Evaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla

Air pollution has become a critical issue in urban areas, so a broad understanding of its spatiotemporal characteristics is required. In the present study, continuous measurements in real time of atmospheric pollutants of particulate matter (PM10 and PM2.5) and ozone (O3), were carried out between M...

Full description

Autores:
Duarte González, Ana Lucía
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7079
Acceso en línea:
https://hdl.handle.net/11323/7079
https://repositorio.cuc.edu.co/
Palabra clave:
Particulate matter
Ozone
Colombian Caribbean
Coastal urban area
Material particulado
Ozono
Caribe Colombiano
Área urbana costera
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_bb059620c71a780d331b3012bcec0e36
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7079
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Evaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla
title Evaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla
spellingShingle Evaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla
Particulate matter
Ozone
Colombian Caribbean
Coastal urban area
Material particulado
Ozono
Caribe Colombiano
Área urbana costera
title_short Evaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla
title_full Evaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla
title_fullStr Evaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla
title_full_unstemmed Evaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla
title_sort Evaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla
dc.creator.fl_str_mv Duarte González, Ana Lucía
dc.contributor.advisor.spa.fl_str_mv Schneider, Ismael Luis
dc.contributor.author.spa.fl_str_mv Duarte González, Ana Lucía
dc.subject.spa.fl_str_mv Particulate matter
Ozone
Colombian Caribbean
Coastal urban area
Material particulado
Ozono
Caribe Colombiano
Área urbana costera
topic Particulate matter
Ozone
Colombian Caribbean
Coastal urban area
Material particulado
Ozono
Caribe Colombiano
Área urbana costera
description Air pollution has become a critical issue in urban areas, so a broad understanding of its spatiotemporal characteristics is required. In the present study, continuous measurements in real time of atmospheric pollutants of particulate matter (PM10 and PM2.5) and ozone (O3), were carried out between March 2018 and June 2019, in three (3) monitoring stations localized in Barranquilla city. The Móvil station is located in the north area near the sea, Policía located in the south and influenced by high vehicular traffic and Tres Avemarías in the north-historic center in a residential area were evaluated. The average concentrations observed for Móvil, Policía and Tres Avemarías stations, respectively, for PM10 were: 46.37, 51.37 and 39.68 µg/m3; PM2.5: 15.95, 18.12 and 15.10µg/m3 and O3: 34.99, 26.56 and 33.63 µg/m3. The results indicated the existence of spatial and temporal variations between the stations and the pollutants evaluated. The highest PM concentrations were observed in the south of the city, while for ozone in the north. These variations are mainly associated with the influence of local sources in the environment of each site evaluated as well as the meteorological conditions of the study area. This research will help to establish the air quality baseline for Barranquilla, as well as enable the development of more effective Environmental Management plans.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-09-09T14:55:16Z
dc.date.available.none.fl_str_mv 2020-09-09T14:55:16Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Duarte, A. (2020). Evaluación espaciotemporal de contaminantes atmosféricos en la ciudad de barranquilla. Trabajo de Maestría, Recuperado de https://hdl.handle.net/113
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7079
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Duarte, A. (2020). Evaluación espaciotemporal de contaminantes atmosféricos en la ciudad de barranquilla. Trabajo de Maestría, Recuperado de https://hdl.handle.net/113
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7079
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Achilleos, S., Kioumourtzoglou, M. A., Wu, C. Da, Schwartz, J. D., Koutrakis, P., & Papatheodorou, S. I. (2017). Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis. Environment International, 109(December 2016), 89–100. https://doi.org/10.1016/j.envint.2017.09.010
Adhikari, A. (2020a). Introduction to spatiotemporal variations of ambient air pollutants and related public health impacts. In Spatiotemporal Analysis of Air Pollution and Its Application in Public Health (pp. 1–34). Elsevier. https://doi.org/10.1016/b978-0-12- 815822-7.00001-7
Agudelo-Castañeda, D., De Paoli, F., Morgado-Gamero, W. B., Mendoza, M., Parody, A., Maturana, A. Y., & Teixeira, E. C. (2020). Assessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city. Science of the Total Environment, 720. https://doi.org/10.1016/j.scitotenv.2020.137675
Agudelo-Castañeda, D. M., Teixeira, E. C., Schneider, I. L., Pereira, F. N., Oliveira, M. L. S., Taffarel, S. R., Sehn, J. L., Ramos, C. G., & Silva, L. F. O. (2016). Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Science of the Total Environment, 543, 161–170. https://doi.org/10.1016/j.scitotenv.2015.11.030
Ahmed, S. O., Mazloum, R., & Abou-Ali, H. (2018). Spatiotemporal interpolation of air pollutants in the Greater Cairo and the Delta, Egypt. Environmental Research, 160, 27–34. https://doi.org/10.1016/j.envres.2017.09.005
Alizadeh-Choobari, O., Bidokhti, A. A., Ghafarian, P., & Najafi, M. S. (2016). Temporal and spatial variations of particulate matter and gaseous pollutants in the urban area of Tehran. Atmospheric Environment, 141, 443–453. https://doi.org/10.1016/j.atmosenv.2016.07.003
Amoatey, P., Omidvarborna, H., Baawain, M. S., & Al-Mamun, A. (2019). Emissions and exposure assessments of SOX, NOX, PM10/2.5 and trace metals from oil industries: A review study (2000–2018). In Process Safety and Environmental Protection (Vol. 123, pp. 215–228). Institution of Chemical Engineers. https://doi.org/10.1016/j.psep.2019.01.014
Andreae, M. O. (2019). Emission of trace gases and aerosols from biomass burning – An updated assessment. Atmospheric Chemistry and Physics Discussions, 1–27. https://doi.org/10.5194/acp-2019-303
Andrée, B. P. J., Chamorro, A., Spencer, P., Koomen, E., & Dogo, H. (2019). Revisiting the relation between economic growth and the environment; a global assessment of deforestation, pollution and carbon emission. Renewable and Sustainable Energy Reviews, 114(December 2018), 109221. https://doi.org/10.1016/j.rser.2019.06.028
Armenta, S., & de la Guardia, M. (2016). Pollutants and Air Pollution. In Comprehensive Analytical Chemistry (Vol. 73). Elsevier Ltd. https://doi.org/10.1016/bs.coac.2016.03.002
Austin, E., Zanobetti, A., Coull, B., Schwartz, J., Gold, D. R., & Koutrakis, P. (2015). Ozone trends and their relationship to characteristic weather patterns. Journal of Exposure Science and Environmental Epidemiology, 25(5), 535–542. https://doi.org/10.1038/jes.2014.45
Jiao, J., Han, X., Li, F., Bai, Y., & Yu, Y. (2017). Contribution of demand shifts to industrial SO2 emissions in a transition economy: Evidence from China. Journal of Cleaner Production, 164, 1455–1466. https://doi.org/10.1016/j.jclepro.2017.07.060
Kambezidis, H. D., & Kalliampakos, G. (2013). Mapping atmospheric corrosion on modern materials in the greater Athens area. Water, Air, and Soil Pollution, 224(3), 1463. https://doi.org/10.1007/s11270-013-1463-y
Karl, T. G., Christian, T. J., Yokelson, R. J., Artaxo, P., Hao, W. M., & Guenther, A. (2007). The tropical forest and fire emissions experiment: Method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning. Atmospheric Chemistry and Physics, 7(22), 5883–5897. https://doi.org/10.5194/acp-7-5883- 2007
Kavassalis, S. C., & Murphy, J. G. (2017). Understanding ozone-meteorology correlations: A role for dry deposition. Geophysical Research Letters, 44(6), 2922–2931. https://doi.org/10.1002/2016GL071791
Koppmann, R., von Czapiewski, K., & Reid, J. S. (2005). A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmospheric Chemistry and Physics Discussions, 5(5), 10455–10516. https://doi.org/10.5194/acpd-5-10455-2005
Koren, I., Kaufman, Y. J., Washington, R., Todd, M. C., Rudich, Y., Martins, J. V., & Rosenfeld, D. (2006). The Bodélé depression: A single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environmental Research Letters, 1(1). https://doi.org/10.1088/1748-9326/1/1/014005
Kumar, A., Singh, D., Singh, B. P., Singh, M., Anandam, K., Kumar, K., & Jain, V. K. (2015). Spatial and temporal variability of surface ozone and nitrogen oxides in urban and rural ambient air of Delhi-NCR, India. Air Quality, Atmosphere and Health, 8(4), 391–399. https://doi.org/10.1007/s11869-014-0309-0
Kwak, H. Y., Ko, J., Lee, S., & Joh, C. H. (2017). Identifying the correlation between rainfall, traffic flow performance and air pollution concentration in Seoul using a path analysis. Transportation Research Procedia, 25, 3552–3563. https://doi.org/10.1016/j.trpro.2017.05.288
Lawrence, M. G., & Lelieveld, J. (2010). Atmospheric pollutant outflow from southern Asia: A review. Atmospheric Chemistry and Physics, 10(22), 11017–11096. https://doi.org/10.5194/acp-10-11017-2010
Lazaridis, M. (2011). Fisrt Principles of Meteorology and Air Pollution (J. T. Brian Alloway (ed.); 19th ed.). Springer.
