Prediction of penetration rate by coupled simulated annealing-least square support vector machine (CSA_LSSVM) learning in a hydrocarbon formation based on drilling parameters

Field information analysis is the main element of reducing costs and improving drilling operations. Therefore, the development of field data analysis tools is one of the ways to improve drilling operations. This paper uses mathematical programming and optimization-based methods to present and review...

Full description

Autores:
Chen, Heng
Duan, Jinying
Ponkratov, Vadim
Grimaldo Guerrero, John William
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8652
Acceso en línea:
https://hdl.handle.net/11323/8652
https://doi.org/10.1016/j.egyr.2021.06.080
https://repositorio.cuc.edu.co/
Palabra clave:
Support vector machine
Rate of penetration
Drilling efficiencies
Weight on bit
Máquina de vectores de soporte
Tasa de penetración
Eficiencias de perforación
Peso de la broca
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_bb6187773b326f4760856fb377ea05cc
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8652
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Prediction of penetration rate by coupled simulated annealing-least square support vector machine (CSA_LSSVM) learning in a hydrocarbon formation based on drilling parameters
dc.title.translated.spa.fl_str_mv Predicción de la tasa de penetración mediante el aprendizaje de la máquina de vectores de soporte de mínimos cuadrados acoplados simulados (CSA_LSSVM) en una formación de hidrocarburos basada en parámetros de perforación
title Prediction of penetration rate by coupled simulated annealing-least square support vector machine (CSA_LSSVM) learning in a hydrocarbon formation based on drilling parameters
spellingShingle Prediction of penetration rate by coupled simulated annealing-least square support vector machine (CSA_LSSVM) learning in a hydrocarbon formation based on drilling parameters
Support vector machine
Rate of penetration
Drilling efficiencies
Weight on bit
Máquina de vectores de soporte
Tasa de penetración
Eficiencias de perforación
Peso de la broca
title_short Prediction of penetration rate by coupled simulated annealing-least square support vector machine (CSA_LSSVM) learning in a hydrocarbon formation based on drilling parameters
title_full Prediction of penetration rate by coupled simulated annealing-least square support vector machine (CSA_LSSVM) learning in a hydrocarbon formation based on drilling parameters
title_fullStr Prediction of penetration rate by coupled simulated annealing-least square support vector machine (CSA_LSSVM) learning in a hydrocarbon formation based on drilling parameters
title_full_unstemmed Prediction of penetration rate by coupled simulated annealing-least square support vector machine (CSA_LSSVM) learning in a hydrocarbon formation based on drilling parameters
title_sort Prediction of penetration rate by coupled simulated annealing-least square support vector machine (CSA_LSSVM) learning in a hydrocarbon formation based on drilling parameters
dc.creator.fl_str_mv Chen, Heng
Duan, Jinying
Ponkratov, Vadim
Grimaldo Guerrero, John William
dc.contributor.author.spa.fl_str_mv Chen, Heng
Duan, Jinying
Ponkratov, Vadim
Grimaldo Guerrero, John William
dc.subject.spa.fl_str_mv Support vector machine
Rate of penetration
Drilling efficiencies
Weight on bit
Máquina de vectores de soporte
Tasa de penetración
Eficiencias de perforación
Peso de la broca
topic Support vector machine
Rate of penetration
Drilling efficiencies
Weight on bit
Máquina de vectores de soporte
Tasa de penetración
Eficiencias de perforación
Peso de la broca
description Field information analysis is the main element of reducing costs and improving drilling operations. Therefore, the development of field data analysis tools is one of the ways to improve drilling operations. This paper uses mathematical programming and optimization-based methods to present and review learning models for data classification. A comprehensive multi-objective optimization model is proposed by extracting commonalities and the same philosophy of some of the most popular mathematical optimization models in the last few years. The geometric representation of the model will be to make it easier to understand the characteristics of the proposed model. Then it is shown that a large number of models studied in the past and present are subsets, and exceptional cases of this proposed comprehensive model and how to convert the proposed comprehensive model to these methods will be examined. This seeks to bridge the gap between new multi-objective programming models and the powerful and improved CSA-LSSVM methods presented for classification in data mining and to generalize studies to improve each of these methods.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-08T14:57:43Z
dc.date.available.none.fl_str_mv 2021-09-08T14:57:43Z
dc.date.issued.none.fl_str_mv 2021-06-25
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 23524847
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8652
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.egyr.2021.06.080
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 23524847
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8652
https://doi.org/10.1016/j.egyr.2021.06.080
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Abbas, A.K., Al-haideri, N.A., Bashikh, A.A., 2019. Implementing artificial neural networks and support vector machines to predict lost circulation. Egypt J. Pet. http://dx.doi.org/10.1016/j.ejpe.2019.06.006.
Abedini, M., Zhang, C., Mehrmashhadi, J., Akhlaghi, E., 2020. Comparison of ALE, LBE and pressure time history methods to evaluate extreme loading effects in RC column. Structures http://dx.doi.org/10.1016/j.istruc.2020.08.084
Ahmed, U., 2020. Effect of indiscriminate defecation and disposal of fecal material on peri-urban cultivated crops potentials to expose parasites to community. Cent. Asian J. Environ. Sci. Technol. Innov. 1 (3), 130–133. http://dx.doi.org/10.22034/CAJESTI.2020.03.01.
Ahmed, S., Mahmood, Q., Elahi, N., Nawab, B., 2020. Current practices and futuristic options in plastic waste management in Pakistan. Cent. Asian J. Environ. Sci. Technol. Innov. 1 (4), 237–244. http://dx.doi.org/10.22034/ CAJESTI.2020.04.06.
Alam, Z., Zhang, C., Samali, B., 2020. Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure. Struct. Des. Tall Spec. Build. http://dx.doi.org/10.1002/tal.1750.
Alshawish, A.M., Eshtaiwi, S.M., Shojaeighadikolaei, A., Ghasemi, A., Ahmadi, R., 2020. Sensorless control for permanent magnet synchronous motor (PMSM) using a reduced order observer. In: 2020 IEEE Kansas Power and Energy Conference (KPEC). IEEE, pp. 1–5.
Ambrus, A., Saadallah, N., Alyaev, S., Iversen, F., 2019. Automatic detection of anomalous drilling operations using machine learning methods and drilling process simulations. Oil Gas Eur. Mag. http://dx.doi.org/10.19225/190305.
Asgari, R., 2021. Role of ESR1 PvuII T/C variant in female reproductive process: A review. Cent. Asian J. Med. Pharmaceut. Sci. Innov. 1 (1), 22–27. http: //dx.doi.org/10.22034/CAJMPSI.2021.01.04
Asghar, M.Z., Subhan, F., Imran, M., Kundi, F.M., khan, A., et al., 2020. Performance evaluation of supervised machine learning techniques for efficient detection of emotions from online content. Comput. Mater. Contin. 63 (3), 1093–1118.
Awan, B., Sabeen, M., Shaheen, S., Mahmood, Q., Ebadi, A., Toughani, M., 2020. Phytoremediation of zinc contaminated water by marigold (Tagetes minuta L). Cent. Asian J. Environ. Sci. Technol. Innov. 1 (3), 150–158. http://dx.doi. org/10.22034/CAJESTI.2020.03.04.
Ayatollahi, H., Gholamhosseini, L., Salehi, M., 2019. Predicting coronary artery disease: A comparison between two data mining algorithms. BMC Publ. Health. http://dx.doi.org/10.1186/s12889-019-6721-5.
Barbosa, LF.F.M., Nascimento, A., Mathias, M.H., de Carvalho, J.A., 2019. Machine learning methods applied to drilling rate of penetration prediction and optimization - A review. J. Pet Sci. Eng. http://dx.doi.org/10.1016/j.petrol. 2019.106332.
Becherer, M., Zipperle, M., Karduck, A., 2020. Intelligent choice of machine learning methods for predictive maintenance of intelligent machines. Comput. Syst. Sci. Eng. 35 (2), 81–89.
Bhandari, J., Abbassi, R., Garaniya, V., Khan, F., 2015. Risk analysis of deepwater drilling operations using Bayesian network. J. Loss Prev. Process Ind. http: //dx.doi.org/10.1016/j.jlp.2015.08.004.
Chaghakaboodi, Z., Kakaei, M., Zebarjadi, A., 2021. Study of relationship between some agro-physiological traits with drought tolerance in rapeseed (Brassica napus L.) genotypes. Cent. Asian J. Plant Sci. Innov. 1 (1), 1–9. http://dx.doi. org/10.22034/CAJPSI.2021.01.01.doi:10.22034/CAJPSI.2021.01.01.
Chao, L., Zhang, K., Li, Z., Zhu, Y., Wang, J., Yu, Z., 2018. Geographically weighted regression based methods for merging satellite and gauge precipitation. J. Hydrol. http://dx.doi.org/10.1016/j.jhydrol.2018.01.042.
Chen, Y., He, L., Guan, Y., Lu, H., Li, J., 2017. Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales. Energy Convers. Manag. http://dx.doi. org/10.1016/j.enconman.2016.12.019.
Chen, Y., Li, J., Lu, H., Yan, P., 2021a. Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gaswater supply chains. J. Clean Prod. http://dx.doi.org/10.1016/j.jclepro.2020. 123209.
