Potencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia

The energy potential of the residual oil palm biomass generated in seven extraction plants located in northern Colombia is evaluated through a cogeneration system with extraction turbine – condensation. For all the cases analyzed, the available biomass not only covers the energy requirements of the...

Full description

Autores:
Barrera Hernández, Juan Camilo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8286
Acceso en línea:
https://hdl.handle.net/11323/8286
https://repositorio.cuc.edu.co/
Palabra clave:
Biomass
Palm oil
Power generation
CHP
Bioenergy
Biomasa
Palma de aceite
Generación eléctrica
Cogeneración
Bioenergía
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_ba18e7d22bad8268fc5ed0c073f1100d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8286
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Potencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia
title Potencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia
spellingShingle Potencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia
Biomass
Palm oil
Power generation
CHP
Bioenergy
Biomasa
Palma de aceite
Generación eléctrica
Cogeneración
Bioenergía
title_short Potencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia
title_full Potencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia
title_fullStr Potencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia
title_full_unstemmed Potencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia
title_sort Potencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia
dc.creator.fl_str_mv Barrera Hernández, Juan Camilo
dc.contributor.advisor.spa.fl_str_mv Sagastume Gutiérrez, Alexis
Cabello Eras, Juan José
dc.contributor.author.spa.fl_str_mv Barrera Hernández, Juan Camilo
dc.subject.spa.fl_str_mv Biomass
Palm oil
Power generation
CHP
Bioenergy
Biomasa
Palma de aceite
Generación eléctrica
Cogeneración
Bioenergía
topic Biomass
Palm oil
Power generation
CHP
Bioenergy
Biomasa
Palma de aceite
Generación eléctrica
Cogeneración
Bioenergía
description The energy potential of the residual oil palm biomass generated in seven extraction plants located in northern Colombia is evaluated through a cogeneration system with extraction turbine – condensation. For all the cases analyzed, the available biomass not only covers the energy requirements of the process, but it can also supply a surplus of energy. The energy potential of residual biomass ranges from 22.5 - 46.5 MW per year for the cases studied. For palm oil mills with capacities between 21 – 41 tRFF-1 it is estimated that it is possible to obtain surplus electricity between 1.7 – 8.9 MW, considering that the energy use of the empty fruit bunch as fuel can increase between 40 – 60 % the energy provided by the kernel shell and fiber. Regarding environmental performance, the calculated GHG emissions were 1 – 3 g CO2eq per kWh for the cases studied. By replacing the electricity of the national interconnected system, the energy generated by biomass could mitigate between 214 - 385 g CO2eq per ton of fresh fruit bunch per year. Depending on the availability of the empty fruit bunch, its energy use can increase the replacement of emissions by 60 – 80%. Electricity generation can be developed at a level cost of electricity between 131 – 223 COP kWh-1 for the palm oil mills studied considering a ten-year investment, which could be economically attractive considering that the cost of selling electricity in Colombia stood between 113 - 321 COP kWh-1 for 2019.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-26T19:28:10Z
dc.date.available.none.fl_str_mv 2021-05-26T19:28:10Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Barrera, J. (2021) Potencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia. Trabajo de maestría. Recuperado de https://hdl.handle.net/11323/8286
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8286
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Barrera, J. (2021) Potencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia. Trabajo de maestría. Recuperado de https://hdl.handle.net/11323/8286
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8286
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbas, T., Issa, M., & Ilinca, A. (2020). Biomass Cogeneration Technologies: A Review. Journal of Sustainable Bioenergy Systems, 10(01), 1–15. https://doi.org/10.4236/jsbs.2020.101001
Abdullah, N., & Sulaiman, F. (2013). The Oil Palm Wastes in Malysia. In Biomass Now -Sustainable Growth and Use (Vol. 3, Issue 1, pp. 97–103). https://doi.org/10.1016/j.jclepro.2012.04.004
AlNouss, A., Mckay, G., & Al-Ansari, T. (2018). Optimum Utilization of Biomass for the Production of Power and Fuels using Gasification. In Computer Aided Chemical Engineering (Vol. 43). Elsevier Masson SAS. https://doi.org/10.1016/B978-0-444-64235- 6.50258-8
American Society Mechanical Engineering. (2008). Norma ASME PTC4-2008. In Asme (Vol. 2008).