Lazaridis, M., Katsivela, E., Kopanakis, I., Raisi, L., Mihalopoulos, N., & Panagiaris, G. (2018). Characterization of airborne particulate matter and microbes inside cultural heritage collections. Journal of Cultural Heritage, 30, 136–146. https://doi.org/10.1016/j.culher.2017.09.018
Lee, S., Ho, C. H., & Choi, Y. S. (2011). High-PM10 concentration episodes in Seoul, Korea: Background sources and related meteorological conditions. Atmospheric Environment, 45(39), 7240–7247. https://doi.org/10.1016/j.atmosenv.2011.08.071
Li, L., Wu, A. H., Cheng, I., Chen, J. C., & Wu, J. (2017). Spatiotemporal estimation of historical PM2.5concentrations using PM10, meteorological variables, and spatial effect. Atmospheric Environment, 166, 182–191. https://doi.org/10.1016/j.atmosenv.2017.07.023
Li, L., Wu, J., Ghosh, J. K., & Ritz, B. (2013). Estimating spatiotemporal variability of ambient air pollutant concentrations with a hierarchical model. Atmospheric Environment, 71, 54– 63. https://doi.org/10.1016/j.atmosenv.2013.01.038
Li, Q., Gabay, M., Rubin, Y., Raveh-Rubin, S., Rohatyn, S., Tatarinov, F., Rotenberg, E., Ramati, E., Dicken, U., Preisler, Y., Fredj, E., Yakir, D., & Tas, E. (2019). Investigation of ozone deposition to vegetation under warm and dry conditions near the Eastern Mediterranean coast. Science of the Total Environment, 658, 1316–1333. https://doi.org/10.1016/j.scitotenv.2018.12.272
Li, Xiangyu, Huang, S., Jiao, A., Yang, X., Yun, J., Wang, Y., Xue, X., Chu, Y., Liu, F., Liu, Y., Ren, M., Chen, X., Li, N., Lu, Y., Mao, Z., Tian, L., & Xiang, H. (2017). Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis. Environmental Pollution, 227, 596–605. https://doi.org/10.1016/j.envpol.2017.03.055
Li, Xiaolan, Ma, Y., Wang, Y., Liu, N., & Hong, Y. (2017). Temporal and spatial analyses of particulate matter (PM10and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China. Atmospheric Research, 198(September 2016), 185– 193. https://doi.org/10.1016/j.atmosres.2017.08.023
Limon–Sanchez, M. T., Carbajal–Romero, P., Hernandez–Mena, L., Saldarriaga–Norena, H., Lopez–Lopez, A., Cosio–Ramirez, R., Arriaga–Colina, J. L., & Smith, W. (2011). Black carbon in PM2.5, data from two urban sites in Guadalajara, Mexico during 2008. Atmospheric Pollution Research, 2(3), 358–365. https://doi.org/10.5094/APR.2011.040
Ling, H., Schäfer, K., Xin, J., Qin, M., Suppan, P., & Wang, Y. (2014). Small-scale spatial variations of gaseous air pollutants e A comparison of path-integrated and in situ measurement methods. Atmospheric Environment, 92, 566–575. https://doi.org/10.1016/j.atmosenv.2014.01.062
Liu, C., Sun, J., Liu, Y., Liang, H., Wang, M., Wang, C., & Shi, T. (2017). Different exposure levels of fine particulate matter and preterm birth: a meta-analysis based on cohort studies. Environmental Science and Pollution Research, 24(22), 17976–17984. https://doi.org/10.1007/s11356-017-9363-0
Liu, Y., Gao, Y., Yu, N., Zhang, C., Wang, S., Ma, L., Zhao, J., & Lohmann, R. (2015). Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China: Emission from on-road vehicles and gas-particle partitioning. Chemosphere, 134, 52–59. https://doi.org/10.1016/j.chemosphere.2015.03.065
Luben, T. J., Nichols, J. L., Dutton, S. J., Kirrane, E., Owens, E. O., Datko-Williams, L., Madden, M., & Sacks, J. D. (2017). A systematic review of cardiovascular emergency department visits, hospital admissions and mortality associated with ambient black carbon. Environment International, 107(January), 154–162. https://doi.org/10.1016/j.envint.2017.07.005
Maji, K. J., Ye, W. F., Arora, M., & Nagendra, S. M. S. (2019). Ozone pollution in Chinese cities: Assessment of seasonal variation, health effects and economic burden. Environmental Pollution, 247(x), 792–801. https://doi.org/10.1016/j.envpol.2019.01.049
Manahan, S. (2013). Fundamentak of environmental and toxicological chemestry: Sustainable Science (C. Press (ed.); Fourth Edi). CRC press.
Mason, P. J., & Thomson, D. J. (2015). Boundary Layer (Atmospheric) and Air Pollution: Overview. Encyclopedia of Atmospheric Sciences: Second Edition, 1, 220–226. https://doi.org/10.1016/B978-0-12-382225-3.00081-5
Ministerio de Ambiente Vivienda y Desarrollo Territorial. (2008). Manual de Operación de Sistemas de Vigilancia de la Calidad del aire.
Monks, P. S. (2005). Gas-phase radical chemistry in the troposphere. In Chemical Society Reviews (Vol. 34, Issue 5, pp. 376–395). https://doi.org/10.1039/b307982c
Montañez, D. P. (2019). ESTIMACIÓN DE LAS EMISIONES ATMOSFÉRICAS DE BUQUES EN EL PUERTO DE BARRANQUILLA. In Universidad del Norte (Vol. 1, Issue 1). https://doi.org/10.1017/CBO9781107415324.004
Motallebi, N., Tran, H., Croes, B. E., & Larsen, L. C. (2003). Day-of-week patterns of particulate matter and its chemical components at selected sites in california? Journal of the Air and Waste Management Association, 53(7), 876–888. https://doi.org/10.1080/10473289.2003.10466229
Muñoz, R. C. (2012). Relative roles of emissions and meteorology in the diurnal pattern of urban PM10: Analysis of the daylight saving time effect. Journal of the Air and Waste Management Association, 62(6), 642–650. https://doi.org/10.1080/10962247.2012.665147
Naciones Unidas. (2020). Población urbana (% del total) (Issue i). https://datos.bancomundial.org/indicator/SP.URB.TOTL.IN.ZS
Nadadur, Srikanth S, Hollingsworth, J. W. (2015). Air Pollution and Health Effects (Springer- Verlag London (ed.)). https://doi.org/DOI 10.1007/978-1-4471-6669-6
News, G. (2020). O que é a ’ nuvem de poeira Godzilla ’, que viaja 10 mil km do Saara para as Américas. https://g1.globo.com/natureza/noticia/2020/06/24/o-que-e-a-nuvem-de-poeiragodzilla-que-viaja-10-mil-km-do-saara-para-as-americas.ghtml
Núñez, Y. (2019). ESTIMACIÓN DE FUENTES DE MATERIAL PARTICULADO ATMOSFÉRICO (PM 10 y PM 2.5 ) EN LA CIUDAD DE BARRANQUILLA, COLOMBIA [Universidad de la Costa]. https://repositorio.cuc.edu.co/bitstream/handle/11323/6017/Estimación de fuentes de material particulado atmosférico %28PM10 y PM2.5%29 en la ciudad de Barranquilla%2C Colombia.pdf?sequence=1&isAllowed=y
O’Leary, B., Reiners, J. J., Xu, X., & Lemke, L. D. (2016). Identification and influence of spatiotemporal outliers in urban air quality measurements. Science of the Total Environment, 573, 55–65. https://doi.org/10.1016/j.scitotenv.2016.08.031
Ohara, T. (2019). Long-range transport and deposition of air pollution. Encyclopedia of Environmental Health, 126–130. https://doi.org/10.1016/B978-0-12-409548-9.11352-1
ONS. (2018). Carga de enfermedad ambiental en Colombia - Informe Técnico Especial 10. In Observatorio Nacional de Salud. https://www.ins.gov.co/Direcciones/ONS/Informes/10 Carga de enfermedad ambiental en Colombia.pdf
Ouyang, W., Guo, B., Cai, G., Li, Q., Han, S., Liu, B., & Liu, X. (2015). The washing effect of precipitation on particulate matter and the pollution dynamics of rainwater in downtown Beijing. Science of the Total Environment, 505, 306–314. https://doi.org/10.1016/j.scitotenv.2014.09.062
Owens, E. O., Patel, M. M., Kirrane, E., Long, T. C., Brown, J., Cote, I., Ross, M. A., & Dutton, S. J. (2017). Framework for assessing causality of air pollution-related health effects for reviews of the National Ambient Air Quality Standards. Regulatory Toxicology and Pharmacology, 88, 332–337. https://doi.org/10.1016/j.yrtph.2017.05.014
Pachón, J. E., Galvis, B., Lombana, O., Carmona, L. G., Fajardo, S., Rincón, A., Meneses, S., Chaparro, R., Nedbor-Gross, R., & Henderson, B. (2018). Development and evaluation of a comprehensive atmospheric emission inventory for air quality modeling in the megacity of Bogotá. Atmosphere, 9(2), 1–17. https://doi.org/10.3390/atmos9020049
Pateraki, S., Asimakopoulos, D. N., Flocas, H. A., Maggos, T., & Vasilakos, C. (2012). The role of meteorology on different sized aerosol fractions (PM10, PM2.5, PM2.5-10). Science of the Total Environment, 419, 124–135. https://doi.org/10.1016/j.scitotenv.2011.12.064
Peshin, S. K., Sharma, A., Sharma, S. K., Naja, M., & Mandal, T. K. (2017). Spatio-temporal variation of air pollutants and the impact of anthropogenic effects on the photochemical buildup of ozone across Delhi-NCR. Sustainable Cities and Society, 35, 740–751. https://doi.org/10.1016/j.scs.2017.09.024
Petit, R. H., Legrand, M., Jankowiak, I., Molinié, J., Asselin de Beauville, C., Marion, G., & Mansot, J. L. (2005). Transport of Saharan dust over the Caribbean Islands: Study of an event. Journal of Geophysical Research D: Atmospheres, 110(18), 1–19. https://doi.org/10.1029/2004JD004748
