A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna
Profiling RNA expression in a cell-specific manner continues to be a grand challenge in biochemical research. Bioorthogonal nucleosides can be utilized to track RNA expression; however, these methods currently have limitations due to background and incorporation of analogs into undesired cells. Here...
- Autores:
-
Nguyen, Kim
Kubota, Miles
Del Arco, Jon
Feng, Chao
Singha, Monika
Beasley, Samantha
Sakr, Jasmine
P. Gandhi, Sunil
Blurton-Jones, Mathew
Fernández Lucas, Jesus
C. Spitale, Robert
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7879
- Acceso en línea:
- https://hdl.handle.net/11323/7879
https://doi.org/10.1021/acschembio.0c00755
https://repositorio.cuc.edu.co/
- Palabra clave:
- Peptides and proteins
Genetics
Labeling
Uracil
Imaging probes
- Rights
- embargoedAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_bc30242bc00e45f58dcd2a5d8352445d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7879 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna |
title |
A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna |
spellingShingle |
A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna Peptides and proteins Genetics Labeling Uracil Imaging probes |
title_short |
A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna |
title_full |
A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna |
title_fullStr |
A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna |
title_full_unstemmed |
A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna |
title_sort |
A bump-hole strategy for increased stringency of cell-specific metabolic labeling of rna |
dc.creator.fl_str_mv |
Nguyen, Kim Kubota, Miles Del Arco, Jon Feng, Chao Singha, Monika Beasley, Samantha Sakr, Jasmine P. Gandhi, Sunil Blurton-Jones, Mathew Fernández Lucas, Jesus C. Spitale, Robert |
dc.contributor.author.spa.fl_str_mv |
Nguyen, Kim Kubota, Miles Del Arco, Jon Feng, Chao Singha, Monika Beasley, Samantha Sakr, Jasmine P. Gandhi, Sunil Blurton-Jones, Mathew Fernández Lucas, Jesus C. Spitale, Robert |
dc.subject.spa.fl_str_mv |
Peptides and proteins Genetics Labeling Uracil Imaging probes |
topic |
Peptides and proteins Genetics Labeling Uracil Imaging probes |
description |
Profiling RNA expression in a cell-specific manner continues to be a grand challenge in biochemical research. Bioorthogonal nucleosides can be utilized to track RNA expression; however, these methods currently have limitations due to background and incorporation of analogs into undesired cells. Herein, we design and demonstrate that uracil phosphoribosyltransferase can be engineered to match 5-vinyluracil for cell-specific metabolic labeling of RNA with exceptional specificity and stringency. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-11-21 |
dc.date.accessioned.none.fl_str_mv |
2021-02-19T16:50:53Z |
dc.date.available.none.fl_str_mv |
2021-02-19T16:50:53Z |
dc.date.embargoEnd.none.fl_str_mv |
2021-11-21 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7879 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1021/acschembio.0c00755 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7879 https://doi.org/10.1021/acschembio.0c00755 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://pubs.acs.org/toc/acbcct/15/12 |
dc.relation.references.spa.fl_str_mv |