Chen, Y., Patel, V.M., Phillips, P.J., et al., 2018. An optimizing and differentially private clustering algorithm for mixed data in SDN-based smart grid. IEEE Access
Chen, X., Wang, D. yong, Tang, J. bin, Ma, W. chen, Liu, Y., 2021b. Geotechnical stability analysis considering strain softening using micro-polar continuum finite element method. J. Cent. South Univ. http://dx.doi.org/10.1007/s11771- 021-4603-3.
Cheng, X., He, L., Lu, H., Chen, Y., Ren, L., 2016. Optimal water resources management and system benefit for the Marcellus shale-gas reservoir in Pennsylvania and West Virginia. J. Hydrol. http://dx.doi.org/10.1016/j.jhydrol. 2016.06.041.
Christopher Ileanwa, A., Macaulay Atahchegbe, E., Andrew Ekule, A., 2020. Impact of land pollution on the wellbeing of neighborhoods in minna Metropolis of Nigeria. Cent. Asian J. Environ. Sci. Technol. Innov. 1 (3), 143–149. http: //dx.doi.org/10.22034/CAJESTI.2020.03.03.
Davarpanah, A., 2018a. A feasible visual investigation for associative foam > \ polymer injectivity performances in the oil recovery enhancement. Eur. Polym. J. http://dx.doi.org/10.1016/j.eurpolymj.2018.06.017.
Davarpanah, A., 2018b. Feasible analysis of reusing flowback produced water in the operational performances of oil reservoirs. Environ. Sci. Pollut. Res. http://dx.doi.org/10.1007/s11356-018-3506-9.
Davarpanah, A., 2019. The feasible visual laboratory investigation of formate fluids on the rheological properties of a shale formation. Int. J. Environ. Sci. Technol. http://dx.doi.org/10.1007/s13762-018-1877-6.
Davarpanah, A., 2020. Parametric study of polymer-nanoparticles-assisted injectivity performance for axisymmetric two-phase flow in EOR processes. Nanomaterials http://dx.doi.org/10.3390/nano10091818.
Davarpanah, A., Mirshekari, B., 2018. Experimental study and field application of appropriate selective calculation methods in gas lift design. Pet. Res. http://dx.doi.org/10.1016/j.ptlrs.2018.03.005.
Davarpanah, A., Mirshekari, B., 2019a. Experimental investigation and mathematical modeling of gas diffusivity by carbon dioxide and methane kinetic adsorption. Ind. Eng. Chem. Res. http://dx.doi.org/10.1021/acs.iecr.9b01920.
Davarpanah, A., Mirshekari, B., 2019b. Mathematical modeling of injectivity damage with oil droplets in the waste produced water re-injection of the linear flow. Eur. Phys. J. Plus. http://dx.doi.org/10.1140/epjp/i2019-12546-9.
Davarpanah, A., Mirshekari, B., Jafari Behbahani, T., Hemmati, M., 2018. Integrated production logging tools approach for convenient experimental individual layer permeability measurements in a multi-layered fractured reservoir. J. Pet. Explor. Prod. Technol. http://dx.doi.org/10.1007/s13202-017- 0422-3.
Davarpanah, A., Shirmohammadi, R., Mirshekari, B., Aslani, A., 2019. Analysis of hydraulic fracturing techniques: hybrid fuzzy approaches. Arab. J. Geosci. http://dx.doi.org/10.1007/s12517-019-4567-x.
Ebnali, M., Fathi, R., Lamb, R., Pourfalatoun, S., Motamedi, S., 2020. Using augmented holographic UIs to communicate automation reliability in partially automated driving. In: AutomationXP@ CHI.
Garba, H., Ahmed, S., Abdullahi, I., 2020. A technique for simulating future climate change variable using improved K-nearest neighbors algorithm (kNN). Cent. Asian J. Environ. Sci. Technol. Innov. 1 (2), 101–108. http://dx.doi. org/10.22034/CAJESTI.2020.02.05.
Guo, L., 2020. Extreme learning machine with elastic net regularization. Intell. Autom. Soft Comput. 26 (3), 421–427.
Haghshenas, H., Ghanbari Malidarreh, A., 2021. Response of yield and yield components of released rice cultivars from 1990-2010 to nitrogen rates. Cent. Asian J. Plant Sci. Innov. 1 (1), 23–31. http://dx.doi.org/10.22034/CAJPSI.2021. 01.03
Han, J., Kamber, M., Pei, J., 2012. Data mining: Concepts and techniques. Data Min. Concepts Tech. http://dx.doi.org/10.1016/C2009-0-61819-5.
Hassanpour, A., Farhami, N., Derakhshande, M., Nezhad, P.D.K., Ebadi, A., Ebrahimiasl, S., 2021. Magnesium and calcium ion batteries based on the hexa-peri-hexabenzocoronene nanographene anode materials. Inorg. Chem. Commun. 108656. http://dx.doi.org/10.1016/j.inoche.2021.108656.
Hazbeh, O., ye, Aghdam S.K., Ghorbani, H., Mohamadian, N., Ahmadi Alvar, M., Moghadasi, J., 2021. Comparison of accuracy and computational performance between the machine learning algorithms for rate of penetration in directional drilling well. J. Pet. Res. http://dx.doi.org/10.1016/j.ptlrs.2021.02. 004.
Hossain, B., Morooka, T., Okuno, M., Nii, M., Yoshiya, S., et al., 2019. Surgical outcome prediction in total knee arthroplasty using machine learning. Intell. Autom. Soft Comput. 25 (1), 105–115.
Hu, X., Xie, J., Cai, W., Wang, R., Davarpanah, A., 2020. Thermodynamic effects of cycling carbon dioxide injectivity in shale reservoirs. J. Pet. Sci. Eng. http://dx.doi.org/10.1016/j.petrol.2020.107717.
Huang, J., Duan, T., Zhang, Y., Liu, J., Zhang, J., Lei, Y., 2020. Predicting the permeability of perviou concrete based on the beetle antennae search algorithm and random forest model. Adv. Civ. Eng. http://dx.doi.org/10.1155/ 2020/8863181.
Huang, J., Kumar, G.S., Sun, Y., 2021b. Evaluation of workability and mechanical properties of asphalt binder and mixture modified with waste toner. Constr. Build Mater. http://dx.doi.org/10.1016/j.conbuildmat.2020.122230
Huang, J., Shiva Kumar, G., Ren, J., Sun, Y., Li, Y., Wang, C., 2021d. Towards the potential usage of eggshell powder as bio-modifier for asphalt binder and mixture: workability and mechanical properties. Int. J. Pavement Eng. http://dx.doi.org/10.1080/10298436.2021.1905809.
Huang, J., Sun, Y., Zhang, J., 2021c. Reduction of computational error by optimizing SVR kernel coefficients to simulate concrete compressive strength through the use of a human learning optimization algorithm. Eng. Comput. http://dx.doi.org/10.1007/s00366-021-01305-x
Huang, J., Wang, Q.A., 2021. Influence of crumb rubber particle sizes on rutting, low temperature cracking, fracture, and bond strength properties of asphalt binder. Mater. Struct. Constr. http://dx.doi.org/10.1617/s11527-021-01647-4.
Huang, J., Zhang, J., Ren, J., Chen, H., 2021a. Anti-rutting performance of the damping asphalt mixtures (DAMs) made with a high content of asphalt rubber (AR). Constr. Build Mater. http://dx.doi.org/10.1016/j.conbuildmat. 2020.121878.
Huang, J., Zhang, Y., Sun, Y., Ren, J., Zhao, Z., Zhang, J., 2021e. Evaluation of pore size distribution and permeability reduction behavior in pervious concrete. Constr. Build. Mater. 290, 123228. http://dx.doi.org/10.1016/j.conbuildmat. 2021.123228.
Indira, B., Valarmathi, K., 2020. A perspective of the machine learning approach for the packet classification in the software defined network. Intell. Autom. Soft Comput. 26 (4), 795–805.
Jafari, M., Jafarishiadeh, F., Ghasemi, A., Shojaeighadikolaei, A., Saadatmand, S., Ahmadi, R., 2020a. New MMC-Based Multilevel Converter with Two-And-One Set of Arms and One Inductor. In: 2020 IEEE Power and Energy Conference at Illinois (PECI). Champaign, IL, USA, pp. 1–4. http://dx.doi.org/10.1109/ PECI48348.2020.9064616.
Jafari, M., Jafarishiadeh, F., Saadatmand, S., Ghasemi, A., Shojaeighadikolaei, A., Ahmadi, R., 2020b. Current Stress Reduction Investigation of Isolated MMCBased DC-DC Converters. In: 2020 IEEE Power and Energy Conference at Illinois (PECI). Champaign, IL, USA, pp. 1-4, http://dx.doi.org/10.1109/ PECI48348.2020.9064652.
Jafari, M., Saadatmand, S., Shojaeighadikolaei, A., Jafarishiadeh, F., Ghasemi, A., Mohamed Alshawish, A., Ahmadi, R., 2020c. New Voltage Balancing Technique Based on Carrier-Disposition Pulse Width Modulation for Modular Multilevel Converter. In: 2020 IEEE Power and Energy Conference at Illinois (PECI). Champaign, IL, USA, pp. 1-5, http://dx.doi.org/10.1109/PECI48348. 2020.9064635.