Qu, W., Zhang, X., Wang, Y., & Fu, G. (2020). Atmospheric visibility variation over global land surface during 1973–2012: Influence of meteorological factors and effect of aerosol, cloud on ABL evolution. Atmospheric Pollution Research, 11(4), 730–743. https://doi.org/10.1016/j.apr.2020.01.002
R.E., H., Harrison, R. M., & Querol, X. (2016). Airborne Particulate Matter: Sources, Atmospheric Processes and Health. The Royal Society of Chemistry. www.rsc.org
Raherison, C., & Filleul, L. (2002). Asthma in exercising children exposed to ozone [3]. Lancet, 360(9330), 411. https://doi.org/10.1016/S0140-6736(02)09580-6
Ramírez, O., da Boit, K., Blanco, E., & Silva, L. F. O. (2020). Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Climate, 33(October 2019), 100655. https://doi.org/10.1016/j.uclim.2020.100655
Ramírez, O., Sánchez de la Campa, A. M., & de la Rosa, J. (2018). Characteristics and temporal variations of organic and elemental carbon aerosols in a high–altitude, tropical Latin American megacity. Atmospheric Research, 210(April), 110–122. https://doi.org/10.1016/j.atmosres.2018.04.006
Ramsey, N. R., Klein, P. M., & Moore, B. (2014). The impact of meteorological parameters on urban air qualityThe impact of meteorological parameters on urban air quality. Atmospheric Environment, 86, 58–67. https://doi.org/10.1016/j.atmosenv.2013.12.006
Reche, C., Moreno, T., Amato, F., Pandolfi, M., Pérez, J., de la Paz, D., Diaz, E., GómezMoreno, F. J., Pujadas, M., Artíñano, B., Reina, F., Orio, A., Pallarés, M., Escudero, M., Tapia, O., Crespo, E., Vargas, R., Alastuey, A., & Querol, X. (2018). Spatio-temporal patterns of high summer ozone events in the Madrid Basin, Central Spain. Atmospheric Environment, 185(November 2017), 207–220. https://doi.org/10.1016/j.atmosenv.2018.05.002
Richmond-Bryant, J., Saganich, C., Bukiewicz, L., & Kalin, R. (2009). Associations of PM2.5 and black carbon concentrations with traffic, idling, background pollution, and meteorology during school dismissals. Science of the Total Environment, 407(10), 3357–3364. https://doi.org/10.1016/j.scitotenv.2009.01.046
Riggs, D. W., Zafar, N., Krishnasamy, S., Yeager, R., Rai, S. N., Bhatnagar, A., & O’Toole, T. E. (2020). Exposure to airborne fine particulate matter is associated with impaired endothelial function and biomarkers of oxidative stress and inflammation. Environmental Research, 180(November 2019), 108890. https://doi.org/10.1016/j.envres.2019.108890
Rodríguez-Villamizar, L. A., Rojas-Roa, N. Y., Blanco-Becerra, L. C., Herrera-Galindo, V. M., & Fernández-Niño, J. A. (2018). Short-term effects of air pollution on respiratory and circulatory morbidity in colombia 2011–2014: A multi-city, time-series analysis. International Journal of Environmental Research and Public Health, 15(8). https://doi.org/10.3390/ijerph15081610
Rodríguez-Villamizar, L. A., Rojas-Roa, N. Y., & Fernández-Niño, J. A. (2019). Short-term joint effects of ambient air pollutants on emergency department visits for respiratory and circulatory diseases in Colombia, 2011–2014. Environmental Pollution, 248, 380–387. https://doi.org/10.1016/j.envpol.2019.02.028
Rohr, A. C., & Wyzga, R. E. (2012). Attributing health effects to individual particulate matter constituents. Atmospheric Environment, 62, 130–152. https://doi.org/10.1016/j.atmosenv.2012.07.036
Russo, A., Gouveia, C., Levy, I., Dayan, U., Jerez, S., Mendes, M., & Trigo, R. (2016). Coastal recirculation potential affecting air pollutants in Portugal: The role of circulation weather types. Atmospheric Environment, 135, 9–19. https://doi.org/10.1016/j.atmosenv.2016.03.039
Sandeep, A., Rao, T. N., Ramkiran, C. N., & Rao, S. V. B. (2014). Differences in Atmospheric Boundary-Layer Characteristics Between Wet and Dry Episodes of the Indian Summer Monsoon. Boundary-Layer Meteorology, 153(2), 217–236. https://doi.org/10.1007/s10546- 014-9945-z
Schaller, B. (2010). New York City’s congestion pricing experience and implications for road pricing acceptance in the United States. Transport Policy, 17(4), 266–273. https://doi.org/10.1016/j.tranpol.2010.01.013
Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric Chemistry: From Air Pollution to Climate Change (I. John Wiley & Sons (ed.); Second Edi).
Seinfeld, J., & Pandis, S. N. (2016). Atmospheric Chemistry and Physics: From air pollution to climate change (WILEY (ed.); third edit).
Shaddick, G., Thomas, M. L., Mudu, P., Ruggeri, G., & Gumy, S. (2020). Half the world’s population are exposed to increasing air pollution. Npj Climate and Atmospheric Science, 3(1), 1–5. https://doi.org/10.1038/s41612-020-0124-2
Shahid, I., Kistler, M., Mukhtar, A., Ghauri, B. M., Ramirez-Santa Cruz, C., Bauer, H., & Puxbaum, H. (2016). Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi - Pakistan. Atmospheric Environment, 128, 114–123. https://doi.org/10.1016/j.atmosenv.2015.12.005
Shi, S., Chen, C., & Zhao, B. (2017). Modifications of exposure to ambient particulate matter: Tackling bias in using ambient concentration as surrogate with particle infiltration factor and ambient exposure factor. Environmental Pollution, 220, 337–347. https://doi.org/10.1016/j.envpol.2016.09.069
SIAC. (2020). Fenómenos del Niño y la Niña. http://www.siac.gov.co/ninoynina
Simon, H., Reff, A., Wells, B., Xing, J., & Frank, N. (2015). Ozone trends across the United States over a period of decreasing NOx and VOC emissions. Environmental Science and Technology, 49(1), 186–195. https://doi.org/10.1021/es504514z
Sippo, J. Z., Maher, D. T., Tait, D. R., Ruiz-Halpern, S., Sanders, C. J., & Santos, I. R. (2017). Mangrove outwelling is a significant source of oceanic exchangeable organic carbon. Limnology and Oceanography Letters, 2(1), 1–8. https://doi.org/10.1002/lol2.10031
Stanek, L. W., & Brown, J. S. (2019). Air Pollution: Sources, Regulation, and Health Effects. In Reference Module in Biomedical Sciences (Issue June, pp. 1–10). Elsevier Inc. https://doi.org/10.1016/b978-0-12-801238-3.11384-4
Stanek, L. W., Sacks, J. D., Dutton, S. J., & Dubois, J. J. B. (2011). Attributing health effects to apportioned components and sources of particulate matter: An evaluation of collective results. Atmospheric Environment, 45(32), 5655–5663. https://doi.org/10.1016/j.atmosenv.2011.07.023
Suh, H. H., Bahadori, T., Vallarino, J., & Spengler, J. D. (2018). Criteria Air Pollutants and Toxic Air Pollutants. 108, 625–633. https://doi.org/10.2307/3454398
Tang, J., McNabola, A., Misstear, B., Pilla, F., & Alam, M. S. (2019). Assessing the impact of vehicle speed limits and fleet composition on air quality near a school. International Journal of Environmental Research and Public Health, 16(1). https://doi.org/10.3390/ijerph16010149
Thurston, G. D. (2016a). Outdoor Air Pollution: Sources, Atmospheric Transport, and Human Health Effects. In International Encyclopedia of Public Health (Second Edi, Vol. 5, Issue 69). Elsevier. https://doi.org/10.1016/B978-0-12-803678-5.00320-9
Tian, Ye, Yao, X., & Chen, L. (2019). Analysis of spatial and seasonal distributions of air pollutants by incorporating urban morphological characteristics. Computers, Environment and Urban Systems, 75(April 2018), 35–48. https://doi.org/10.1016/j.compenvurbsys.2019.01.003
Tian, Yulu, Jiang, Y., Liu, Q., Xu, D., Zhao, S., He, L., Liu, H., & Xu, H. (2019). Temporal and spatial trends in air quality in Beijing. Landscape and Urban Planning, 185(October 2018), 35–43. https://doi.org/10.1016/j.landurbplan.2019.01.006
Tiwari, S., Dumka, U. C., Gautam, A. S., Kaskaoutis, D. G., Srivastava, A. K., Bisht, D. S., Chakrabarty, R. K., Sumlin, B. J., & Solmon, F. (2017). Assessment of PM2.5and PM10over Guwahati in Brahmaputra River Valley: Temporal evolution, source apportionment and meteorological dependence. Atmospheric Pollution Research, 8(1), 13– 28. https://doi.org/10.1016/j.apr.2016.07.008
Toro A., R., Morales S., R. G. E., Canales, M., Gonzalez-Rojas, C., & Leiva G., M. A. (2014). Inhaled and inspired particulates in Metropolitan Santiago Chile exceed air quality standards. Building and Environment, 79, 115–123. https://doi.org/10.1016/j.buildenv.2014.05.004
Triantafyllou, E., Diapouli, E., Korras-Carraca, Manousakas, M., Psanis, C., Floutsi, A. A., Spyrou, C., Eleftheriadis, K., & Biskos, G. (2020). Contribution of locally-produced and transported air pollution to particulate matter in a small insular coastal city. Atmospheric Pollution Research, 11(4), 667–678. https://doi.org/10.1016/j.apr.2019.12.015
Tzortziou, M., Parker, O., Lamb, B., Herman, J. R., Lamsal, L., Stauffer, R., & Abuhassan, N. (2018). Atmospheric trace gas (NO2 and O3) variability in south Korean coastal waters, and implications for remote sensing of coastal ocean color dynamics. Remote Sensing, 10(10), 1–20. https://doi.org/10.3390/rs10101587