Landgraf, P., Antileo, E. R., Schuman, E. M., and Dieterich, D. C. (2015) BONCAT: metabolic labeling, click chemistry, and affinity purification of newly synthesized proteomes. Methods Mol. Biol. 1266, 199– 215, DOI: 10.1007/978-1-4939-2272-7_14 Krogager, T. P., Ernst, R. J., Elliott, T. S., Calo, L., Beranek, V., Ciabatti, E., Spillantini, M. G., Tripodi, M., Hastings, M. H., and Chin, J. W. (2018) Labeling and identifying cell-specific proteomes in the mouse brain. Nat. Biotechnol. 36 (2), 156– 159, DOI: 10.1038/nbt.4056 Ernst, R. J., Krogager, T. P., Maywood, E. S., Zanchi, R., Beranek, V., Elliott, T. S., Barry, N. P., Hastings, M. H., and Chin, J. W. (2016) Genetic code expansion in the mouse brain. Nat. Chem. Biol. 12 (10), 776– 778, DOI: 10.1038/nchembio.2160 Barrett, R. M., Liu, H. W., Jin, H., Goodman, R. H., and Cohen, M. S. (2016) Cell-specific Profiling of Nascent Proteomes Using Orthogonal Enzyme-mediated Puromycin Incorporation. ACS Chem. Biol. 11 (6), 1532– 6, DOI: 10.1021/acschembio.5b01076 Li, Z., Zhu, Y., Sun, Y., Qin, K., Liu, W., Zhou, W., and Chen, X. (2016) Nitrilase-Activatable Noncanonical Amino Acid Precursors for Cell-Selective Metabolic Labeling of Proteomes. ACS Chem. Biol. 11 (12), 3273– 3277, DOI: 10.1021/acschembio.6b00765 Triemer, T., Messikommer, A., Glasauer, S. M. K., Alzeer, J., Paulisch, M. H., and Luedtke, N. W. (2018) Superresolution imaging of individual replication forks reveals unexpected prodrug resistance mechanism. Proc. Natl. Acad. Sci. U. S. A. 115 (7), E1366– E1373, DOI: 10.1073/pnas.1714790115 Neef, A. B., Pernot, L., Schreier, V. N., Scapozza, L., and Luedtke, N. W. (2015) A Bioorthogonal Chemical Reporter of Viral Infection. Angew. Chem. 127 (27), 8022– 8025, DOI: 10.1002/ange.201500250 Hubbard, S. C., Boyce, M., McVaugh, C. T., Peehl, D. M., and Bertozzi, C. R. (2011) Cell surface glycoproteomic analysis of prostate cancer-derived PC-3 cells. Bioorg. Med. Chem. Lett. 21 (17), 4945– 50, DOI: 10.1016/j.bmcl.2011.05.045 Rabuka, D., Forstner, M. B., Groves, J. T., and Bertozzi, C. R. (2008) Noncovalent cell surface engineering: incorporation of bioactive synthetic glycopolymers into cellular membranes. J. Am. Chem. Soc. 130 (18), 5947– 53, DOI: 10.1021/ja710644g Chang, P. V., Prescher, J. A., Hangauer, M. J., and Bertozzi, C. R. (2007) Imaging cell surface glycans with bioorthogonal chemical reporters. J. Am. Chem. Soc. 129 (27), 8400– 1, DOI: 10.1021/ja070238o Jao, C. Y. and Salic, A. (2008) Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl. Acad. Sci. U. S. A. 105 (41), 15779– 84, DOI: 10.1073/pnas.0808480105 Zheng, Y. and Beal, P. A. (2016) Synthesis and evaluation of an alkyne-modified ATP analog for enzymatic incorporation into RNA. Bioorg. Med. Chem. Lett. 26 (7), 1799– 802, DOI: 10.1016/j.bmcl.2016.02.038 Nainar, S., Beasley, S., Fazio, M., Kubota, M., Dai, N., Correa, I. R., Jr., and Spitale, R. C. (2016) Metabolic Incorporation of Azide Functionality into Cellular RNA. ChemBioChem 17 (22), 2149– 2152, DOI: 10.1002/cbic.201600300 Hida, N., Aboukilila, M. Y., Burow, D. A., Paul, R., Greenberg, M. M., Fazio, M., Beasley, S., Spitale, R. C., and Cleary, M. D. (2017) EC-tagging allows cell type-specific RNA analysis. Nucleic Acids Res. 45 (15), e138 DOI: 10.1093/nar/gkx551 Abud, E. M., Ramirez, R. N., Martinez, E. S., Healy, L. M., Nguyen, C. H. H., Newman, S. A., Yeromin, A. V., Scarfone, V. M., Marsh, S. E., Fimbres, C., Caraway, C. A., Fote, G. M., Madany, A. M., Agrawal, A., Kayed, R., Gylys, K. H., Cahalan, M. D., Cummings, B. J., Antel, J. P., Mortazavi, A., Carson, M. J., Poon, W. W., and