Jahandini, A., Soleimami, H., Ghaffari, S., 2020. Explanation of strategic management pattern in rural sustainable development, case study: central part of Sirik township (Hormozgan Province of Iran). Cent. Asian J. Environ. Sci. Technol. Innov. 1 (6), 281–290. http://dx.doi.org/10.22034/CAJESTI.2020.06. 01.
Jalilian, S., 2020. Environmental risk assessment of saman cement factory in kermanshah in Iran by AHP and TOPSIS methods. Cent. Asian J. Environ. Sci. Technol. Innov. 1 (6), 298–309. http://dx.doi.org/10.22034/CAJESTI.2020.06. 03.
Jing, L., Yong, Y., Ge, H., Li, Z., Guo, R., 2020. Coal rock condition detection model using acoustic emission and light gradient boosting machine. Comput. Mater. Contin. 63 (1), 151–161.
Kahanju Chitiki, A., 2020. Altitudinal zonation of tree communities along climate and soil gradients in the East African biodiversity hotspot. Cent. Asian J. Environ. Sci. Technol. Innov. 1 (3), 168–183. http://dx.doi.org/10.22034/ CAJESTI.2020.03.06.
Kallehbasti, M.A., Jones, C.M., Proett, M.A., LeBlanc, M., 2020. Data driven model for contamination estimation and monitoring method to optimize fluid sampling. In: Soc Pet Eng - Abu Dhabi Int Pet Exhib Conf 2020. ADIP 2020, http://dx.doi.org/10.2118/203325-ms.
Karbakhshzadeh, A., Derakhshande, M., Farhami, N., Hosseinian, A., Ebrahimiasl, S., Ebadi, A., 2021b. Study the adsorption of letrozole drug on the silicon doped graphdiyne monolayer: a DFT investigation. Silicon 1–8. http: //dx.doi.org/10.1007/s12633-021-01143-y
Karbakhshzadeh, A., Heravi, M.R.P., Rahmani, Z., Ebadi, A., Vessally, E., 2021a. Aroyl fluorides: Novel and promising arylating agents. J. Fluor. Chem. 109806. http://dx.doi.org/10.1016/j.jfluchem.2021.109806.
Khafaei, M., Sadeghi Hajiabadi, M., Abdolmaleki, A., 2021. Role of 1,25- dihydroxycholecalciferol in immunological and molecular pathways involved in Multiple Sclerosis. Cent. Asian J. Med. Pharmaceut. Sci. Innov. 1 (2), 55–66. http://dx.doi.org/10.22034/CAJMPSI/2021.02.02.
Li, Y., Jia, D., Rui, Z., Peng, J., Fu, C., Zhang, J., 2017. Evaluation method of rock brittleness based on statistical constitutive relations for rock damage. J. Pet. Sci. Eng. http://dx.doi.org/10.1016/j.petrol.2017.03.041.
Li, J., Lv, Y., Ma, B., Yang, M., Wang, C., et al., 2020. Video source identification algorithm based on 3d geometric transformation. Comput. Syst. Sci. Eng. 35 (6), 513–521.
Li, B., Xiong, D., 2020. Research on the dynamic compensation system of the cathode electrode wear for a short electric arc machine tool. Intell. Autom. Soft Comput. 26 (5), 1007–1021.
Liu, B., Yang, H., Karekal, S., 2020. Effect of water content on argillization of mudstone during the tunnelling process. Rock Mech. Rock Eng. 53 (2), 799–813. http://dx.doi.org/10.1007/s00603-019-01947-w.
Lohmander, P., 2020. Forest fire expansion under global warming conditions: multivariate estimation, function properties and predictions for 29 countries. Cent. Asian J. Environ. Sci. Technol. Innov. 1 (5), 262–276. http://dx.doi.org/ 10.22034/CAJESTI.2020.05.03.
Lu, H., Tian, P., He, L., 2019. Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions. Renew. Sustain. Energy Rev. http://dx.doi.org/10.1016/j.rser.2019.06.013.
Ma, T., Pang, S., Zhang, W., Hao, S., 2019. Virtual machine based on genetic algorithm used in time and power oriented cloud computing task scheduling. Intell. Autom. Soft Comput. 25 (3), 605–613.
Miri, A., Kiani, E., Habibi, S., Khafaei, M., 2021. Triple-negative breast cancer: biology, pathology, and treatment. Cent. Asian J. Med. Pharmaceut. Sci. Innov. 1 (2), 81–96. http://dx.doi.org/10.22034/CAJMPSI.2021.02.05.
Mohammadi, F., Jafarishiadeh, F., Xue, J., Sahraei-Ardakani, M., Ou, G., 2021. Deterministic proxies for stochastic unit commitment during hurricanes. IET Gener. Transm. Dist. 15 (8), 1357–1370.
Nabavi, M., Elveny, M., Danshina, S.D., Behroyan, I., Babanezhad, M., 2021a. Velocity prediction of Cu/water nanofluid convective flow in a circular tube: Learning CFD data by differential evolution algorithm based fuzzy inference system (DEFIS). Int. Commun. Heat Mass Transf. 126, 105373.
Nabavi, M., Nazarpour, V., Alibak, A.H., et al., 2021b. Smart tracking of the influence of alumina nanoparticles on the thermal coefficient of nanosuspensions: application of LS-SVM methodology. Appl. Nanosci. http://dx.doi.org/10.1007/ s13204-021-01949-7.
Nan, S., Hai-Bin, W., Li, G., Jing-Yao, Z., Jian-Feng, G., Fang, W., Ebadi, A., 2021. Sila-, bora-, thio-, and phosphono-carboxylation of unsaturated compounds with carbon dioxide: An overview. J. CO2 Util. http://dx.doi.org/10.1016/j. jcou.2021.101522.
Nejad, R.M., Berto, F., Wheatley, G., Tohidi, M., Ma, W., 2021. On fatigue life prediction of Al-alloy 2024 plates in riveted joints. In: Structures. Vol. 33, Elsevier, pp. 1715–1720. http://dx.doi.org/10.1016/j.istruc.2021.05.055.
Nesic, S., Zolotukhin, A., Mitrovic, V., Govedarica, D., Davarpanah, A., 2020. An analytical model to predict the effects of suspended solids in injected water on the oil displacement efficiency during waterflooding. Processes http://dx.doi.org/10.3390/pr8060659.
Okhovvat, M., Kangavari, M.R., 2019. A mathematical task dispatching model in wireless sensor actor networks. Comput. Syst. Sci. Eng. 34 (1), 5–12.
Olson, D.L., Delen, D., 2008. Advanced data mining techniques. Adv. Data Min. Tech. http://dx.doi.org/10.1007/978-3-540-76917-0.
Osarogiagbon, A.U., Khan, F., Venkatesan, R., Gillard, P., 2021. Review and analysis of supervised machine learning algorithms for hazardous events in drilling operations. Process Saf. Environ. Prot. http://dx.doi.org/10.1016/j.psep.2020. 09.038.
Ouyang, L., Zhu, S., Ye, K., Park, C., Wang, M., 2021. Robust Bayesian hierarchical modeling and inference using scale mixtures of normal distributions. IISE Trans. http://dx.doi.org/10.1080/24725854.2021.1912440.
Pourfalatoun, S., Miller, E.E., 2021. User perceptions of automated truck-mounted attenuators: implications on work zone safety. Traffic Injury Prev. 1–8.
Purba, D.P., Adityatama, D.W., Umam, M.F., Muhammad, F., 2019. Key considerations in developing strategy for geothermal exploration drilling project in Indonesia. In: Proceedings, 44th Work. Geotherm. Reserv. Eng.
Qayyum, S., Khan, I., Meng, K., Zhao, Y., Peng, C., 2020. A review on remediation technologies for heavy metals contaminated soil. Cent. Asian J. Environ. Sci. Technol. Innov. 1 (1), 21–29. http://dx.doi.org/10.22034/CAJESTI.2020.01.03.
Rostami, Z., Asnaashriisfahani, M., Ahmadi, S., Hosseinian, A., Ebadi, A., 2021. A density functional theory investigation on 1h-4-germapyridine-4-ylidene & the unsaturated heterocyclic substituted ones. J. Mol. Struct. http://dx.doi. org/10.1016/j.molstruc.2021.130427.
Rostamijavanani, A., Ebrahimi, M.R., Jahedi, S., 2020. Thermal post-buckling analysis of laminated composite plates embedded with shape memory alloy fibers using semi-analytical finite strip method. J. Fail Anal. Prev. http: //dx.doi.org/10.1007/s11668-020-01068-5.
Rostamijavanani, A., Ebrahimi, M.R., Jahedi, S., 2021. Free vibration analysis of composite structures using semi-analytical finite strip method. J. Fail Anal. Prev. http://dx.doi.org/10.1007/s11668-021-01136-4.
Sabernezhad, M., 2021. Quantitative analysis of p53 substitution mutation and breast cancer; An informative study in Iranian population. Cent. Asian J. Med. Pharmaceut. Sci. Innov. 1 (1), 8–14. http://dx.doi.org/10.22034/CAJMPSI.2021. 01.02.