Vallero, D. A. (2014). Fundamentals of air pollution (5th editio). Elsevier. https://doi.org/https://doi.org/10.1016/C2012-0-01172-6 van der Zee, S. C., Fischer, P. H., & Hoek, G. (2016). Air pollution in perspective: Health risks of air pollution expressed in equivalent numbers of passively smoked cigarettes. Environmental Research, 148, 475–483. https://doi.org/10.1016/j.envres.2016.04.001
Vellingiri, K., Kim, K. H., Ma, C. J., Kang, C. H., Lee, J. H., Kim, I. S., & Brown, R. J. C. (2015). Ambient particulate matter in a central urban area of Seoul, Korea. Chemosphere, 119, 812–819. https://doi.org/10.1016/j.chemosphere.2014.08.049
Viana, M., Pérez, C., Querol, X., Alastuey, A., Nickovic, S., & Baldasano, J. M. (2005). Spatial and temporal variability of PM levels and composition in a complex summer atmospheric scenario in Barcelona (NE Spain). Atmospheric Environment, 39(29), 5343–5361. https://doi.org/10.1016/j.atmosenv.2005.05.039
Vicedo-Cabrera, A. M., Sera, F., Liu, C., Armstrong, B., Milojevic, A., Guo, Y., Tong, S., Lavigne, E., Kyselý, J., Urban, A., Orru, H., Indermitte, E., Pascal, M., Huber, V., Schneider, A., Katsouyanni, K., Samoli, E., Stafoggia, M., Scortichini, M., … Gasparrini, A. (2020). Short term association between ozone and mortality: global two stage time series study in 406 locations in 20 countries. The BMJ, 368, 1–10. https://doi.org/10.1136/bmj.m108
Vitolo, C., Scutari, M., Ghalaieny, M., Tucker, A., & Russell, A. (2018). Modeling Air Pollution, Climate, and Health Data Using Bayesian Networks: A Case Study of the English Regions. Earth and Space Science, 5(4), 76–88. https://doi.org/10.1002/2017EA000326
Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., & Zhang, L. (2017a). Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Science of the Total Environment, 575, 1582–1596. https://doi.org/10.1016/j.scitotenv.2016.10.081
Wang, Yan, Shi, L., Lee, M., Liu, P., Di, Q., Zanobetti, A., & Schwartz, J. D. (2017). Long-term Exposure to PM 2.5 and Mortality among Older Adults in the Southeastern US. Epidemiology, 28(2), 207–214. https://doi.org/10.1097/EDE.0000000000000614
Wang, Yungang, Ying, Q., Hu, J., & Zhang, H. (2014). Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013-2014. Environment International, 73, 413–422. https://doi.org/10.1016/j.envint.2014.08.016
Watson, J. G., & Chow, J. C. (2015). Receptor Models and Measurements for Identifying and Quantifying Air Pollution Sources. In Introduction to Environmental Forensics: Third Edition (Third Edit). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-404696-2.00020-5
WHO. (2018). Global Ambient Air Quality Database (update 2018). In World Health Organization (Issue update 2018). https://www.who.int/airpollution/data/cities/en/
WHO, Health Organization, W., & Office for Europe, R. (2013). Review of evidence on health aspects of air pollution-REVIHAAP Project Technical Report.
World Health Organization. (2016). Ambient (outdoor) air pollution. https://www.who.int/newsroom/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
World Health Organization WHO. (2016). Urban Ambient Air Pollution database ‐ Update 2016. WHO. https://doi.org//entity/phe/health_topics/outdoorair/databases/cities/en/index.html
Xian, J., Sun, D., Xu, W., Han, Y., Zheng, J., Peng, J., & Yang, S. (2020). Urban air pollution monitoring using scanning Lidar. Environmental Pollution, 258. https://doi.org/10.1016/j.envpol.2019.113696
Xie, Y., Zhao, B., Zhang, L., & Luo, R. (2015a). Spatiotemporal variations of PM2.5 and PM10 concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO and O3. Particuology, 20, 141–149. https://doi.org/10.1016/j.partic.2015.01.003
Xu, F., Shi, X., Qiu, X., Jiang, X., Fang, Y., Wang, J., Hu, D., & Zhu, T. (2020). Investigation of the chemical components of ambient fine particulate matter (PM2.5) associated with in vitro cellular responses to oxidative stress and inflammation. Environment International, 136(January). https://doi.org/10.1016/j.envint.2020.105475
Yang, J., Ji, Z., Kang, S., Zhang, Q., Chen, X., & Lee, S. Y. (2019). Spatiotemporal variations of air pollutants in western China and their relationship to meteorological factors and emission sources. Environmental Pollution, 254, 112952. https://doi.org/10.1016/j.envpol.2019.07.120
Yang, L., Liu, Z., Guan, Q., Wang, L., & Wang, F. (2018a). Association between heating seasons and criteria air pollutants in three provincial capitals in northern China: Spatiotemporal variation and sources contribution. Building and Environment, 132(November 2017), 233–244. https://doi.org/10.1016/j.buildenv.2018.01.034
Yu, J., Mi, N., Yu, Q., Li, S., He, C., Yin, L., Li, S., Zhang, Y., Yao, Y., Ma, W., & Wang, W. (2019). Properties of particulate matter and gaseous pollutants in Shandong, China: Daily fluctuation, influencing factors, and spatiotemporal distribution. Science of The Total Environment, 660, 384–394. https://doi.org/10.1016/j.scitotenv.2019.01.026
Yu, J., Mi, N., Yu, Q., Li, S. S., He, C., Yin, L., Li, S. S., Zhang, Y., Yao, Y., Ma, W., Wang, W., Mi, K., Zhuang, R., Zhang, Z., Gao, J., Pei, Q., Li, R., Wang, Z., Cui, L., … Chen, L. (2019). Spatiotemporal characteristics of PM2.5 and its associated gas pollutants, a case in China. Sustainable Cities and Society, 648(April 2018), 35–48. https://doi.org/10.1016/j.scitotenv.2018.08.181
Zeri, M., Oliveira-Júnior, J. F., & Lyra, G. B. (2011). Spatiotemporal analysis of particulate matter, sulfur dioxide and carbon monoxide concentrations over the city of Rio de Janeiro, Brazil. Meteorology and Atmospheric Physics, 113(3), 139–152. https://doi.org/10.1007/s00703-011-0153-9
Zhan, Y., Luo, Y., Deng, X., Grieneisen, M. L., Zhang, M., & Di, B. (2018). Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environmental Pollution, 233, 464–473. https://doi.org/10.1016/j.envpol.2017.10.029
Zhang, B. N., & Kim Oanh, N. T. (2002). Photochemical smog pollution in the Bangkok Metropolitan Region of Thailand in relation to O3 precursor concentrations and meteorological conditions. Atmospheric Environment, 36(26), 4211–4222. https://doi.org/10.1016/S1352-2310(02)00348-5
Zhang, H., Wang, Y., Hu, J., Ying, Q., & Hu, X. M. (2015). Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environmental Research, 140, 242–254. https://doi.org/10.1016/j.envres.2015.04.004
Zhang, K., & Batterman, S. (2013). Air pollution and health risks due to vehicle traffic. Science of the Total Environment, 450–451, 307–316. https://doi.org/10.1016/j.scitotenv.2013.01.074
Zhao, H., Che, H., Ma, Y., Xia, X., Wang, Y., Wang, P., & Wu, X. (2015). Temporal variability of the visibility, particulate matter mass concentration and aerosol optical properties over an urban site in Northeast China. Atmospheric Research, 166, 204–212. https://doi.org/10.1016/j.atmosres.2015.07.003
Zhao, H., Che, H., Zhang, X., Ma, Y., Wang, Y., Wang, H., & Wang, Y. (2013). Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmospheric Pollution Research, 4(4), 427–434. https://doi.org/10.5094/APR.2013.049
Zhao, S., Yu, Y., Yin, D., Qin, D., He, J., & Dong, L. (2018). Spatial patterns and temporal variations of six criteria air pollutants during 2015 to 2017 in the city clusters of Sichuan Basin, China. Science of the Total Environment, 624, 540–557. https://doi.org/10.1016/j.scitotenv.2017.12.172
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.program.spa.fl_str_mv Maestría de Investigación en Desarrollo Sostenible Mides
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/12025781-9786-465b-8837-6ce943c23577/download
https://repositorio.cuc.edu.co/bitstreams/34bb9741-15c1-47cf-b9e1-43b4be0653d0/download
https://repositorio.cuc.edu.co/bitstreams/3a0d5ea1-a276-4b9f-b6be-26bef72307e9/download
https://repositorio.cuc.edu.co/bitstreams/9103e27a-4f36-40cd-8452-36274381ab86/download
https://repositorio.cuc.edu.co/bitstreams/a8a04dc4-07d4-43d9-8520-b57267cb450e/download
https://repositorio.cuc.edu.co/bitstreams/8cab8360-46ab-4a2f-9032-fbd224b8615a/download
bitstream.checksum.fl_str_mv 823dc66363436fd70f134179bdf7e11c
934f4ca17e109e0a05eaeaba504d7ce4
e30e9215131d99561d40d6b0abbe9bad
63cee4b016c13c60fe260f887ac94b1e
63cee4b016c13c60fe260f887ac94b1e
63af7cf2ce4ce8c06e54a72045db6d75
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760676499095552