Blurton-Jones, M. (2017) iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron 94 (2), 278– 293, DOI: 10.1016/j.neuron.2017.03.042 Islam, K. (2018) The Bump-and-Hole Tactic: Expanding the Scope of Chemical Genetics. Cell Chem. Biol. 25 (10), 1171– 1184, DOI: 10.1016/j.chembiol.2018.07.001 Yu, H., Li, J., Wu, D., Qiu, Z., and Zhang, Y. (2010) Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev. 39 (2), 464– 73, DOI: 10.1039/B901255A Nainar, S., Cuthbert, B. J., Lim, N. M., England, W. E., Ke, K., Sophal, K., Quechol, R., Mobley, D. L., Goulding, C. W., and Spitale, R. C. (2020) An optimized chemical-genetic method for cell-specific metabolic labeling of RNA. Nat. Methods 17 (3), 311– 318, DOI: 10.1038/s41592-019-0726-y Wang, D., Zhang, Y., and Kleiner, R. E. (2020) Cell- and Polymerase-Selective Metabolic Labeling of Cellular RNA with 2’-Azidocytidine. J. Am. Chem. Soc. 142 (34), 14417– 14421, DOI: 10.1021/jacs.0c04566 Zhang, Y. and Kleiner, R. E. (2019) A Metabolic Engineering Approach to Incorporate Modified Pyrimidine Nucleosides into Cellular RNA. J. Am. Chem. Soc. 141 (8), 3347– 3351, DOI: 10.1021/jacs.8b11449 Xie, R., Dong, L., Du, Y., Zhu, Y., Hua, R., Zhang, C., and Chen, X. (2016) In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy. Proc. Natl. Acad. Sci. U. S. A. 113 (19), 5173– 8, DOI: 10.1073/pnas.1516524113 Vinogradov, S. V. (2007) Polymeric nanogel formulations of nucleoside analogs. Expert Opin. Drug Delivery 4 (1), 5– 17, DOI: 10.1517/17425247.4.1.5 Balimane, P. V. and Sinko, P. J. (1999) Involvement of multiple transporters in the oral absorption of nucleoside analogues. Adv. Drug Delivery Rev. 39 (1–3), 183– 209, DOI: 10.1016/S0169-409X(99)00026-5 Tomorsky, J., DeBlander, L., Kentros, C. G., Doe, C. Q., and Niell, C. M. (2017) TU-Tagging: A Method for Identifying Layer-Enriched Neuronal Genes in Developing Mouse Visual Cortex. eNeuro 4 (5), ENEURO.0181-17.2017, DOI: 10.1523/ENEURO.0181-17.2017 Gay, L., Miller, M. R., Ventura, P. B., Devasthali, V., Vue, Z., Thompson, H. L., Temple, S., Zong, H., Cleary, M. D., Stankunas, K., and Doe, C. Q. (2013) Mouse TU tagging: a chemical/genetic intersectional method for purifying cell type-specific nascent RNA. Genes Dev. 27 (1), 98– 115, DOI: 10.1101/gad.205278.112 Basnet, H., Tian, L., Ganesh, K., Huang, Y. H., Macalinao, D. G., Brogi, E., Finley, L. W., and Massague, J. (2019) Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. eLife 8, e43627 DOI: 10.7554/eLife.43627 Nguyen, K., Fazio, M., Kubota, M., Nainar, S., Feng, C., Li, X., Atwood, S. X., Bredy, T. W., and Spitale, R. C. (2017) Cell-Selective Bioorthogonal Metabolic Labeling of RNA. J. Am. Chem. Soc. 139 (6), 2148– 2151, DOI: 10.1021/jacs.6b11401 Kubota, M., Nainar, S., Parker, S. M., England, W., Furche, F., and Spitale, R. C. (2019) Expanding the Scope of RNA Metabolic Labeling with Vinyl Nucleosides and Inverse Electron-Demand Diels-Alder Chemistry. ACS Chem. Biol. 14 (8), 1698– 1707, DOI: 10.1021/acschembio.9b00079 Rieder, U. and Luedtke, N. W. (2014) Alkene-tetrazine ligation for imaging cellular DNA. Angew. Chem., Int. Ed. 53 (35), 9168– 72, DOI: 10.1002/anie.201403580 Knall, A. C. and Slugovc, C. (2013) Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem. Soc. Rev. 42 (12), 5131– 42, DOI: 10.1039/c3cs60049a |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