Shah, S.M.S., Malik, T.A., khatoon, R., Hassan, S.S., Shah, F.A., 2019. Human behavior classification using geometrical features of skeleton and support vector machines. Comput. Mater. Contin. 61 (2), 535–553.
Spínola, D.C.S., De, Miranda A., Macedo, D.A., Paskocimas, C.A., Nascimento, R.M., 2019. Preparation of glass-ceramic materials using kaolin and oil well drilling wastes. J. Mater. Res. Technol. http://dx.doi.org/10.1016/j.jmrt.2019.06.013.
Suleymanov, U., Kalejahi, B.K., Amrahov, E., Badirkhanli, R., 2020. Text classification for azerbaijani language using machine learning. Comput. Syst. Sci. Eng. 35 (6), 467–475.
Sun, S., Zhou, M., Lu, W., Davarpanah, A., 2020a. Application of symmetry law in numerical modeling of hydraulic fracturing by finite element method. Symmetry (Basel) http://dx.doi.org/10.3390/sym12071122.
Usman, A., Abdullahi, H., A.Opara, J., 2020. Forest resources management using geospatial tools (case study: Northern Nigeria). Cent. Asian J. Environ. Sci. Technol. Innov. 1 (1), 12–20. http://dx.doi.org/10.22034/CAJESTI.2020.01.02.
Wang, J., Yang, Y., Zhang, J., Yu, X., Alfarraj, O., et al., 2020. A data-aware remote procedure call method for big data systems. Comput. Syst. Sci. Eng. 35 (6), 523–532.
Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., 2016. Data mining: Practical machine learning tools and techniques. Data Min. Pract. Mach. Learn. Tools Tech. http://dx.doi.org/10.1016/c2009-0-19715-5.
Xu, J., Li, Y., Ren, C., Wang, S., Vanapalli, S.K., Chen, G., 2021. Influence of freeze-thaw cycles on microstructure and hydraulic conductivity of saline intact loess. Cold Reg. Sci. Technol. http://dx.doi.org/10.1016/j.coldregions. 2020.103183.
Xue, X., Zhang, K., Tan, K.C., Feng, L., Wang, J., Chen, G., Zhao, X., Zhang, L., Yao, J., 2020. Affine transformation-enhanced multifactorial optimization for heterogeneous problems. IEEE Trans. Cybern. http://dx.doi.org/10.1109/ TCYB.2020.3036393.
Yang, Y., Hou, C., Lang, Y., Sakamoto, T., He, Y., Xiang, W., 2020a. Omnidirectional motion classification with monostatic radar system using micro-doppler signatures. IEEE Trans. Geosci. Remote Sens. http://dx.doi.org/10.1109/TGRS. 2019.2958178.
Yang, H.Q., Li, Z., Jie, T.Q., Zhang, Z.Q., 2018a. Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass. Tunn. Undergr. Space Technol. 81, 112–120. http://dx.doi.org/10.1016/j.tust.2018.07.023.
Yang, Y., Li, Y., Yao, J., Iglauer, S., Luquot, L., Zhang, K., Sun, H., Zhang, L., Song, W., Wang, Z., 2020b. Dynamic pore-scale dissolution by CO2-saturated brine in carbonates: Impact of homogeneous versus fractured versus vuggy pore structure. Water Resour. Res. http://dx.doi.org/10.1029/2019WR026112.
Yang, Y., Tao, L., Yang, H., Iglauer, S., Wang, X., Askari, R., Yao, J., Zhang, K., Zhang, L., Sun, H., 2020c. Stress sensitivity of fractured and vuggy carbonate: An X-ray computed tomography analysis. J. Geophys. Res. Solid Earth http: //dx.doi.org/10.1029/2019JB018759.
Yang, H., Wang, Z., Song, K., 2020d. A new hybrid grey wolf optimizer-feature weighted-multiple kernel-support vector regression technique to predict TBM performance. Eng. Comput. 1–17.
Yang, H.Q., Xing, S.G., Wang, Q., Li, Z., 2018b. Model test on the entrainment phenomenon and energy conversion mechanism of flow-like landslides. Eng. Geol. 239, 119–125. http://dx.doi.org/10.1016/j.enggeo.2018.03.023.
Yang, Y., Yao, J., Wang, C., Gao, Y., Zhang, Q., An, S., Song, W., 2015. New pore space characterization method of shale matrix formation by considering organic and inorganic pores. J. Nat. Gas Sci. Eng. http://dx.doi.org/10.1016/j. jngse.2015.08.017.
Yang, H.Q., Zeng, Y.Y., Lan, Y.F., Zhou, X.P., 2014. Analysis of the excavation damaged zone around a tunnel accounting for geostress and unloading. Int. J. Rock Mech. Min. Sci. 69, 59–66. http://dx.doi.org/10.1016/j.ijrmms.2014.03. 003.
Yin, F., Xue, X., Zhang, C., Zhang, K., Han, J., Liu, B., Wang, J., Yao, J., 2021. Multifidelity genetic transfer: An efficient framework for production optimization. SPE J. http://dx.doi.org/10.2118/205013-pa.
Yu, D., Mao, Y., Gu, B., Nojavan, S., Jermsittiparsert, K., Nasseri, M., 2020. A new LQG optimal control strategy applied on a hybrid wind turbine/solid oxide fuel cell/ in the presence of the interval uncertainties. Sustain. Energy Grids Netw. http://dx.doi.org/10.1016/j.segan.2019.100296.
Yuan, P., Chen, D., Wang, T., Cao, S., Cai, Y., Xue, L., 2018. A compensation method based on extreme learning machine to enhance absolute position accuracy for aviation drilling robot. Adv. Mech. Eng. http://dx.doi.org/10. 1177/1687814018763411.
Zeidali, E., Mardani Korrani, H., Alizadeh, Y., Kamari, F., 2021. Ethnopharmacological survey of medicinal plants in semi-arid rangeland in western Iran. Cent. Asian J. Plant Sci. Innov. 1 (1), 46–55. http://dx.doi.org/10.22034/CAJPSI.2021. 01.06.
Zhang, C., Alam, Z., Sun, L., Su, Z., Samali, B., 2019a. Fibre bragg grating sensorbased damage response monitoring of an asymmetric reinforced concrete shear wall structure subjected to progressive seismic loads. Struct. Control Heal. Monit. http://dx.doi.org/10.1002/stc.2307.
Zhang, F., An, M., Zhang, L., Fang, Y., Elsworth, D., 2020b. Effect of mineralogy on friction-dilation relationships for simulated faults: Implications for permeability evolution in caprock faults. Geosci. Front. http://dx.doi.org/10. 1016/j.gsf.2019.05.014.
Zhang, K., Jia, C., Song, Y., et al., 2020a. Analysis of lower cambrian shale gas composition, source and accumulation pattern in different tectonic backgrounds: A case study of Weiyuan Block in the Upper Yangtze region and Xiuwu Basin in the Lower Yangtze region. Fuel http://dx.doi.org/10.1016/ j.fuel.2019.115978
Zhang, X., Wang, Y., Wang, C., Su, C.Y., Li, Z., Chen, X., 2019b. Adaptive estimated inverse output-feedback quantized control for piezoelectric positioning stage. IEEE Trans. Cybern. http://dx.doi.org/10.1109/TCYB.2018.2826519.
Zhang, K., Zhang, J., Ma, X., Yao, C., Zhang, L., Yang, Y., Wang, J., Yao, J., Zhao, H., 2021. History matching of naturally fractured reservoirs using a deep sparse autoencoder. SPE J. http://dx.doi.org/10.2118/205340-pa.
Zhao, X., Gu, B., Gao, F., Chen, S., 2020. Matching model of energy supply and demand of the integrated energy system in coastal areas. J. Coast. Res. http://dx.doi.org/10.2112/SI103-205.1.
Zhen, J., 2020. Detection of number of wideband signals based on support vector machine. Comput. Mater. Contin. 63 (1), 445–455.
Zhong, R., Johnson, R.L., Chen, Z., 2019. Using machine learning methods to identify coals from drilling and logging-while-drilling LWD data. In: SPE/AAPG/SEG Asia Pacific Unconv Resour Technol Conf 2019. APUR 2019, http://dx.doi.org/10.15530/ap-urtec-2019-198288.
Zhu, M., Yu, L., Zhang, X., Davarpanah, A., 2020. Application of implicit pressureexplicit saturation method to predict filtrated mud saturation impact on the hydrocarbon reservoirs formation damage. Mathematics http://dx.doi.org/10. 3390/math8071057.
Zuo, C., Chen, Q., Tian, L., Waller, L., Asundi, A., 2015. Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective. Opt. Lasers Eng. http://dx.doi.org/10.1016/j. optlaseng.2015.03.006.
Zuo, C., Sun, J., Li, J., Zhang, J., Asundi, A., Chen, Q., 2017. Highresolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci. Rep. http://dx.doi.org/10.1038/s41598-017-06837-1.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Energy Reports
dc.source.spa.fl_str_mv Energy Reports
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2352484721004455?via%3Dihub#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/9f26ff72-eb8b-49e6-9dd3-28d2489e475e/download
https://repositorio.cuc.edu.co/bitstreams/72d34394-4597-479e-8a9f-e678bdabf226/download
https://repositorio.cuc.edu.co/bitstreams/49012450-ee6c-4d1f-8bdc-2d65e3662db4/download
https://repositorio.cuc.edu.co/bitstreams/be97bc96-4f97-4e3a-8ffb-9c42067cf276/download
https://repositorio.cuc.edu.co/bitstreams/41c1fbea-4875-45d0-ab7c-5a0ca493ea67/download
bitstream.checksum.fl_str_mv 94b38dffe2ec7194d7ee8996bd088dde
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
f816c651e542ba7004358c825722b7de
28b32185ce11e2afda975ac24c69ad9c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760801164296192
spelling Chen, HengDuan, JinyingPonkratov, VadimGrimaldo Guerrero, John William2021-09-08T14:57:43Z2021-09-08T14:57:43Z2021-06-2523524847https://hdl.handle.net/11323/8652https://doi.org/10.1016/j.egyr.2021.06.080Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Field information analysis is the main element of reducing costs and improving drilling operations. Therefore, the development of field data analysis tools is one of the ways to improve drilling operations. This paper uses mathematical programming and optimization-based methods to present and review learning models for data classification. A comprehensive multi-objective optimization model is proposed by extracting commonalities and the same philosophy of some of the most popular mathematical optimization models in the last few years. The geometric representation of the model will be to make it easier to understand the characteristics of the proposed model. Then it is shown that a large number of models studied in the past and present are subsets, and exceptional cases of this proposed comprehensive model and how to convert the proposed comprehensive model to these methods will be examined. This seeks to bridge the gap between new multi-objective programming models and the powerful and improved CSA-LSSVM methods presented for classification in data mining and to generalize studies to improve each of these methods.El análisis de la información de campo es el elemento principal para reducir costos y mejorar las operaciones de perforación. Por lo tanto, el desarrollo de herramientas de análisis de datos de campo es una de las formas de mejorar las operaciones de perforación. Este artículo utiliza programación matemática y métodos basados ​​en optimización para presentar y revisar modelos de aprendizaje para la clasificación de datos. Se propone un modelo integral de optimización multiobjetivo extrayendo los puntos en común y la misma filosofía de algunos de los modelos matemáticos de optimización más populares en los últimos años. La representación geométrica del modelo servirá para facilitar la comprensión de las características del modelo propuesto. Luego se muestra que una gran cantidad de modelos estudiados en el pasado y el presente son subconjuntos, y se examinarán casos excepcionales de este modelo integral propuesto y cómo convertir el modelo integral propuesto a estos métodos. Esto busca cerrar la brecha entre los nuevos modelos de programación multiobjetivo y los métodos CSA-LSSVM poderosos y mejorados presentados para la clasificación en la minería de datos y generalizar los estudios para mejorar cada uno de estos métodos.Chen, Heng-will be generated-orcid-0000-0002-7498-2460-600Duan, JinyingPonkratov, Vadim-will be generated-orcid-0000-0001-7706-5011-600Grimaldo Guerrero, John William-will be generated-orcid-0000-0002-1632-5374-600application/pdfengEnergy ReportsCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energy Reportshttps://www.sciencedirect.com/science/article/pii/S2352484721004455?via%3Dihub#!Support vector machineRate of penetrationDrilling efficienciesWeight on bitMáquina de vectores de soporteTasa de penetraciónEficiencias de perforaciónPeso de la brocaPrediction of penetration rate by coupled simulated annealing-least square support vector machine (CSA_LSSVM) learning in a hydrocarbon formation based on drilling parametersPredicción de la tasa de penetración mediante el aprendizaje de la máquina de vectores de soporte de mínimos cuadrados acoplados simulados (CSA_LSSVM) en una formación de hidrocarburos basada en parámetros de perforaciónArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAbbas, A.K., Al-haideri, N.A., Bashikh, A.A., 2019. Implementing artificial neural networks and support vector machines to predict lost circulation. Egypt J. Pet. http://dx.doi.org/10.1016/j.ejpe.2019.06.006.Abedini, M., Zhang, C., Mehrmashhadi, J., Akhlaghi, E., 2020. Comparison of ALE, LBE and pressure time history methods to evaluate extreme loading effects in RC column. Structures http://dx.doi.org/10.1016/j.istruc.2020.08.084Ahmed, U., 2020. Effect of indiscriminate defecation and disposal of fecal material on peri-urban cultivated crops potentials to expose parasites to community. Cent. Asian J. Environ. Sci. Technol. Innov. 1 (3), 130–133. http://dx.doi.org/10.22034/CAJESTI.2020.03.01.Ahmed, S., Mahmood, Q., Elahi, N., Nawab, B., 2020. Current practices and futuristic options in plastic waste management in Pakistan. Cent. Asian J. Environ. Sci. Technol. Innov. 1 (4), 237–244. http://dx.doi.org/10.22034/ CAJESTI.2020.04.06.Alam, Z., Zhang, C., Samali, B., 2020. Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure. Struct. Des. Tall Spec. Build. http://dx.doi.org/10.1002/tal.1750.Alshawish, A.M., Eshtaiwi, S.M., Shojaeighadikolaei, A., Ghasemi, A., Ahmadi, R., 2020. Sensorless control for permanent magnet synchronous motor (PMSM) using a reduced order observer. In: 2020 IEEE Kansas Power and Energy Conference (KPEC). IEEE, pp. 1–5.Ambrus, A., Saadallah, N., Alyaev, S., Iversen, F., 2019. Automatic detection of anomalous drilling operations using machine learning methods and drilling process simulations. Oil Gas Eur. Mag. http://dx.doi.org/10.19225/190305.Asgari, R., 2021. Role of ESR1 PvuII T/C variant in female reproductive process: A review. Cent. Asian J. Med. Pharmaceut. Sci. Innov. 1 (1), 22–27. http: //dx.doi.org/10.22034/CAJMPSI.2021.01.04Asghar, M.Z., Subhan, F., Imran, M., Kundi, F.M., khan, A., et al., 2020. Performance evaluation of supervised machine learning techniques for efficient detection of emotions from online content. Comput. Mater. Contin. 63 (3), 1093–1118.Awan, B., Sabeen, M., Shaheen, S., Mahmood, Q., Ebadi, A., Toughani, M., 2020. Phytoremediation of zinc contaminated water by marigold (Tagetes minuta L). Cent. Asian J. Environ. Sci. Technol. Innov. 1 (3), 150–158. http://dx.doi. org/10.22034/CAJESTI.2020.03.04.Ayatollahi, H., Gholamhosseini, L., Salehi, M., 2019. Predicting coronary artery disease: A comparison between two data mining algorithms. BMC Publ. Health. http://dx.doi.org/10.1186/s12889-019-6721-5.Barbosa, LF.F.M., Nascimento, A., Mathias, M.H., de Carvalho, J.A., 2019. Machine learning methods applied to drilling rate of penetration prediction and optimization - A review. J. Pet Sci. Eng. http://dx.doi.org/10.1016/j.petrol. 2019.106332.Becherer, M., Zipperle, M., Karduck, A., 2020. Intelligent choice of machine learning methods for predictive maintenance of intelligent machines. Comput. Syst. Sci. Eng. 35 (2), 81–89.Bhandari, J., Abbassi, R., Garaniya, V., Khan, F., 2015. Risk analysis of deepwater drilling operations using Bayesian network. J. Loss Prev. Process Ind. http: //dx.doi.org/10.1016/j.jlp.2015.08.004.Chaghakaboodi, Z., Kakaei, M., Zebarjadi, A., 2021. Study of relationship between some agro-physiological traits with drought tolerance in rapeseed (Brassica napus L.) genotypes. Cent. Asian J. Plant Sci. Innov. 1 (1), 1–9. http://dx.doi. org/10.22034/CAJPSI.2021.01.01.doi:10.22034/CAJPSI.2021.01.01.Chao, L., Zhang, K., Li, Z., Zhu, Y., Wang, J., Yu, Z., 2018. Geographically weighted regression based methods for merging satellite and gauge precipitation. J. Hydrol. http://dx.doi.org/10.1016/j.jhydrol.2018.01.042.Chen, Y., He, L., Guan, Y., Lu, H., Li, J., 2017. Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales. Energy Convers. Manag. http://dx.doi. org/10.1016/j.enconman.2016.12.019.Chen, Y., Li, J., Lu, H., Yan, P., 2021a. Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gaswater supply chains. J. Clean Prod. http://dx.doi.org/10.1016/j.jclepro.2020. 123209.Chen, Y., Patel, V.M., Phillips, P.J., et al., 2018. An optimizing and differentially private clustering algorithm for mixed data in SDN-based smart grid. IEEE AccessChen, X., Wang, D. yong, Tang, J. bin, Ma, W. chen, Liu, Y., 2021b. Geotechnical stability analysis considering strain softening using micro-polar continuum finite element method. J. Cent. South Univ. http://dx.doi.org/10.1007/s11771- 021-4603-3.Cheng, X., He, L., Lu, H., Chen, Y., Ren, L., 2016. Optimal water resources management and system benefit for the Marcellus shale-gas reservoir in Pennsylvania and West Virginia. J. Hydrol. http://dx.doi.org/10.1016/j.jhydrol. 2016.06.041.Christopher Ileanwa, A., Macaulay Atahchegbe, E., Andrew Ekule, A., 2020. Impact of land pollution on the wellbeing of neighborhoods in minna Metropolis of Nigeria. Cent. Asian J. Environ. Sci. Technol. Innov. 1 (3), 143–149. http: //dx.doi.org/10.22034/CAJESTI.2020.03.03.Davarpanah, A., 2018a. A feasible visual investigation for associative foam > \ polymer injectivity performances in the oil recovery enhancement. Eur. Polym. J. http://dx.doi.org/10.1016/j.eurpolymj.2018.06.017.Davarpanah, A., 2018b. Feasible analysis of reusing flowback produced water in the operational performances of oil reservoirs. Environ. Sci. Pollut. Res. http://dx.doi.org/10.1007/s11356-018-3506-9.Davarpanah, A., 2019. The feasible visual laboratory investigation of formate fluids on the rheological properties of a shale formation. Int. J. Environ. Sci. Technol. http://dx.doi.org/10.1007/s13762-018-1877-6.Davarpanah, A., 2020. Parametric study of polymer-nanoparticles-assisted injectivity performance for axisymmetric two-phase flow in EOR processes. Nanomaterials http://dx.doi.org/10.3390/nano10091818.Davarpanah, A., Mirshekari, B., 2018. Experimental study and field application of appropriate selective calculation methods in gas lift design. Pet. Res. http://dx.doi.org/10.1016/j.ptlrs.2018.03.005.Davarpanah, A., Mirshekari, B., 2019a. Experimental investigation and mathematical modeling of gas diffusivity by carbon dioxide and methane kinetic adsorption. Ind. Eng. Chem. Res. http://dx.doi.org/10.1021/acs.iecr.9b01920.Davarpanah, A., Mirshekari, B., 2019b. Mathematical modeling of injectivity damage with oil droplets in the waste produced water re-injection of the linear flow. Eur. Phys. J. Plus. http://dx.doi.org/10.1140/epjp/i2019-12546-9.Davarpanah, A., Mirshekari, B., Jafari Behbahani, T., Hemmati, M., 2018. Integrated production logging tools approach for convenient experimental individual layer permeability measurements in a multi-layered fractured reservoir. J. Pet. Explor. Prod. Technol. http://dx.doi.org/10.1007/s13202-017- 0422-3.Davarpanah, A., Shirmohammadi, R., Mirshekari, B., Aslani, A., 2019. Analysis of hydraulic fracturing techniques: hybrid fuzzy approaches. Arab. J. Geosci. http://dx.doi.org/10.1007/s12517-019-4567-x.Ebnali, M., Fathi, R., Lamb, R., Pourfalatoun, S., Motamedi, S., 2020. Using augmented holographic UIs to communicate automation reliability in partially automated driving. In: AutomationXP@ CHI.Garba, H., Ahmed, S., Abdullahi, I., 2020. A technique for simulating future climate change variable using improved K-nearest neighbors algorithm (kNN). Cent. Asian J. Environ. Sci. Technol. Innov. 1 (2), 101–108. http://dx.doi. org/10.22034/CAJESTI.2020.02.05.Guo, L., 2020. Extreme learning machine with elastic net regularization. Intell. Autom. Soft Comput. 26 (3), 421–427.Haghshenas, H., Ghanbari Malidarreh, A., 2021. Response of yield and yield components of released rice cultivars from 1990-2010 to nitrogen rates. Cent. Asian J. Plant Sci. Innov. 1 (1), 23–31. http://dx.doi.org/10.22034/CAJPSI.2021. 01.03Han, J., Kamber, M., Pei, J., 2012. Data mining: Concepts and techniques. Data Min. Concepts Tech. http://dx.doi.org/10.1016/C2009-0-61819-5.Hassanpour, A., Farhami, N., Derakhshande, M., Nezhad, P.D.K., Ebadi, A., Ebrahimiasl, S., 2021. Magnesium and calcium ion batteries based on the hexa-peri-hexabenzocoronene nanographene anode materials. Inorg. Chem. Commun. 108656. http://dx.doi.org/10.1016/j.inoche.2021.108656.Hazbeh, O., ye, Aghdam S.K., Ghorbani, H., Mohamadian, N., Ahmadi Alvar, M., Moghadasi, J., 2021. Comparison of accuracy and computational performance between the machine learning algorithms for rate of penetration in directional drilling well. J. Pet. Res. http://dx.doi.org/10.1016/j.ptlrs.2021.02. 004.Hossain, B., Morooka, T., Okuno, M., Nii, M., Yoshiya, S., et al., 2019. Surgical outcome prediction in total knee arthroplasty using machine learning. Intell. Autom. Soft Comput. 25 (1), 105–115.Hu, X., Xie, J., Cai, W., Wang, R., Davarpanah, A., 2020. Thermodynamic effects of cycling carbon dioxide injectivity in shale reservoirs. J. Pet. Sci. Eng. http://dx.doi.org/10.1016/j.petrol.2020.107717.Huang, J., Duan, T., Zhang, Y., Liu, J., Zhang, J., Lei, Y., 2020. Predicting the permeability of perviou concrete based on the beetle antennae search algorithm and random forest model. Adv. Civ. Eng. http://dx.doi.org/10.1155/ 2020/8863181.Huang, J., Kumar, G.S., Sun, Y., 2021b. Evaluation of workability and mechanical properties of asphalt binder and mixture modified with waste toner. Constr. Build Mater. http://dx.doi.org/10.1016/j.conbuildmat.2020.122230Huang, J., Shiva Kumar, G., Ren, J., Sun, Y., Li, Y., Wang, C., 2021d. Towards the potential usage of eggshell powder as bio-modifier for asphalt binder and mixture: workability and mechanical properties. Int. J. Pavement Eng. http://dx.doi.org/10.1080/10298436.2021.1905809.Huang, J., Sun, Y., Zhang, J., 2021c. Reduction of computational error by optimizing SVR kernel coefficients to simulate concrete compressive strength through the use of a human learning optimization algorithm. Eng. Comput. http://dx.doi.org/10.1007/s00366-021-01305-xHuang, J., Wang, Q.A., 2021. Influence of crumb rubber particle sizes on rutting, low temperature cracking, fracture, and bond strength properties of asphalt binder. Mater. Struct. Constr. http://dx.doi.org/10.1617/s11527-021-01647-4.Huang, J., Zhang, J., Ren, J., Chen, H., 2021a. Anti-rutting performance of the damping asphalt mixtures (DAMs) made with a high content of asphalt rubber (AR). Constr. Build Mater. http://dx.doi.org/10.1016/j.conbuildmat. 2020.121878.Huang, J., Zhang, Y., Sun, Y., Ren, J., Zhao, Z., Zhang, J., 2021e. Evaluation of pore size distribution and permeability reduction behavior in pervious concrete. Constr. Build. Mater. 290, 123228. http://dx.doi.org/10.1016/j.conbuildmat. 2021.123228.Indira, B., Valarmathi, K., 2020. A perspective of the machine learning approach for the packet classification in the software defined network. Intell. Autom. Soft Comput. 26 (4), 795–805.Jafari, M., Jafarishiadeh, F., Ghasemi, A., Shojaeighadikolaei, A., Saadatmand, S., Ahmadi, R., 2020a. New MMC-Based Multilevel Converter with Two-And-One Set of Arms and One Inductor. In: 2020 IEEE Power and Energy Conference at Illinois (PECI). Champaign, IL, USA, pp. 1–4. http://dx.doi.org/10.1109/ PECI48348.2020.9064616.Jafari, M., Jafarishiadeh, F., Saadatmand, S., Ghasemi, A., Shojaeighadikolaei, A., Ahmadi, R., 2020b. Current Stress Reduction Investigation of Isolated MMCBased DC-DC Converters. In: 2020 IEEE Power and Energy Conference at Illinois (PECI). Champaign, IL, USA, pp. 1-4, http://dx.doi.org/10.1109/ PECI48348.2020.9064652.Jafari, M., Saadatmand, S., Shojaeighadikolaei, A., Jafarishiadeh, F., Ghasemi, A., Mohamed Alshawish, A., Ahmadi, R., 2020c. New Voltage Balancing Technique Based on Carrier-Disposition Pulse Width Modulation for Modular Multilevel Converter. In: 2020 IEEE Power and Energy Conference at Illinois (PECI). Champaign, IL, USA, pp. 1-5, http://dx.doi.org/10.1109/PECI48348. 