spelling Schneider, Ismael LuisDuarte González, Ana Lucía2020-09-09T14:55:16Z2020-09-09T14:55:16Z2020Duarte, A. (2020). Evaluación espaciotemporal de contaminantes atmosféricos en la ciudad de barranquilla. Trabajo de Maestría, Recuperado de https://hdl.handle.net/113https://hdl.handle.net/11323/7079Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Air pollution has become a critical issue in urban areas, so a broad understanding of its spatiotemporal characteristics is required. In the present study, continuous measurements in real time of atmospheric pollutants of particulate matter (PM10 and PM2.5) and ozone (O3), were carried out between March 2018 and June 2019, in three (3) monitoring stations localized in Barranquilla city. The Móvil station is located in the north area near the sea, Policía located in the south and influenced by high vehicular traffic and Tres Avemarías in the north-historic center in a residential area were evaluated. The average concentrations observed for Móvil, Policía and Tres Avemarías stations, respectively, for PM10 were: 46.37, 51.37 and 39.68 µg/m3; PM2.5: 15.95, 18.12 and 15.10µg/m3 and O3: 34.99, 26.56 and 33.63 µg/m3. The results indicated the existence of spatial and temporal variations between the stations and the pollutants evaluated. The highest PM concentrations were observed in the south of the city, while for ozone in the north. These variations are mainly associated with the influence of local sources in the environment of each site evaluated as well as the meteorological conditions of the study area. This research will help to establish the air quality baseline for Barranquilla, as well as enable the development of more effective Environmental Management plans.La contaminación atmosférica se ha convertido en un tema crítico en áreas urbanas, por lo que se requiere una comprensión amplia de las características espaciotemporales de esta. En el presente estudio, mediciones continuas en tiempo real de contaminantes atmosféricos de material particulado (PM10 y PM2.5) y ozono (O3), se llevaron a cabo entre marzo de 2018 y junio de 2019, en tres (3) estaciones de monitoreo localizadas en la ciudad de Barranquilla. Fueron evaluadas las estaciones Móvil ubicada en la zona norte cerca al mar, Policía localizada en el sur y con influencia de alto tráfico vehicular y Tres Avemarías en el norte-centro histórico, zona residencial. El promedio de las concentraciones observadas para las estaciones Móvil, Policía y Tres Avemarías, respectivamente, para PM10 fueron: 46,37, 51,37 y 39,68 µg/m3; PM2.5: 15,95, 18,12 y 15,10 µg/m3 y O3: 34,99, 26,56 y 33,63 µg/m3. Los resultados indicaron la existencia de variaciones espaciales y temporales entre las estaciones y los contaminantes evaluados. Para el PM las mayores concentraciones fueron observadas en el sur de la ciudad, mientras que para el ozono en el norte. Estas variaciones están asociadas principalmente con la influencia de fuentes puntuales en el entorno de cada sitio evaluado así como de las condiciones meteorológicas del área de estudio. Esta investigación ayudará a establecer la línea base de calidad de aire para Barranquilla, así como permitirá el desarrollo de planes de Gestión Ambiental más efectivos.Duarte González, Ana LucíaspaCorporación Universidad de la CostaMaestría de Investigación en Desarrollo Sostenible MidesAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Particulate matterOzoneColombian CaribbeanCoastal urban areaMaterial particuladoOzonoCaribe ColombianoÁrea urbana costeraEvaluación espaciotemporal de contaminantes atmosféricos en la ciudad de BarranquillaTrabajo de grado - MaestríaTextinfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/acceptedVersionAchilleos, S., Kioumourtzoglou, M. A., Wu, C. Da, Schwartz, J. D., Koutrakis, P., & Papatheodorou, S. I. (2017). Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis. Environment International, 109(December 2016), 89–100. https://doi.org/10.1016/j.envint.2017.09.010Adhikari, A. (2020a). Introduction to spatiotemporal variations of ambient air pollutants and related public health impacts. In Spatiotemporal Analysis of Air Pollution and Its Application in Public Health (pp. 1–34). Elsevier. https://doi.org/10.1016/b978-0-12- 815822-7.00001-7Agudelo-Castañeda, D., De Paoli, F., Morgado-Gamero, W. B., Mendoza, M., Parody, A., Maturana, A. Y., & Teixeira, E. C. (2020). Assessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city. Science of the Total Environment, 720. https://doi.org/10.1016/j.scitotenv.2020.137675Agudelo-Castañeda, D. M., Teixeira, E. C., Schneider, I. L., Pereira, F. N., Oliveira, M. L. S., Taffarel, S. R., Sehn, J. L., Ramos, C. G., & Silva, L. F. O. (2016). Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Science of the Total Environment, 543, 161–170. https://doi.org/10.1016/j.scitotenv.2015.11.030Ahmed, S. O., Mazloum, R., & Abou-Ali, H. (2018). Spatiotemporal interpolation of air pollutants in the Greater Cairo and the Delta, Egypt. Environmental Research, 160, 27–34. https://doi.org/10.1016/j.envres.2017.09.005Alizadeh-Choobari, O., Bidokhti, A. A., Ghafarian, P., & Najafi, M. S. (2016). Temporal and spatial variations of particulate matter and gaseous pollutants in the urban area of Tehran. Atmospheric Environment, 141, 443–453. https://doi.org/10.1016/j.atmosenv.2016.07.003Amoatey, P., Omidvarborna, H., Baawain, M. S., & Al-Mamun, A. (2019). Emissions and exposure assessments of SOX, NOX, PM10/2.5 and trace metals from oil industries: A review study (2000–2018). In Process Safety and Environmental Protection (Vol. 123, pp. 215–228). Institution of Chemical Engineers. https://doi.org/10.1016/j.psep.2019.01.014Andreae, M. O. (2019). Emission of trace gases and aerosols from biomass burning – An updated assessment. Atmospheric Chemistry and Physics Discussions, 1–27. https://doi.org/10.5194/acp-2019-303Andrée, B. P. J., Chamorro, A., Spencer, P., Koomen, E., & Dogo, H. (2019). Revisiting the relation between economic growth and the environment; a global assessment of deforestation, pollution and carbon emission. Renewable and Sustainable Energy Reviews, 114(December 2018), 109221. https://doi.org/10.1016/j.rser.2019.06.028Armenta, S., & de la Guardia, M. (2016). Pollutants and Air Pollution. In Comprehensive Analytical Chemistry (Vol. 73). Elsevier Ltd. https://doi.org/10.1016/bs.coac.2016.03.002Austin, E., Zanobetti, A., Coull, B., Schwartz, J., Gold, D. R., & Koutrakis, P. (2015). Ozone trends and their relationship to characteristic weather patterns. Journal of Exposure Science and Environmental Epidemiology, 25(5), 535–542. https://doi.org/10.1038/jes.2014.45Jiao, J., Han, X., Li, F., Bai, Y., & Yu, Y. (2017). Contribution of demand shifts to industrial SO2 emissions in a transition economy: Evidence from China. Journal of Cleaner Production, 164, 1455–1466. https://doi.org/10.1016/j.jclepro.2017.07.060Kambezidis, H. D., & Kalliampakos, G. (2013). Mapping atmospheric corrosion on modern materials in the greater Athens area. Water, Air, and Soil Pollution, 224(3), 1463. https://doi.org/10.1007/s11270-013-1463-yKarl, T. G., Christian, T. J., Yokelson, R. J., Artaxo, P., Hao, W. M., & Guenther, A. (2007). The tropical forest and fire emissions experiment: Method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning. Atmospheric Chemistry and Physics, 7(22), 5883–5897. https://doi.org/10.5194/acp-7-5883- 2007Kavassalis, S. C., & Murphy, J. G. (2017). Understanding ozone-meteorology correlations: A role for dry deposition. Geophysical Research Letters, 44(6), 2922–2931. https://doi.org/10.1002/2016GL071791Koppmann, R., von Czapiewski, K., & Reid, J. S. (2005). A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmospheric Chemistry and Physics Discussions, 5(5), 10455–10516. https://doi.org/10.5194/acpd-5-10455-2005Koren, I., Kaufman, Y. J., Washington, R., Todd, M. C., Rudich, Y., Martins, J. V., & Rosenfeld, D. (2006). The Bodélé depression: A single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environmental Research Letters, 1(1). https://doi.org/10.1088/1748-9326/1/1/014005Kumar, A., Singh, D., Singh, B. P., Singh, M., Anandam, K., Kumar, K., & Jain, V. K. (2015). Spatial and temporal variability of surface ozone and nitrogen oxides in urban and rural ambient air of Delhi-NCR, India. Air Quality, Atmosphere and Health, 8(4), 391–399. https://doi.org/10.1007/s11869-014-0309-0Kwak, H. Y., Ko, J., Lee, S., & Joh, C. H. (2017). Identifying the correlation between rainfall, traffic flow performance and air pollution concentration in Seoul using a path analysis. Transportation Research Procedia, 25, 3552–3563. https://doi.org/10.1016/j.trpro.2017.05.288Lawrence, M. G., & Lelieveld, J. (2010). Atmospheric pollutant outflow from southern Asia: A review. Atmospheric Chemistry and Physics, 10(22), 11017–11096. https://doi.org/10.5194/acp-10-11017-2010Lazaridis, M. (2011). Fisrt Principles of Meteorology and Air Pollution (J. T. Brian Alloway (ed.); 19th ed.). Springer.Lazaridis, M., Katsivela, E., Kopanakis, I., Raisi, L., Mihalopoulos, N., & Panagiaris, G. (2018). Characterization