ACS Chemical Biology |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://pubs.acs.org/doi/10.1021/acschembio.0c00755# |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/7f9a5073-98fa-4235-a7fa-251fcb5ad0aa/download https://repositorio.cuc.edu.co/bitstreams/baa4cb15-c306-4a9b-a88c-47de4cad1cb3/download https://repositorio.cuc.edu.co/bitstreams/06132d39-4c6a-4589-aa2d-8dde80922af8/download https://repositorio.cuc.edu.co/bitstreams/42b61ae6-093e-441d-9dc9-081a2e5559dd/download https://repositorio.cuc.edu.co/bitstreams/7f908109-ddae-4133-9433-3a461aa70adf/download |
bitstream.checksum.fl_str_mv |
e30e9215131d99561d40d6b0abbe9bad 2a5f110a2792be86d78c89f7eb5e8103 4460e5956bc1d1639be9ae6146a50347 23232a5cc6a87924040573c1025a0c55 ca05e942a4d04d1403229a30ac902aae |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760714547724288 |
spelling |
Nguyen, KimKubota, MilesDel Arco, JonFeng, ChaoSingha, MonikaBeasley, SamanthaSakr, JasmineP. Gandhi, SunilBlurton-Jones, MathewFernández Lucas, JesusC. Spitale, Robert2021-02-19T16:50:53Z2021-02-19T16:50:53Z2020-11-212021-11-21https://hdl.handle.net/11323/7879https://doi.org/10.1021/acschembio.0c00755Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Profiling RNA expression in a cell-specific manner continues to be a grand challenge in biochemical research. Bioorthogonal nucleosides can be utilized to track RNA expression; however, these methods currently have limitations due to background and incorporation of analogs into undesired cells. Herein, we design and demonstrate that uracil phosphoribosyltransferase can be engineered to match 5-vinyluracil for cell-specific metabolic labeling of RNA with exceptional specificity and stringency.Nguyen, KimKubota, MilesDel Arco, Jon-will be generated-orcid-0000-0003-4646-492X-600Feng, Chao-will be generated-orcid-0000-0001-8071-4668-600Singha, MonikaBeasley, SamanthaSakr, Jasmine-will be generated-orcid-0000-0002-4470-3192-600P. Gandhi, SunilBlurton-Jones, Mathew-will be generated-orcid-0000-0002-7770-7157-600Fernández Lucas, JesusC. Spitale, Robertapplication/pdfengCorporación Universidad de la Costahttps://pubs.acs.org/toc/acbcct/15/12Landgraf, P., Antileo, E. R., Schuman, E. M., and Dieterich, D. C. (2015) BONCAT: metabolic labeling, click chemistry, and affinity purification of newly synthesized proteomes. Methods Mol. Biol. 1266, 199– 215, DOI: 10.1007/978-1-4939-2272-7_14Krogager, T. P., Ernst, R. J., Elliott, T. S., Calo, L., Beranek, V., Ciabatti, E., Spillantini, M. G., Tripodi, M., Hastings, M. H., and Chin, J. W. (2018) Labeling and identifying cell-specific proteomes in the mouse brain. Nat. Biotechnol. 36 (2), 156– 159, DOI: 10.1038/nbt.4056Ernst, R. J., Krogager, T. P., Maywood, E. S., Zanchi, R., Beranek, V., Elliott, T. S., Barry, N. P., Hastings, M. H., and Chin, J. W. (2016) Genetic code expansion in the mouse brain. Nat. Chem. Biol. 12 (10), 776– 778, DOI: 10.1038/nchembio.2160Barrett, R. M., Liu, H. W., Jin, H., Goodman, R. H., and Cohen, M. S. (2016) Cell-specific Profiling of Nascent Proteomes Using Orthogonal Enzyme-mediated Puromycin Incorporation. ACS Chem. Biol. 11 (6), 1532– 6, DOI: 10.1021/acschembio.5b01076Li, Z., Zhu, Y., Sun, Y., Qin, K., Liu, W., Zhou, W., and Chen, X. (2016) Nitrilase-Activatable Noncanonical Amino Acid Precursors for Cell-Selective Metabolic Labeling of Proteomes. ACS Chem. Biol. 11 (12), 3273– 3277, DOI: 10.1021/acschembio.6b00765Triemer, T., Messikommer, A., Glasauer, S. M. K., Alzeer, J., Paulisch, M. H., and Luedtke, N. W. (2018) Superresolution imaging of individual replication