Arrieta, F. R. P., Teixeira, F. N., Yáñez, E., Lora, E., & Castillo, E. (2007). Cogeneration potential in the Columbian palm oil industry: Three case studies. Biomass and Bioenergy, 31(7), 503–511. https://doi.org/10.1016/j.biombioe.2007.01.016
Asadullah, M. (2014). Barriers of commercial power generation using biomass gasification gas: A review. Renewable and Sustainable Energy Reviews, 29, 201–215. https://doi.org/10.1016/j.rser.2013.08.074
Aziz, M. K. A., Morad, N. A., Wambeck, N., & Shah, M. H. (2011). Optimizing palm biomass energy though size reduction. 2011 4th International Conference on Modeling, Simulation and Applied Optimization, ICMSAO 2011, APRIL. https://doi.org/10.1109/ICMSAO.2011.5775516
Aziz, M., Kurniawan, T., Oda, T., & Kashiwagi, T. (2016). Advanced power generation using biomass wastes from palm oil mills. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2016.11.031
Banco de la República de Colombia. (2021, January 1). Estadísticas Económicas. https://totoro.banrep.gov.co/estadisticas-economicas/
Barrera, J., Ramírez, N., Garcia-Nunez, J. A., & Guevara, F. (2016). Diagnóstico del desempeño en consumo de energía eléctrica en plantas de beneficio en Colombia. Palmas, 37(4), 47– 62.
Basu, P. (2006). Combustion and Gasification in Fluidized Beds. In CRC Press. https://doi.org/10.1017/CBO9781107415324.004
Bazmi, A. A., Zahedi, G., & Hashim, H. (2011). Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation. Renewable and Sustainable Energy Reviews, 15(1), 574–583. https://doi.org/10.1016/j.rser.2010.09.031
Bevan Nyakuma, B., Johari, A., & Ahmad, A. (2013). Thermochemical analysis of palm oil wastes as fuel for biomass gasification. Jurnal Teknologi (Sciences and Engineering), 62(3), 73–76. https://doi.org/10.11113/jt.v62.1891
Börjesson, M., & Ahlgren, E. O. (2012). Biomass CHP energy systems: A critical assessment. In Comprehensive Renewable Energy (Vol. 5). Elsevier Ltd. https://doi.org/10.1016/B978- 0-08-087872-0.00508-4
Caillat, S., & Vakkilainen, E. (2013). 9 – Large-scale biomass combustion plants: an overview. In Biomass Combustion Science, Technology and Engineering. Woodhead Publishing Limited. https://doi.org/10.1533/9780857097439.3.189
Cala A, S. L., Yáñez Angarita, E. E., & García Núñez, J. A. (2011). Recuperación de almendra: Sintonización de columnas de separación neumáticas en plantas de beneficio (Fedepalma (ed.)).
Cala Gaitán, G., & Bernal Castillo, G. (2008). Procesos modernos de extracción de aceite de palma (Issue 00442).
Cenipalma. (2020). XMAC - Extensión de monitoreo Agroclimático. https://geoportal.cenipalma.org/
Chang, S. H. (2014). An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass and Bioenergy, 62, 174–181. https://doi.org/10.1016/j.biombioe.2014.01.002
Chiew, Y. L., & Shimada, S. (2013). Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer - A case study of Malaysia. Biomass and Bioenergy, 51, 109–124. https://doi.org/10.1016/j.biombioe.2013.01.012
Choong, Y. Y., Chou, K. W., & Norli, I. (2018). Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review. Renewable and Sustainable Energy Reviews, 82(January), 2993–3006. https://doi.org/10.1016/j.rser.2017.10.036
Congreso de Colombia. (2014). Ley 1715 de 2014. Diario Oficial, 104.
Corley, O. T., & Tinker, J. R. (2003). The Oil Palm. In West African Agriculture (pp. 93–104). Cambridge University Press. https://doi.org/10.1017/CBO9781316530122.010
CREG. (2018). Resolución No. 30. In Ministerio de Minas y energia (Issue Mayo, p. 13). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c 4474f05258243005a1191/$FILE/Creg030-2018.pdf
Cruz, A. V. (2016). Lineamientos para la operación eficiente de sistemas de generación de vapor y reducción de emisiones atmosféricas en plantas de beneficio del sector palmero * Guidelines for an Efficient Operation of Steam Generation Systems and the Reduction of Atmospher. Figura 1, 55–64.
Dai, L., Wang, Y., Liu, Y., Ruan, R., He, C., Yu, Z., Jiang, L., Zeng, Z., & Tian, X. (2019). Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 107(January), 20–36. https://doi.org/10.1016/j.rser.2019.02.015
Dam, J. E. G. Van. (2015). Oil Palm by-products as biocommodities.
Daud, Z. A. M., Kaur, D., & Khosla, P. (2012). 18 – Health and Nutritional Properties of Palm Oil and Its Components. Palm Oil, 545–560. https://doi.org/10.1016/B978-0-9818936-9- 3.50021-6
Demirbas, A. (2007). Effects of moisture and hydrogen content on the heating value of fuels. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 29(7), 649– 655. https://doi.org/10.1080/009083190957801
Dishington, J. M. (2018, February). Fedepalma, 55 años de gestión gremial para desarrollar y consolidar la agroindustria de la palma de aceite en Colombia. El Palmicutor, 552, 5–7. http://web.fedepalma.org/sites/default/files/files/Fedepalma/semanariopalmero/publicaciones/Boletin-El-Palmicultor-de-febrero-de-2018.pdf
Eras, J. J. C., Morejón, M. B., Gutiérrez, A. S., García, A. P., Ulloa, M. C., Martínez, F. J. R., & Rueda-Bayona, J. G. (2019a). A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9(1), 15–25. https://doi.org/10.32479/ijeep.7108
Eras, J. J. C., Morejón, M. B., Gutiérrez, A. S., García, A. P., Ulloa, M. C., Martínez, F. J. R., & Rueda-Bayona, J. G. (2019b). A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9(1), 15–25. https://doi.org/10.32479/ijeep.7108
Fedepalma. (2016). Balance económico del sector palmero colombiano en 2015. Boletín Económico, 8. http://web.fedepalma.org/sites/default/files/files/BTE 2016_en baja.pdf
Fedepalma. (2019). Statistical Yearbook. https://drive.google.com/file/d/1WOrjaYVXpXGDVmLTQcIfS9fLDCxEymy5/view
Fedepalma. (2020). MINIANUARIO ESTADÍSTICO 2020. In Principales cifras de la agroindustria de la palma de aceite en Colombia.
Fernández, C. A., García, H., Ramirez C, N. E., & García N, J. A. (2016). Impacto de la clarificación dinámica sobre el proceso de extracción y recuperación de aceite de palma crudo Processes in Crude Palm Oil (Case study ). Revista Palmas, 37(3), 47–64. Garcia-Nunez, J. A., Ramirez-Contreras, N. E., Rodriguez, D. T., Silva-Lora, E., Frear, C. S., Stockle, C., & Garcia-Perez, M. (2016a). Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resources, Conservation and Recycling, 110, 99–114. https://doi.org/10.1016/j.resconrec.2016.03.022
Garcia-Nunez, J. A., Ramirez-Contreras, N. E., Rodriguez, D. T., Silva-Lora, E., Frear, C. S., Stockle, C., & Garcia-Perez, M. (2016b). Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resources, Conservation and Recycling, 110, 99–114. https://doi.org/10.1016/j.resconrec.2016.03.022
Garcia-Nunez, J. A., Rodriguez, D. T., Fontanilla, C. A., Ramirez, N. E., Silva Lora, E. E., Frear, C. S., Stockle, C., Amonette, J., & Garcia-Perez, M. (2016a). Evaluation of alternatives for the evolution of palm oil mills into biorefineries. Biomass and Bioenergy, 95, 310– 329. https://doi.org/10.1016/j.biombioe.2016.05.020
Garcia-Nunez, J. A., Rodriguez, D. T., Fontanilla, C. A., Ramirez, N. E., Silva Lora, E. E., Frear, C. S., Stockle, C., Amonette, J., & Garcia-Perez, M. (2016b). Evaluation of alternatives for the evolution of palm oil mills into biorefineries. Biomass and Bioenergy. https://doi.org/10.1016/j.biombioe.2016.05.020
Gerssen-Gondelach, S. J., Saygin, D., Wicke, B., Patel, M. K., & Faaij, A. P. C. (2014). Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renewable and Sustainable Energy Reviews, 40(April), 964–998. https://doi.org/10.1016/j.rser.2014.07.197
Gómez-Navarro, T., & Ribó-Pérez, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90(March), 131–141. https://doi.org/10.1016/j.rser.2018.03.015
Gonzalez-Salazar, M. A., Venturini, M., Poganietz, W. R., Finkenrath, M., Kirsten, T., Acevedo, H., & Spina, P. R. (2016). Development of a technology roadmap for bioenergy exploitation including biofuels, waste-to-energy and power generation & CHP. Applied Energy, 180, 338–352. https://doi.org/10.1016/j.apenergy.2016.07.120
Gozan, M., Aulawy, N., Rahman, S. F., & Budiarto, R. (2018). Techno-Economic Analysis of Biogas Power Plant from POME (Palm Oil Mill Effluent) Oil Recovery from Oil Sludge View project Salt quality improvement View project Techno-Economic Analysis of Biogas Power Plant from POME (Palm Oil Mill Effluent). International Journal of Applied Engineering Research, 13(8), 6151–6157. http://www.ripublication.com
Guercio, A., & Bini, R. (2017). Biomass-fired Organic Rankine Cycle combined heat and power systems. In Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100510-1.00015-6
Hashim, K., Tahiruddin, S., & Asis, A. J. (2012). 8 – Palm and Palm Kernel Oil Production and Processing in Malaysia and Indonesia. Palm Oil, 2008, 235–250. https://doi.org/10.1016/B978-0-9818936-9-3.50011-3
Hossain, M. A., Jewaratnam, J., & Ganesan, P. (2016). Prospect of hydrogen production from oil palm biomass by thermochemical process ??? A review. International Journal of Hydrogen Energy, 41(38), 16637–16655. https://doi.org/10.1016/j.ijhydene.2016.07.104
Hu, X., & Gholizadeh, M. (2019). Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry, 39(x), 109–143. https://doi.org/10.1016/j.jechem.2019.01.024
Huang, Y. F., & Lo, S. L. (2020). Predicting heating value of lignocellulosic biomass based on elemental analysis. Energy, 191(xxxx), 116501. https://doi.org/10.1016/j.energy.2019.116501
Hurskainen, M., & Vainikka, P. (2015). Technology options for large-scale solid-fuel combustion. In Fuel Flexible Energy Generation.
Husain, Z., Zainal, Z. A., & Abdullah, M. Z. (2002). Analysis of biomass-residue-based cogeneration system in palm oil mills. Biomass and Bioenergy, 24(2), 117–124. https://doi.org/10.1016/S0961-9534(02)00101-0
Idris, S. S., Rahman, N. A., & Ismail, K. (2012). Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresource Technology, 123, 581–591. https://doi.org/10.1016/j.biortech.2012.07.065
Index Mundi. (2019). Palm Oil Production by Country in 1000 MT. https://www.indexmundi.com/agriculture/?commodity=palm-oil
International Energy Agency. (2017). Technology Roadmap Delivering Sustainable Bioenergy. In IEA.