of airborne particulate matter and microbes inside cultural heritage collections. Journal of Cultural Heritage, 30, 136–146. https://doi.org/10.1016/j.culher.2017.09.018Lee, S., Ho, C. H., & Choi, Y. S. (2011). High-PM10 concentration episodes in Seoul, Korea: Background sources and related meteorological conditions. Atmospheric Environment, 45(39), 7240–7247. https://doi.org/10.1016/j.atmosenv.2011.08.071Li, L., Wu, A. H., Cheng, I., Chen, J. C., & Wu, J. (2017). Spatiotemporal estimation of historical PM2.5concentrations using PM10, meteorological variables, and spatial effect. Atmospheric Environment, 166, 182–191. https://doi.org/10.1016/j.atmosenv.2017.07.023Li, L., Wu, J., Ghosh, J. K., & Ritz, B. (2013). Estimating spatiotemporal variability of ambient air pollutant concentrations with a hierarchical model. Atmospheric Environment, 71, 54– 63. https://doi.org/10.1016/j.atmosenv.2013.01.038Li, Q., Gabay, M., Rubin, Y., Raveh-Rubin, S., Rohatyn, S., Tatarinov, F., Rotenberg, E., Ramati, E., Dicken, U., Preisler, Y., Fredj, E., Yakir, D., & Tas, E. (2019). Investigation of ozone deposition to vegetation under warm and dry conditions near the Eastern Mediterranean coast. Science of the Total Environment, 658, 1316–1333. https://doi.org/10.1016/j.scitotenv.2018.12.272Li, Xiangyu, Huang, S., Jiao, A., Yang, X., Yun, J., Wang, Y., Xue, X., Chu, Y., Liu, F., Liu, Y., Ren, M., Chen, X., Li, N., Lu, Y., Mao, Z., Tian, L., & Xiang, H. (2017). Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis. Environmental Pollution, 227, 596–605. https://doi.org/10.1016/j.envpol.2017.03.055Li, Xiaolan, Ma, Y., Wang, Y., Liu, N., & Hong, Y. (2017). Temporal and spatial analyses of particulate matter (PM10and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China. Atmospheric Research, 198(September 2016), 185– 193. https://doi.org/10.1016/j.atmosres.2017.08.023Limon–Sanchez, M. T., Carbajal–Romero, P., Hernandez–Mena, L., Saldarriaga–Norena, H., Lopez–Lopez, A., Cosio–Ramirez, R., Arriaga–Colina, J. L., & Smith, W. (2011). Black carbon in PM2.5, data from two urban sites in Guadalajara, Mexico during 2008. Atmospheric Pollution Research, 2(3), 358–365. https://doi.org/10.5094/APR.2011.040Ling, H., Schäfer, K., Xin, J., Qin, M., Suppan, P., & Wang, Y. (2014). Small-scale spatial variations of gaseous air pollutants e A comparison of path-integrated and in situ measurement methods. Atmospheric Environment, 92, 566–575. https://doi.org/10.1016/j.atmosenv.2014.01.062Liu, C., Sun, J., Liu, Y., Liang, H., Wang, M., Wang, C., & Shi, T. (2017). Different exposure levels of fine particulate matter and preterm birth: a meta-analysis based on cohort studies. Environmental Science and Pollution Research, 24(22), 17976–17984. https://doi.org/10.1007/s11356-017-9363-0Liu, Y., Gao, Y., Yu, N., Zhang, C., Wang, S., Ma, L., Zhao, J., & Lohmann, R. (2015). Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China: Emission from on-road vehicles and gas-particle partitioning. Chemosphere, 134, 52–59. https://doi.org/10.1016/j.chemosphere.2015.03.065Luben, T. J., Nichols, J. L., Dutton, S. J., Kirrane, E., Owens, E. O., Datko-Williams, L., Madden, M., & Sacks, J. D. (2017). A systematic review of cardiovascular emergency department visits, hospital admissions and mortality associated with ambient black carbon. Environment International, 107(January), 154–162. https://doi.org/10.1016/j.envint.2017.07.005Maji, K. J., Ye, W. F., Arora, M., & Nagendra, S. M. S. (2019). Ozone pollution in Chinese cities: Assessment of seasonal variation, health effects and economic burden. Environmental Pollution, 247(x), 792–801. https://doi.org/10.1016/j.envpol.2019.01.049Manahan, S. (2013). Fundamentak of environmental and toxicological chemestry: Sustainable Science (C. Press (ed.); Fourth Edi). CRC press.Mason, P. J., & Thomson, D. J. (2015). Boundary Layer (Atmospheric) and Air Pollution: Overview. Encyclopedia of Atmospheric Sciences: Second Edition, 1, 220–226. https://doi.org/10.1016/B978-0-12-382225-3.00081-5Ministerio de Ambiente Vivienda y Desarrollo Territorial. (2008). Manual de Operación de Sistemas de Vigilancia de la Calidad del aire.Monks, P. S. (2005). Gas-phase radical chemistry in the troposphere. In Chemical Society Reviews (Vol. 34, Issue 5, pp. 376–395). https://doi.org/10.1039/b307982cMontañez, D. P. (2019). ESTIMACIÓN DE LAS EMISIONES ATMOSFÉRICAS DE BUQUES EN EL PUERTO DE BARRANQUILLA. In Universidad del Norte (Vol. 1, Issue 1). https://doi.org/10.1017/CBO9781107415324.004Motallebi, N., Tran, H., Croes, B. E., & Larsen, L. C. (2003). Day-of-week patterns of particulate matter and its chemical components at selected sites in california? Journal of the Air and Waste Management Association, 53(7), 876–888. https://doi.org/10.1080/10473289.2003.10466229Muñoz, R. C. (2012). Relative roles of emissions and meteorology in the diurnal pattern of urban PM10: Analysis of the daylight saving time effect. Journal of the Air and Waste Management Association, 62(6), 642–650. https://doi.org/10.1080/10962247.2012.665147Naciones Unidas. (2020). Población urbana (% del total) (Issue i). https://datos.bancomundial.org/indicator/SP.URB.TOTL.IN.ZSNadadur, Srikanth S, Hollingsworth, J. W. (2015). Air Pollution and Health Effects (Springer- Verlag London (ed.)). https://doi.org/DOI 10.1007/978-1-4471-6669-6News, G. (2020). O que é a ’ nuvem de poeira Godzilla ’, que viaja 10 mil km do Saara para as Américas. https://g1.globo.com/natureza/noticia/2020/06/24/o-que-e-a-nuvem-de-poeiragodzilla-que-viaja-10-mil-km-do-saara-para-as-americas.ghtmlNúñez, Y. (2019). ESTIMACIÓN DE FUENTES DE MATERIAL PARTICULADO ATMOSFÉRICO (PM 10 y PM 2.5 ) EN LA CIUDAD DE BARRANQUILLA, COLOMBIA [Universidad de la Costa]. https://repositorio.cuc.edu.co/bitstream/handle/11323/6017/Estimación de fuentes de material particulado atmosférico %28PM10 y PM2.5%29 en la ciudad de Barranquilla%2C Colombia.pdf?sequence=1&isAllowed=yO’Leary, B., Reiners, J. J., Xu, X., & Lemke, L. D. (2016). Identification and influence of spatiotemporal outliers in urban air quality measurements. Science of the Total Environment, 573, 55–65. https://doi.org/10.1016/j.scitotenv.2016.08.031Ohara, T. (2019). Long-range transport and deposition of air pollution. Encyclopedia of Environmental Health, 126–130. https://doi.org/10.1016/B978-0-12-409548-9.11352-1ONS. (2018). Carga de enfermedad ambiental en Colombia - Informe Técnico Especial 10. In Observatorio Nacional de Salud. https://www.ins.gov.co/Direcciones/ONS/Informes/10 Carga de enfermedad ambiental en Colombia.pdfOuyang, W., Guo, B., Cai, G., Li, Q., Han, S., Liu, B., & Liu, X. (2015). The washing effect of precipitation on particulate matter and the pollution dynamics of rainwater in downtown Beijing. Science of the Total Environment, 505, 306–314. https://doi.org/10.1016/j.scitotenv.2014.09.062Owens, E. O., Patel, M. M., Kirrane, E., Long, T. C., Brown, J., Cote, I., Ross, M. A., & Dutton, S. J. (2017). Framework for assessing causality of air pollution-related health effects for reviews of the National Ambient Air Quality Standards. Regulatory Toxicology and Pharmacology, 88, 332–337. https://doi.org/10.1016/j.yrtph.2017.05.014Pachón, J. E., Galvis, B., Lombana, O., Carmona, L. G., Fajardo, S., Rincón, A., Meneses, S., Chaparro, R., Nedbor-Gross, R., & Henderson, B. (2018). Development and evaluation of a comprehensive atmospheric emission inventory for air quality modeling in the megacity of Bogotá. Atmosphere, 9(2), 1–17. https://doi.org/10.3390/atmos9020049Pateraki, S., Asimakopoulos, D. N., Flocas, H. A., Maggos, T., & Vasilakos, C. (2012). The role of meteorology on different sized aerosol fractions (PM10, PM2.5, PM2.5-10). Science of the Total Environment, 419, 124–135. https://doi.org/10.1016/j.scitotenv.2011.12.064Peshin, S. K., Sharma, A., Sharma, S. K., Naja, M., & Mandal, T. K. (2017). Spatio-temporal variation of air pollutants and the impact of anthropogenic effects on the photochemical buildup of ozone across Delhi-NCR. Sustainable Cities and Society, 35, 740–751. https://doi.org/10.1016/j.scs.2017.09.024Petit, R. H., Legrand, M., Jankowiak, I., Molinié, J., Asselin de Beauville, C., Marion, G., & Mansot, J. L. (2005). Transport of Saharan dust over the Caribbean Islands: Study of an event. Journal of Geophysical Research D: Atmospheres, 110(18), 1–19. https://doi.org/10.1029/2004JD004748Qu, W., Zhang, X., Wang, Y., & Fu, G. (2020). Atmospheric visibility variation over global land surface during 1973–2012: Influence of meteorological factors and effect of aerosol, cloud on ABL evolution. Atmospheric Pollution Research, 11(4), 730–743. https://doi.org/10.1016/j.apr.2020.01.002R.E., H., Harrison, R. M., & Querol, X. (2016). Airborne Particulate Matter: Sources, Atmospheric Processes and Health. The Royal Society of Chemistry. www.rsc.orgRaherison, C., & Filleul, L. (2002). Asthma in exercising children exposed to ozone [3]. Lancet, 360(9330), 411. https://doi.org/10.1016/S0140-6736(02)09580-6Ramírez, O., da Boit, K., Blanco, E., & Silva, L. F. O. (2020). Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Climate, 33(October 2019), 100655. https://doi.org/10.1016/j.uclim.2020.100655Ramírez, O., Sánchez de la Campa, A. M., & de la Rosa, J. (2018). Characteristics and temporal variations of organic and elemental carbon aerosols in a high–altitude, tropical Latin American megacity. Atmospheric Research, 210(April), 110–122. https://doi.org/10.1016/j.atmosres.2018.04.006Ramsey, N. R., Klein, P. M., & Moore, B. (2014). The impact of meteorological parameters on urban air qualityThe impact of meteorological parameters on urban air quality. Atmospheric Environment, 86, 58–67. https://doi.org/10.1016/j.atmosenv.2013.12.006Reche, C., Moreno, T., Amato, F., Pandolfi, M., Pérez, J., de la Paz, D., Diaz, E., GómezMoreno, F. J., Pujadas, M., Artíñano, B., Reina, F., Orio, A., Pallarés, M., Escudero, M., Tapia, O., Crespo, E., Vargas, R., Alastuey, A., & Querol, X. (2018). Spatio-temporal patterns of high summer ozone events in the Madrid Basin, Central Spain. Atmospheric Environment, 185(November 2017), 207–220. https://doi.org/10.1016/j.atmosenv.2018.05.002Richmond-Bryant, J., Saganich, C., Bukiewicz, L., & Kalin, R. (2009). Associations of PM2.5 and black carbon concentrations with traffic, idling, background pollution, and meteorology during school dismissals. Science of the Total Environment, 407(10), 3357–3364. https://doi.org/10.1016/j.scitotenv.2009.01.046Riggs, D. W., Zafar, N., Krishnasamy, S., Yeager, R., Rai, S. N., Bhatnagar, A., & O’Toole, T. E. (2020). Exposure to airborne fine particulate matter is associated with impaired endothelial function and biomarkers of oxidative stress and inflammation. Environmental Research, 180(November 2019), 108890. https://doi.org/10.1016/j.envres.2019.108890Rodríguez-Villamizar, L. A., Rojas-Roa, N. Y., Blanco-Becerra, L. C., Herrera-Galindo, V. M., & Fernández-Niño, J. A. (2018). Short-term effects of air pollution on respiratory and circulatory morbidity in colombia 2011–2014: A multi-city, time-series analysis. International Journal of Environmental Research and Public Health, 15(8). https://doi.org/10.3390/ijerph15081610Rodríguez-Villamizar, L. A., Rojas-Roa, N. Y., & Fernández-Niño, J. A. (2019). Short-term joint effects of ambient air pollutants on emergency department visits for respiratory and circulatory diseases in Colombia, 2011–2014. Environmental Pollution, 248, 380–387. https://doi.org/10.1016/j.envpol.2019.02.028Rohr, A. C., & Wyzga, R. E. (2012). Attributing health effects to individual particulate matter constituents. Atmospheric Environment, 62, 130–152. https://doi.org/10.1016/j.atmosenv.2012.07.036Russo, A., Gouveia, C., Levy, I., Dayan, U., Jerez, S., Mendes, M., & Trigo, R. (2016). Coastal recirculation potential affecting air pollutants in Portugal: The role of circulation weather types. Atmospheric Environment, 135, 9–19. https://doi.org/10.1016/j.atmosenv.2016.03.039Sandeep, A., Rao, T. N., Ramkiran, C. N., & Rao, S. V. B. (2014). Differences in Atmospheric Boundary-Layer Characteristics Between Wet and Dry Episodes of the Indian Summer Monsoon. Boundary-Layer Meteorology, 153(2), 217–236. https://doi.org/10.1007/s10546- 014-9945-zSchaller, B. (2010). New York City’s congestion pricing experience and implications for road pricing acceptance in the United States. Transport Policy, 17(4), 266–273. https://doi.org/10.1016/j.tranpol.2010.01.013Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric Chemistry: From Air Pollution to Climate Change (I. John Wiley & Sons (ed.); Second Edi).Seinfeld, J., & Pandis, S. N. (2016). Atmospheric Chemistry and Physics: From air pollution to climate change (WILEY (ed.); third edit).Shaddick, G., Thomas, M. L., Mudu, P., Ruggeri, G., & Gumy, S. (2020). Half the world’s population are exposed to increasing air pollution. Npj Climate and Atmospheric Science, 3(1), 1–5. https://doi.org/10.1038/s41612-020-0124-2Shahid, I., Kistler, M., Mukhtar, A., Ghauri, B. M., Ramirez-Santa Cruz, C., Bauer, H., & Puxbaum, H. (2016). Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi - Pakistan. Atmospheric Environment, 128, 114–123. https://doi.org/10.1016/j.atmosenv.2015.12.005Shi, S., Chen, C., & Zhao, B. (2017). Modifications of exposure to ambient particulate matter: Tackling bias in using ambient concentration as surrogate with particle infiltration factor and ambient exposure factor. Environmental Pollution, 220, 337–347. https://doi.org/10.1016/j.envpol.2016.09.069SIAC. (2020). Fenómenos del Niño y la Niña. http://www.siac.gov.co/ninoyninaSimon, H., Reff, A., Wells, B., Xing, J., & Frank, N. (2015). Ozone trends across the United States over a period of decreasing NOx and VOC emissions. Environmental Science and Technology, 49(1), 186–195. https://doi.org/10.1021/es504514zSippo, J. Z., Maher, D. T., Tait, D. R., Ruiz-Halpern, S., Sanders, C. J., & Santos, I. R. (2017). Mangrove outwelling is a significant source of oceanic exchangeable organic carbon. Limnology and Oceanography Letters, 2(1), 1–8. https://doi.org/10.1002/lol2.10031Stanek, L. W., & Brown, J. S. (2019). Air Pollution: Sources, Regulation, and Health Effects. In Reference Module in Biomedical Sciences (Issue June, pp. 1–10). Elsevier Inc. https://doi.org/10.1016/b978-0-12-801238-3.11384-4Stanek, L. W., Sacks, J. D., Dutton, S. J., & Dubois, J. J. B. (2011). Attributing health effects to apportioned components and sources of particulate matter: An evaluation of collective results. Atmospheric Environment, 45(32), 5655–5663. https://doi.org/10.1016/j.atmosenv.2011.07.023Suh, H. H., Bahadori, T., Vallarino, J., & Spengler, J. D. (2018). Criteria Air Pollutants and Toxic Air Pollutants. 108, 625–633. https://doi.org/10.2307/3454398Tang, J., McNabola, A., Misstear, B., Pilla, F., & Alam, M. S. (2019). Assessing the impact of vehicle speed limits and fleet composition on air quality near a school. International Journal of Environmental Research and Public Health, 16(1). https://doi.org/10.3390/ijerph16010149Thurston, G. D. (2016a). Outdoor Air Pollution: Sources, Atmospheric Transport, and Human Health Effects. In International Encyclopedia of Public Health (Second Edi, Vol. 5, Issue 69). Elsevier. https://doi.org/10.1016/B978-0-12-803678-5.00320-9Tian, Ye, Yao, X., & Chen, L. (2019). Analysis of spatial and seasonal distributions of air pollutants by incorporating urban morphological characteristics. Computers, Environment and Urban Systems, 75(April 2018), 35–48. https://doi.org/10.1016/j.compenvurbsys.2019.01.003Tian, Yulu, Jiang, Y., Liu, Q., Xu, D., Zhao, S., He, L., Liu, H., & Xu, H. (2019). Temporal and spatial trends in air quality in Beijing. Landscape and Urban Planning, 185(October 2018), 35–43. https://doi.org/10.1016/j.landurbplan.2019.01.006Tiwari, S., Dumka, U. C., Gautam, A. S., Kaskaoutis, D. G., Srivastava, A. K., Bisht, D. S., Chakrabarty, R. K., Sumlin, B. J., & Solmon, F. (2017). Assessment of PM2.5and PM10over Guwahati in Brahmaputra River Valley: Temporal evolution, source apportionment and meteorological dependence. Atmospheric Pollution Research, 8(1), 13– 28. https://doi.org/10.1016/j.apr.2016.07.008Toro A., R., Morales S., R. G. E., Canales, M., Gonzalez-Rojas, C., & Leiva G., M. A. (2014). Inhaled and inspired particulates in Metropolitan Santiago Chile exceed air quality standards. Building and Environment, 79, 115–123. https://doi.org/10.1016/j.buildenv.2014.05.004Triantafyllou, E., Diapouli, E., Korras-Carraca, Manousakas, M., Psanis, C., Floutsi, A. A., Spyrou, C., Eleftheriadis, K., & Biskos, G. (2020). Contribution of locally-produced and transported air pollution to particulate matter in a small insular coastal city. Atmospheric Pollution Research, 11(4), 667–678. https://doi.org/10.1016/j.apr.2019.12.015Tzortziou, M., Parker, O., Lamb, B., Herman, J. R., Lamsal, L., Stauffer, R., & Abuhassan, N. (2018). Atmospheric trace gas (NO2 and O3) variability in south Korean coastal waters, and implications for remote sensing of coastal ocean color dynamics. Remote Sensing, 10(10), 1–20. https://doi.org/10.3390/rs10101587Vallero, D. A. (2014). Fundamentals of air pollution (5th editio). Elsevier. https://doi.org/https://doi.org/10.1016/C2012-0-01172-6 