forks reveals unexpected prodrug resistance mechanism. Proc. Natl. Acad. Sci. U. S. A. 115 (7), E1366– E1373, DOI: 10.1073/pnas.1714790115Neef, A. B., Pernot, L., Schreier, V. N., Scapozza, L., and Luedtke, N. W. (2015) A Bioorthogonal Chemical Reporter of Viral Infection. Angew. Chem. 127 (27), 8022– 8025, DOI: 10.1002/ange.201500250Hubbard, S. C., Boyce, M., McVaugh, C. T., Peehl, D. M., and Bertozzi, C. R. (2011) Cell surface glycoproteomic analysis of prostate cancer-derived PC-3 cells. Bioorg. Med. Chem. Lett. 21 (17), 4945– 50, DOI: 10.1016/j.bmcl.2011.05.045Rabuka, D., Forstner, M. B., Groves, J. T., and Bertozzi, C. R. (2008) Noncovalent cell surface engineering: incorporation of bioactive synthetic glycopolymers into cellular membranes. J. Am. Chem. Soc. 130 (18), 5947– 53, DOI: 10.1021/ja710644gChang, P. V., Prescher, J. A., Hangauer, M. J., and Bertozzi, C. R. (2007) Imaging cell surface glycans with bioorthogonal chemical reporters. J. Am. Chem. Soc. 129 (27), 8400– 1, DOI: 10.1021/ja070238oJao, C. Y. and Salic, A. (2008) Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl. Acad. Sci. U. S. A. 105 (41), 15779– 84, DOI: 10.1073/pnas.0808480105Zheng, Y. and Beal, P. A. (2016) Synthesis and evaluation of an alkyne-modified ATP analog for enzymatic incorporation into RNA. Bioorg. Med. Chem. Lett. 26 (7), 1799– 802, DOI: 10.1016/j.bmcl.2016.02.038Nainar, S., Beasley, S., Fazio, M., Kubota, M., Dai, N., Correa, I. R., Jr., and Spitale, R. C. (2016) Metabolic Incorporation of Azide Functionality into Cellular RNA. ChemBioChem 17 (22), 2149– 2152, DOI: 10.1002/cbic.201600300Hida, N., Aboukilila, M. Y., Burow, D. A., Paul, R., Greenberg, M. M., Fazio, M., Beasley, S., Spitale, R. C., and Cleary, M. D. (2017) EC-tagging allows cell type-specific RNA analysis. Nucleic Acids Res. 45 (15), e138 DOI: 10.1093/nar/gkx551Abud, E. M., Ramirez, R. N., Martinez, E. S., Healy, L. M., Nguyen, C. H. H., Newman, S. A., Yeromin, A. V., Scarfone, V. M., Marsh, S. E., Fimbres, C., Caraway, C. A., Fote, G. M., Madany, A. M., Agrawal, A., Kayed, R., Gylys, K. H., Cahalan, M. D., Cummings, B. J., Antel, J. P., Mortazavi, A., Carson, M. J., Poon, W. W., and Blurton-Jones, M. (2017) iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron 94 (2), 278– 293, DOI: 10.1016/j.neuron.2017.03.042Islam, K. (2018) The Bump-and-Hole Tactic: Expanding the Scope of Chemical Genetics. Cell Chem. Biol. 25 (10), 1171– 1184, DOI: 10.1016/j.chembiol.2018.07.001Yu, H., Li, J., Wu, D., Qiu, Z., and Zhang, Y. (2010) Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev. 39 (2), 464– 73, DOI: 10.1039/B901255ANainar, S., Cuthbert, B. J., Lim, N. M., England, W. E., Ke, K., Sophal, K., Quechol, R., Mobley, D. L., Goulding, C. W., and Spitale, R. C. (2020) An optimized chemical-genetic method for cell-specific metabolic labeling of RNA. Nat. Methods 17 (3), 311– 318, DOI: 10.1038/s41592-019-0726-yWang, D., Zhang, Y., and Kleiner, R. E. (2020) Cell- and Polymerase-Selective Metabolic Labeling of Cellular RNA with 2’-Azidocytidine. J. Am. Chem. Soc. 142 (34), 14417– 14421, DOI: 10.1021/jacs.0c04566Zhang, Y. and Kleiner, R. E. (2019) A Metabolic Engineering Approach to Incorporate Modified Pyrimidine Nucleosides into Cellular RNA. J. Am. Chem. Soc. 141 (8), 3347– 3351, DOI: 10.1021/jacs.8b11449Xie, R., Dong, L., Du, Y., Zhu, Y., Hua, R., Zhang, C., and Chen, X. (2016) In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy. Proc. Natl. Acad. Sci. U. S. A. 