2020.9064635.Jahandini, A., Soleimami, H., Ghaffari, S., 2020. Explanation of strategic management pattern in rural sustainable development, case study: central part of Sirik township (Hormozgan Province of Iran). Cent. Asian J. Environ. Sci. Technol. Innov. 1 (6), 281–290. http://dx.doi.org/10.22034/CAJESTI.2020.06. 01.Jalilian, S., 2020. Environmental risk assessment of saman cement factory in kermanshah in Iran by AHP and TOPSIS methods. Cent. Asian J. Environ. Sci. Technol. Innov. 1 (6), 298–309. http://dx.doi.org/10.22034/CAJESTI.2020.06. 03.Jing, L., Yong, Y., Ge, H., Li, Z., Guo, R., 2020. Coal rock condition detection model using acoustic emission and light gradient boosting machine. Comput. Mater. Contin. 63 (1), 151–161.Kahanju Chitiki, A., 2020. Altitudinal zonation of tree communities along climate and soil gradients in the East African biodiversity hotspot. Cent. Asian J. Environ. Sci. Technol. Innov. 1 (3), 168–183. http://dx.doi.org/10.22034/ CAJESTI.2020.03.06.Kallehbasti, M.A., Jones, C.M., Proett, M.A., LeBlanc, M., 2020. Data driven model for contamination estimation and monitoring method to optimize fluid sampling. In: Soc Pet Eng - Abu Dhabi Int Pet Exhib Conf 2020. ADIP 2020, http://dx.doi.org/10.2118/203325-ms.Karbakhshzadeh, A., Derakhshande, M., Farhami, N., Hosseinian, A., Ebrahimiasl, S., Ebadi, A., 2021b. Study the adsorption of letrozole drug on the silicon doped graphdiyne monolayer: a DFT investigation. Silicon 1–8. http: //dx.doi.org/10.1007/s12633-021-01143-yKarbakhshzadeh, A., Heravi, M.R.P., Rahmani, Z., Ebadi, A., Vessally, E., 2021a. Aroyl fluorides: Novel and promising arylating agents. J. Fluor. Chem. 109806. http://dx.doi.org/10.1016/j.jfluchem.2021.109806.Khafaei, M., Sadeghi Hajiabadi, M., Abdolmaleki, A., 2021. Role of 1,25- dihydroxycholecalciferol in immunological and molecular pathways involved in Multiple Sclerosis. Cent. Asian J. Med. Pharmaceut. Sci. Innov. 1 (2), 55–66. http://dx.doi.org/10.22034/CAJMPSI/2021.02.02.Li, Y., Jia, D., Rui, Z., Peng, J., Fu, C., Zhang, J., 2017. Evaluation method of rock brittleness based on statistical constitutive relations for rock damage. J. Pet. Sci. Eng. http://dx.doi.org/10.1016/j.petrol.2017.03.041.Li, J., Lv, Y., Ma, B., Yang, M., Wang, C., et al., 2020. Video source identification algorithm based on 3d geometric transformation. Comput. Syst. Sci. Eng. 35 (6), 513–521.Li, B., Xiong, D., 2020. Research on the dynamic compensation system of the cathode electrode wear for a short electric arc machine tool. Intell. Autom. Soft Comput. 26 (5), 1007–1021.Liu, B., Yang, H., Karekal, S., 2020. Effect of water content on argillization of mudstone during the tunnelling process. Rock Mech. Rock Eng. 53 (2), 799–813. http://dx.doi.org/10.1007/s00603-019-01947-w.Lohmander, P., 2020. Forest fire expansion under global warming conditions: multivariate estimation, function properties and predictions for 29 countries. Cent. Asian J. Environ. Sci. Technol. Innov. 1 (5), 262–276. http://dx.doi.org/ 10.22034/CAJESTI.2020.05.03.Lu, H., Tian, P., He, L., 2019. Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions. Renew. Sustain. Energy Rev. http://dx.doi.org/10.1016/j.rser.2019.06.013.Ma, T., Pang, S., Zhang, W., Hao, S., 2019. Virtual machine based on genetic algorithm used in time and power oriented cloud computing task scheduling. Intell. Autom. Soft Comput. 25 (3), 605–613.Miri, A., Kiani, E., Habibi, S., Khafaei, M., 2021. Triple-negative breast cancer: biology, pathology, and treatment. Cent. Asian J. Med. Pharmaceut. Sci. Innov. 1 (2), 81–96. http://dx.doi.org/10.22034/CAJMPSI.2021.02.05.Mohammadi, F., Jafarishiadeh, F., Xue, J., Sahraei-Ardakani, M., Ou, G., 2021. Deterministic proxies for stochastic unit commitment during hurricanes. IET Gener. Transm. Dist. 15 (8), 1357–1370.Nabavi, M., Elveny, M., Danshina, S.D., Behroyan, I., Babanezhad, M., 2021a. Velocity prediction of Cu/water nanofluid convective flow in a circular tube: Learning CFD data by differential evolution algorithm based fuzzy inference system (DEFIS). Int. Commun. Heat Mass Transf. 126, 105373.Nabavi, M., Nazarpour, V., Alibak, A.H., et al., 2021b. Smart tracking of the influence of alumina nanoparticles on the thermal coefficient of nanosuspensions: application of LS-SVM methodology. Appl. Nanosci. http://dx.doi.org/10.1007/ s13204-021-01949-7.Nan, S., Hai-Bin, W., Li, G., Jing-Yao, Z., Jian-Feng, G., Fang, W., Ebadi, A., 2021. Sila-, bora-, thio-, and phosphono-carboxylation of unsaturated compounds with carbon dioxide: An overview. J. CO2 Util. http://dx.doi.org/10.1016/j. jcou.2021.101522.Nejad, R.M., Berto, F., Wheatley, G., Tohidi, M., Ma, W., 2021. On fatigue life prediction of Al-alloy 2024 plates in riveted joints. In: Structures. Vol. 33, Elsevier, pp. 1715–1720. http://dx.doi.org/10.1016/j.istruc.2021.05.055.Nesic, S., Zolotukhin, A., Mitrovic, V., Govedarica, D., Davarpanah, A., 2020. An analytical model to predict the effects of suspended solids in injected water on the oil displacement efficiency during waterflooding. Processes http://dx.doi.org/10.3390/pr8060659.Okhovvat, M., Kangavari, M.R., 2019. A mathematical task dispatching model in wireless sensor actor networks. Comput. Syst. Sci. Eng. 34 (1), 5–12.Olson, D.L., Delen, D., 2008. Advanced data mining techniques. Adv. Data Min. Tech. http://dx.doi.org/10.1007/978-3-540-76917-0.Osarogiagbon, A.U., Khan, F., Venkatesan, R., Gillard, P., 2021. Review and analysis of supervised machine learning algorithms for hazardous events in drilling operations. Process Saf. Environ. Prot. http://dx.doi.org/10.1016/j.psep.2020. 09.038.Ouyang, L., Zhu, S., Ye, K., Park, C., Wang, M., 2021. Robust Bayesian hierarchical modeling and inference using scale mixtures of normal distributions. IISE Trans. http://dx.doi.org/10.1080/24725854.2021.1912440.Pourfalatoun, S., Miller, E.E., 2021. User perceptions of automated truck-mounted attenuators: implications on work zone safety. Traffic Injury Prev. 1–8.Purba, D.P., Adityatama, D.W., Umam, M.F., Muhammad, F., 2019. Key considerations in developing strategy for geothermal exploration drilling project in Indonesia. In: Proceedings, 44th Work. Geotherm. Reserv. Eng.Qayyum, S., Khan, I., Meng, K., Zhao, Y., Peng, C., 2020. A review on remediation technologies for heavy metals contaminated soil. Cent. Asian J. Environ. Sci. Technol. Innov. 1 (1), 21–29. http://dx.doi.org/10.22034/CAJESTI.2020.01.03.Rostami, Z., Asnaashriisfahani, M., Ahmadi, S., Hosseinian, A., Ebadi, A., 2021. A density functional theory investigation on 1h-4-germapyridine-4-ylidene & the unsaturated heterocyclic substituted ones. J. Mol. Struct. http://dx.doi. org/10.1016/j.molstruc.2021.130427.Rostamijavanani, A., Ebrahimi, M.R., Jahedi, S., 2020. Thermal post-buckling analysis of laminated composite plates embedded with shape memory alloy fibers using semi-analytical finite strip method. J. Fail Anal. Prev. http: //dx.doi.org/10.1007/s11668-020-01068-5.Rostamijavanani, A., Ebrahimi, M.R., Jahedi, S., 2021. Free vibration analysis of composite structures using semi-analytical finite strip method. J. Fail Anal. Prev. http://dx.doi.org/10.1007/s11668-021-01136-4.Sabernezhad, M., 2021. Quantitative analysis of p53 substitution mutation and breast cancer; An informative study in Iranian population. Cent. Asian J. Med. Pharmaceut. Sci. Innov. 1 (1), 8–14. http://dx.doi.org/10.22034/CAJMPSI.2021. 01.02.Shah, S.M.S., Malik, T.A., khatoon, R., Hassan, S.S., Shah, F.A., 2019. Human behavior classification using geometrical features of skeleton and support vector machines. Comput. Mater. Contin. 