van der Zee, S. C., Fischer, P. H., & Hoek, G. (2016). Air pollution in perspective: Health risks of air pollution expressed in equivalent numbers of passively smoked cigarettes. Environmental Research, 148, 475–483. https://doi.org/10.1016/j.envres.2016.04.001Vellingiri, K., Kim, K. H., Ma, C. J., Kang, C. H., Lee, J. H., Kim, I. S., & Brown, R. J. C. (2015). Ambient particulate matter in a central urban area of Seoul, Korea. Chemosphere, 119, 812–819. https://doi.org/10.1016/j.chemosphere.2014.08.049Viana, M., Pérez, C., Querol, X., Alastuey, A., Nickovic, S., & Baldasano, J. M. (2005). Spatial and temporal variability of PM levels and composition in a complex summer atmospheric scenario in Barcelona (NE Spain). Atmospheric Environment, 39(29), 5343–5361. https://doi.org/10.1016/j.atmosenv.2005.05.039Vicedo-Cabrera, A. M., Sera, F., Liu, C., Armstrong, B., Milojevic, A., Guo, Y., Tong, S., Lavigne, E., Kyselý, J., Urban, A., Orru, H., Indermitte, E., Pascal, M., Huber, V., Schneider, A., Katsouyanni, K., Samoli, E., Stafoggia, M., Scortichini, M., … Gasparrini, A. (2020). Short term association between ozone and mortality: global two stage time series study in 406 locations in 20 countries. The BMJ, 368, 1–10. https://doi.org/10.1136/bmj.m108Vitolo, C., Scutari, M., Ghalaieny, M., Tucker, A., & Russell, A. (2018). Modeling Air Pollution, Climate, and Health Data Using Bayesian Networks: A Case Study of the English Regions. Earth and Space Science, 5(4), 76–88. https://doi.org/10.1002/2017EA000326Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., & Zhang, L. (2017a). Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Science of the Total Environment, 575, 1582–1596. https://doi.org/10.1016/j.scitotenv.2016.10.081Wang, Yan, Shi, L., Lee, M., Liu, P., Di, Q., Zanobetti, A., & Schwartz, J. D. (2017). Long-term Exposure to PM 2.5 and Mortality among Older Adults in the Southeastern US. Epidemiology, 28(2), 207–214. https://doi.org/10.1097/EDE.0000000000000614Wang, Yungang, Ying, Q., Hu, J., & Zhang, H. (2014). Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013-2014. Environment International, 73, 413–422. https://doi.org/10.1016/j.envint.2014.08.016Watson, J. G., & Chow, J. C. (2015). Receptor Models and Measurements for Identifying and Quantifying Air Pollution Sources. In Introduction to Environmental Forensics: Third Edition (Third Edit). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-404696-2.00020-5WHO. (2018). Global Ambient Air Quality Database (update 2018). In World Health Organization (Issue update 2018). https://www.who.int/airpollution/data/cities/en/WHO, Health Organization, W., & Office for Europe, R. (2013). Review of evidence on health aspects of air pollution-REVIHAAP Project Technical Report.World Health Organization. (2016). Ambient (outdoor) air pollution. https://www.who.int/newsroom/fact-sheets/detail/ambient-(outdoor)-air-quality-and-healthWorld Health Organization WHO. (2016). Urban Ambient Air Pollution database ‐ Update 2016. WHO. https://doi.org//entity/phe/health_topics/outdoorair/databases/cities/en/index.htmlXian, J., Sun, D., Xu, W., Han, Y., Zheng, J., Peng, J., & Yang, S. (2020). Urban air pollution monitoring using scanning Lidar. Environmental Pollution, 258. https://doi.org/10.1016/j.envpol.2019.113696Xie, Y., Zhao, B., Zhang, L., & Luo, R. (2015a). Spatiotemporal variations of PM2.5 and PM10 concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO and O3. Particuology, 20, 141–149. https://doi.org/10.1016/j.partic.2015.01.003Xu, F., Shi, X., Qiu, X., Jiang, X., Fang, Y., Wang, J., Hu, D., & Zhu, T. (2020). Investigation of the chemical components of ambient fine particulate matter (PM2.5) associated with in vitro cellular responses to oxidative stress and inflammation. Environment International, 136(January). https://doi.org/10.1016/j.envint.2020.105475Yang, J., Ji, Z., Kang, S., Zhang, Q., Chen, X., & Lee, S. Y. (2019). Spatiotemporal variations of air pollutants in western China and their relationship to meteorological factors and emission sources. Environmental Pollution, 254, 112952. https://doi.org/10.1016/j.envpol.2019.07.120Yang, L., Liu, Z., Guan, Q., Wang, L., & Wang, F. (2018a). Association between heating seasons and criteria air pollutants in three provincial capitals in northern China: Spatiotemporal variation and sources contribution. Building and Environment, 132(November 2017), 233–244. https://doi.org/10.1016/j.buildenv.2018.01.034Yu, J., Mi, N., Yu, Q., Li, S., He, C., Yin, L., Li, S., Zhang, Y., Yao, Y., Ma, W., & Wang, W. (2019). Properties of particulate matter and gaseous pollutants in Shandong, China: Daily fluctuation, influencing factors, and spatiotemporal distribution. Science of The Total Environment, 660, 384–394. https://doi.org/10.1016/j.scitotenv.2019.01.026Yu, J., Mi, N., Yu, Q., Li, S. S., He, C., Yin, L., Li, S. S., Zhang, Y., Yao, Y., Ma, W., Wang, W., Mi, K., Zhuang, R., Zhang, Z., Gao, J., Pei, Q., Li, R., Wang, Z., Cui, L., … Chen, L. (2019). Spatiotemporal characteristics of PM2.5 and its associated gas pollutants, a case in China. Sustainable Cities and Society, 648(April 2018), 35–48. https://doi.org/10.1016/j.scitotenv.2018.08.181Zeri, M., Oliveira-Júnior, J. F., & Lyra, G. B. (2011). Spatiotemporal analysis of particulate matter, sulfur dioxide and carbon monoxide concentrations over the city of Rio de Janeiro, Brazil. Meteorology and Atmospheric Physics, 113(3), 139–152. https://doi.org/10.1007/s00703-011-0153-9Zhan, Y., Luo, Y., Deng, X., Grieneisen, M. L., Zhang, M., & Di, B. (2018). Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environmental Pollution, 233, 464–473. https://doi.org/10.1016/j.envpol.2017.10.029Zhang, B. N., & Kim Oanh, N. T. (2002). Photochemical smog pollution in the Bangkok Metropolitan Region of Thailand in relation to O3 precursor concentrations and meteorological conditions. Atmospheric Environment, 36(26), 4211–4222. https://doi.org/10.1016/S1352-2310(02)00348-5Zhang, H., Wang, Y., Hu, J., Ying, Q., & Hu, X. M. (2015). Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environmental Research, 140, 242–254. https://doi.org/10.1016/j.envres.2015.04.004Zhang, K., & Batterman, S. (2013). Air pollution and health risks due to vehicle traffic. Science of the Total Environment, 450–451, 307–316. https://doi.org/10.1016/j.scitotenv.2013.01.074Zhao, H., Che, H., Ma, Y., Xia, X., Wang, Y., Wang, P., & Wu, X. (2015). Temporal variability of the visibility, particulate matter mass concentration and aerosol optical properties over an urban site in Northeast China. Atmospheric Research, 166, 204–212. https://doi.org/10.1016/j.atmosres.2015.07.003Zhao, H., Che, H., Zhang, X., Ma, Y., Wang, Y., Wang, H., & Wang, Y. (2013). Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmospheric Pollution Research, 4(4), 427–434. https://doi.org/10.5094/APR.2013.049Zhao, S., Yu, Y., Yin, D., Qin, D., He, J., & Dong, L. (2018). Spatial patterns and temporal variations of six criteria air pollutants during 2015 to 2017 in the city clusters of Sichuan Basin, China. Science of the Total Environment, 624, 540–557. https://doi.org/10.1016/j.scitotenv.2017.12.172PublicationORIGINALEvaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla.pdfEvaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla.pdfapplication/pdf2289373https://repositorio.cuc.edu.co/bitstreams/12025781-9786-465b-8837-6ce943c23577/download823dc66363436fd70f134179bdf7e11cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/34bb9741-15c1-47cf-b9e1-43b4be0653d0/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/3a0d5ea1-a276-4b9f-b6be-26bef72307e9/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILEvaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla.pdf.jpgEvaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla.pdf.jpgimage/jpeg25667https://repositorio.cuc.edu.co/bitstreams/9103e27a-4f36-40cd-8452-36274381ab86/download63cee4b016c13c60fe260f887ac94b1eMD54THUMBNAILEvaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla.pdf.jpgEvaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla.pdf.jpgimage/jpeg25667https://repositorio.cuc.edu.co/bitstreams/a8a04dc4-07d4-43d9-8520-b57267cb450e/download63cee4b016c13c60fe260f887ac94b1eMD54TEXTEvaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla.pdf.txtEvaluación espaciotemporal de contaminantes atmosféricos en la ciudad de Barranquilla.pdf.txttext/plain198485https://repositorio.cuc.edu.co/bitstreams/8cab8360-46ab-4a2f-9032-fbd224b8615a/download63af7cf2ce4ce8c06e54a72045db6d75MD5511323/7079oai:repositorio.cuc.edu.co:11323/70792024-09-16 16:43:39.538http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==