113 (19), 5173– 8, DOI: 10.1073/pnas.1516524113Vinogradov, S. V. (2007) Polymeric nanogel formulations of nucleoside analogs. Expert Opin. Drug Delivery 4 (1), 5– 17, DOI: 10.1517/17425247.4.1.5Balimane, P. V. and Sinko, P. J. (1999) Involvement of multiple transporters in the oral absorption of nucleoside analogues. Adv. Drug Delivery Rev. 39 (1–3), 183– 209, DOI: 10.1016/S0169-409X(99)00026-5Tomorsky, J., DeBlander, L., Kentros, C. G., Doe, C. Q., and Niell, C. M. (2017) TU-Tagging: A Method for Identifying Layer-Enriched Neuronal Genes in Developing Mouse Visual Cortex. eNeuro 4 (5), ENEURO.0181-17.2017, DOI: 10.1523/ENEURO.0181-17.2017Gay, L., Miller, M. R., Ventura, P. B., Devasthali, V., Vue, Z., Thompson, H. L., Temple, S., Zong, H., Cleary, M. D., Stankunas, K., and Doe, C. Q. (2013) Mouse TU tagging: a chemical/genetic intersectional method for purifying cell type-specific nascent RNA. Genes Dev. 27 (1), 98– 115, DOI: 10.1101/gad.205278.112Basnet, H., Tian, L., Ganesh, K., Huang, Y. H., Macalinao, D. G., Brogi, E., Finley, L. W., and Massague, J. (2019) Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. eLife 8, e43627 DOI: 10.7554/eLife.43627Nguyen, K., Fazio, M., Kubota, M., Nainar, S., Feng, C., Li, X., Atwood, S. X., Bredy, T. W., and Spitale, R. C. (2017) Cell-Selective Bioorthogonal Metabolic Labeling of RNA. J. Am. Chem. Soc. 139 (6), 2148– 2151, DOI: 10.1021/jacs.6b11401Kubota, M., Nainar, S., Parker, S. M., England, W., Furche, F., and Spitale, R. C. (2019) Expanding the Scope of RNA Metabolic Labeling with Vinyl Nucleosides and Inverse Electron-Demand Diels-Alder Chemistry. ACS Chem. Biol. 14 (8), 1698– 1707, DOI: 10.1021/acschembio.9b00079Rieder, U. and Luedtke, N. W. (2014) Alkene-tetrazine ligation for imaging cellular DNA. Angew. Chem., Int. Ed. 53 (35), 9168– 72, DOI: 10.1002/anie.201403580Knall, A. C. and Slugovc, C. (2013) Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem. Soc. Rev. 42 (12), 5131– 42, DOI: 10.1039/c3cs60049aAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfACS Chemical Biologyhttps://pubs.acs.org/doi/10.1021/acschembio.0c00755#Peptides and proteinsGeneticsLabelingUracilImaging probesA bump-hole strategy for increased stringency of cell-specific metabolic labeling of rnaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/7f9a5073-98fa-4235-a7fa-251fcb5ad0aa/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALA Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA.pdfA Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA.pdfapplication/pdf87265https://repositorio.cuc.edu.co/bitstreams/baa4cb15-c306-4a9b-a88c-47de4cad1cb3/download2a5f110a2792be86d78c89f7eb5e8103MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/06132d39-4c6a-4589-aa2d-8dde80922af8/download4460e5956bc1d1639be9ae6146a50347MD52THUMBNAILA Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA.pdf.jpgA Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA.pdf.jpgimage/jpeg28125https://repositorio.cuc.edu.co/bitstreams/42b61ae6-093e-441d-9dc9-081a2e5559dd/download23232a5cc6a87924040573c1025a0c55MD54TEXTA Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA.pdf.txtA Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA.pdf.txttext/plain816https://repositorio.cuc.edu.co/bitstreams/7f908109-ddae-4133-9433-3a461aa70adf/downloadca05e942a4d04d1403229a30ac902aaeMD5511323/7879oai:repositorio.cuc.edu.co:11323/78792024-09-17 10:46:31.646http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |