Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA.pdfapplication/pdf87265https://repositorio.cuc.edu.co/bitstream/11323/7879/1/A%20Bump-Hole%20Strategy%20for%20Increased%20Stringency%20of%20Cell-Specific%20Metabolic%20Labeling%20of%20RNA.pdf2a5f110a2792be86d78c89f7eb5e8103MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstream/11323/7879/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52open accessTHUMBNAILA Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA.pdf.jpgA Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA.pdf.jpgimage/jpeg28125https://repositorio.cuc.edu.co/bitstream/11323/7879/4/A%20Bump-Hole%20Strategy%20for%20Increased%20Stringency%20of%20Cell-Specific%20Metabolic%20Labeling%20of%20RNA.pdf.jpg23232a5cc6a87924040573c1025a0c55MD54open accessTEXTA Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA.pdf.txtA Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA.pdf.txttext/plain816https://repositorio.cuc.edu.co/bitstream/11323/7879/5/A%20Bump-Hole%20Strategy%20for%20Increased%20Stringency%20of%20Cell-Specific%20Metabolic%20Labeling%20of%20RNA.pdf.txtca05e942a4d04d1403229a30ac902aaeMD55open access11323/7879oai:repositorio.cuc.edu.co:11323/78792023-12-14 12:15:43.295Attribution-NonCommercial-NoDerivatives 4.0 International|||http://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==