61 (2), 535–553.Spínola, D.C.S., De, Miranda A., Macedo, D.A., Paskocimas, C.A., Nascimento, R.M., 2019. Preparation of glass-ceramic materials using kaolin and oil well drilling wastes. J. Mater. Res. Technol. http://dx.doi.org/10.1016/j.jmrt.2019.06.013.Suleymanov, U., Kalejahi, B.K., Amrahov, E., Badirkhanli, R., 2020. Text classification for azerbaijani language using machine learning. Comput. Syst. Sci. Eng. 35 (6), 467–475.Sun, S., Zhou, M., Lu, W., Davarpanah, A., 2020a. Application of symmetry law in numerical modeling of hydraulic fracturing by finite element method. Symmetry (Basel) http://dx.doi.org/10.3390/sym12071122.Usman, A., Abdullahi, H., A.Opara, J., 2020. Forest resources management using geospatial tools (case study: Northern Nigeria). Cent. Asian J. Environ. Sci. Technol. Innov. 1 (1), 12–20. http://dx.doi.org/10.22034/CAJESTI.2020.01.02.Wang, J., Yang, Y., Zhang, J., Yu, X., Alfarraj, O., et al., 2020. A data-aware remote procedure call method for big data systems. Comput. Syst. Sci. Eng. 35 (6), 523–532.Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., 2016. Data mining: Practical machine learning tools and techniques. Data Min. Pract. Mach. Learn. Tools Tech. http://dx.doi.org/10.1016/c2009-0-19715-5.Xu, J., Li, Y., Ren, C., Wang, S., Vanapalli, S.K., Chen, G., 2021. Influence of freeze-thaw cycles on microstructure and hydraulic conductivity of saline intact loess. Cold Reg. Sci. Technol. http://dx.doi.org/10.1016/j.coldregions. 2020.103183.Xue, X., Zhang, K., Tan, K.C., Feng, L., Wang, J., Chen, G., Zhao, X., Zhang, L., Yao, J., 2020. Affine transformation-enhanced multifactorial optimization for heterogeneous problems. IEEE Trans. Cybern. http://dx.doi.org/10.1109/ TCYB.2020.3036393.Yang, Y., Hou, C., Lang, Y., Sakamoto, T., He, Y., Xiang, W., 2020a. Omnidirectional motion classification with monostatic radar system using micro-doppler signatures. IEEE Trans. Geosci. Remote Sens. http://dx.doi.org/10.1109/TGRS. 2019.2958178.Yang, H.Q., Li, Z., Jie, T.Q., Zhang, Z.Q., 2018a. Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass. Tunn. Undergr. Space Technol. 81, 112–120. http://dx.doi.org/10.1016/j.tust.2018.07.023.Yang, Y., Li, Y., Yao, J., Iglauer, S., Luquot, L., Zhang, K., Sun, H., Zhang, L., Song, W., Wang, Z., 2020b. Dynamic pore-scale dissolution by CO2-saturated brine in carbonates: Impact of homogeneous versus fractured versus vuggy pore structure. Water Resour. Res. http://dx.doi.org/10.1029/2019WR026112.Yang, Y., Tao, L., Yang, H., Iglauer, S., Wang, X., Askari, R., Yao, J., Zhang, K., Zhang, L., Sun, H., 2020c. Stress sensitivity of fractured and vuggy carbonate: An X-ray computed tomography analysis. J. Geophys. Res. Solid Earth http: //dx.doi.org/10.1029/2019JB018759.Yang, H., Wang, Z., Song, K., 2020d. A new hybrid grey wolf optimizer-feature weighted-multiple kernel-support vector regression technique to predict TBM performance. Eng. Comput. 1–17.Yang, H.Q., Xing, S.G., Wang, Q., Li, Z., 2018b. Model test on the entrainment phenomenon and energy conversion mechanism of flow-like landslides. Eng. Geol. 239, 119–125. http://dx.doi.org/10.1016/j.enggeo.2018.03.023.Yang, Y., Yao, J., Wang, C., Gao, Y., Zhang, Q., An, S., Song, W., 2015. New pore space characterization method of shale matrix formation by considering organic and inorganic pores. J. Nat. Gas Sci. Eng. http://dx.doi.org/10.1016/j. jngse.2015.08.017.Yang, H.Q., Zeng, Y.Y., Lan, Y.F., Zhou, X.P., 2014. Analysis of the excavation damaged zone around a tunnel accounting for geostress and unloading. Int. J. Rock Mech. Min. Sci. 69, 59–66. http://dx.doi.org/10.1016/j.ijrmms.2014.03. 003.Yin, F., Xue, X., Zhang, C., Zhang, K., Han, J., Liu, B., Wang, J., Yao, J., 2021. Multifidelity genetic transfer: An efficient framework for production optimization. SPE J. http://dx.doi.org/10.2118/205013-pa.Yu, D., Mao, Y., Gu, B., Nojavan, S., Jermsittiparsert, K., Nasseri, M., 2020. A new LQG optimal control strategy applied on a hybrid wind turbine/solid oxide fuel cell/ in the presence of the interval uncertainties. Sustain. Energy Grids Netw. http://dx.doi.org/10.1016/j.segan.2019.100296.Yuan, P., Chen, D., Wang, T., Cao, S., Cai, Y., Xue, L., 2018. A compensation method based on extreme learning machine to enhance absolute position accuracy for aviation drilling robot. Adv. Mech. Eng. http://dx.doi.org/10. 1177/1687814018763411.Zeidali, E., Mardani Korrani, H., Alizadeh, Y., Kamari, F., 2021. Ethnopharmacological survey of medicinal plants in semi-arid rangeland in western Iran. Cent. Asian J. Plant Sci. Innov. 1 (1), 46–55. http://dx.doi.org/10.22034/CAJPSI.2021. 01.06.Zhang, C., Alam, Z., Sun, L., Su, Z., Samali, B., 2019a. Fibre bragg grating sensorbased damage response monitoring of an asymmetric reinforced concrete shear wall structure subjected to progressive seismic loads. Struct. Control Heal. Monit. http://dx.doi.org/10.1002/stc.2307.Zhang, F., An, M., Zhang, L., Fang, Y., Elsworth, D., 2020b. Effect of mineralogy on friction-dilation relationships for simulated faults: Implications for permeability evolution in caprock faults. Geosci. Front. http://dx.doi.org/10. 1016/j.gsf.2019.05.014.Zhang, K., Jia, C., Song, Y., et al., 2020a. Analysis of lower cambrian shale gas composition, source and accumulation pattern in different tectonic backgrounds: A case study of Weiyuan Block in the Upper Yangtze region and Xiuwu Basin in the Lower Yangtze region. Fuel http://dx.doi.org/10.1016/ j.fuel.2019.115978Zhang, X., Wang, Y., Wang, C., Su, C.Y., Li, Z., Chen, X., 2019b. Adaptive estimated inverse output-feedback quantized control for piezoelectric positioning stage. IEEE Trans. Cybern. http://dx.doi.org/10.1109/TCYB.2018.2826519.Zhang, K., Zhang, J., Ma, X., Yao, C., Zhang, L., Yang, Y., Wang, J., Yao, J., Zhao, H., 2021. History matching of naturally fractured reservoirs using a deep sparse autoencoder. SPE J. http://dx.doi.org/10.2118/205340-pa.Zhao, X., Gu, B., Gao, F., Chen, S., 2020. Matching model of energy supply and demand of the integrated energy system in coastal areas. J. Coast. Res. http://dx.doi.org/10.2112/SI103-205.1.Zhen, J., 2020. Detection of number of wideband signals based on support vector machine. Comput. Mater. Contin. 63 (1), 445–455.Zhong, R., Johnson, R.L., Chen, Z., 2019. Using machine learning methods to identify coals from drilling and logging-while-drilling LWD data. In: SPE/AAPG/SEG Asia Pacific Unconv Resour Technol Conf 2019. APUR 2019, http://dx.doi.org/10.15530/ap-urtec-2019-198288.Zhu, M., Yu, L., Zhang, X., Davarpanah, A., 2020. Application of implicit pressureexplicit saturation method to predict filtrated mud saturation impact on the hydrocarbon reservoirs formation damage. Mathematics http://dx.doi.org/10. 3390/math8071057.Zuo, C., Chen, Q., Tian, L., Waller, L., Asundi, A., 2015. Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective. Opt. Lasers Eng. http://dx.doi.org/10.1016/j. optlaseng.2015.03.006.Zuo, C., Sun, J., Li, J., Zhang, J., Asundi, A., Chen, Q., 2017. Highresolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci. Rep. http://dx.doi.org/10.1038/s41598-017-06837-1.PublicationORIGINAL1-s2.0-S2352484721004455-main.pdf1-s2.0-S2352484721004455-main.pdfapplication/pdf859032https://repositorio.cuc.edu.co/bitstreams/9f26ff72-eb8b-49e6-9dd3-28d2489e475e/download94b38dffe2ec7194d7ee8996bd088ddeMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/72d34394-4597-479e-8a9f-e678bdabf226/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/49012450-ee6c-4d1f-8bdc-2d65e3662db4/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAIL1-s2.0-S2352484721004455-main.pdf.jpg1-s2.0-S2352484721004455-main.pdf.jpgimage/jpeg75032https://repositorio.cuc.edu.co/bitstreams/be97bc96-4f97-4e3a-8ffb-9c42067cf276/downloadf816c651e542ba7004358c825722b7deMD54TEXT1-s2.0-S2352484721004455-main.pdf.txt1-s2.0-S2352484721004455-main.pdf.txttext/plain47431https://repositorio.cuc.edu.co/bitstreams/41c1fbea-4875-45d0-ab7c-5a0ca493ea67/download28b32185ce11e2afda975ac24c69ad9cMD5511323/8652oai:repositorio.cuc.edu.co:11323/86522024-09-17 12:45:52.736http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==