IPCC. (2006). Stationary combustion. In IPCC Guidelines for National Greenhouse Gas Inventories. https://doi.org/10.1007/BF00914340
Kowalczyk-Juśko, A. (2017). The influence of the ash from the biomass on the power boiler pollution. Journal of Ecological Engineering, 18(6), 200–204. https://doi.org/10.12911/22998993/76897
Ling-Hoak, O., Keong-Hoe, L., & Khoon-San, C. (2007). Conversion de efluentes y tusas en fertilizante orgánico con cero desperdicios. PALMAS, 28(2), 180–190.
Loh, S. K. (2016). The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2016.08.081
Luk, H. T., Lam, T. Y. G., Oyedun, A. O., Gebreegziabher, T., & Hui, C. W. (2013). Drying of biomass for power generation: A case study on power generation from empty fruit bunch. Energy, 63, 205–215. https://doi.org/10.1016/j.energy.2013.10.056
Malico, I., Nepomuceno Pereira, R., Gonçalves, A. C., & Sousa, A. M. O. (2019). Current status and future perspectives for energy production from solid biomass in the European industry. Renewable and Sustainable Energy Reviews, 112(November 2018), 960–977. https://doi.org/10.1016/j.rser.2019.06.022
Malmgren, A., & Riley, G. (2018). Biomass Power Generation ☆. In Reference Module in Earth Systems and Environmental Sciences (Issue December 2017). Elsevier Inc. https://doi.org/10.1016/b978-0-12-409548-9.11014-0
Mba, O. I., Dumont, M. J., & Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry - A review. Food Bioscience, 10, 26–41. https://doi.org/10.1016/j.fbio.2015.01.003
Medina, J. D. C., Magalhães, A. I., Zamora, H. D., & Melo, J. D. Q. (2019). Oil palm cultivation and production in South America: status and perspectives. Biofuels, Bioproducts and Biorefining, 1–9. https://doi.org/10.1002/bbb.2013
Minagricultura, & UPRA. (2017). Colombia: 16 millones de hectáreas aptas para palma de aceite. Palma de Aceite. https://www.upra.gov.co/sala-de-prensa/noticias/- /asset_publisher/GEKyUuxHYSXZ/content/colombia-16-millones-de-hectareas-aptaspara-palma-de-aceite
Ministerio de Hacienda y Crédito Público. (2017). Decreto 926 de 2017. http://es.presidencia.gov.co/normativa/normativa/DECRETO 926 DEL 01 DE JUNIO DE 2017.pdf
Mohammed, M. A. A., Salmiaton, A., Wan Azlina, W. A. K. G., & Mohamad Amran, M. S. (2012). Gasification of oil palm empty fruit bunches: A characterization and kinetic study. Bioresource Technology, 110, 628–636. https://doi.org/10.1016/j.biortech.2012.01.056
Monroy, E. F. C. (2007). Integración energética en el proceso de extracción de aceite de palma. 28, 93–104.
Montero V, J. C., Díaz R, C. A., Guevara T, F. E., Cepeda R, A. H., & Barrera H, J. C. (2013). Modelo para medición de eficiencia real de producción y administración integrada de información en Planta de Beneficio Producción. In Boletin técnico No. 33 (Issue 33).
Montoya, J., Valdés, C., Chaquea, H., Pecha, M. B., & Chejne, F. (2020). Surplus electricity production and LCOE estimation in Colombian palm oil mills using empty fresh bunches (EFB) as fuel. Energy, 202, 117713. https://doi.org/10.1016/j.energy.2020.117713
Mulugetta, Y., Hertwich, E., Riahi, K., Gibon, T., & Neuhoff, K. (2014). Climate Change 2014: Mitigation of climate change. IPCC Fifth Assessment Report, 527–532. https://doi.org/10.1017/CBO9781107415416
Nanda, S., Mohammad, J., Reddy, S. N., Kozinski, J. A., & Dalai, A. K. (2014). Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery, 4(2), 157–191. https://doi.org/10.1007/s13399-013-0097-z
Nasrin, A. B., Ravi, N., Lim, W. S., Choo, Y. M., & Fadzil, A. M. (2011). Assessment of the Performance and Potential Export Renewable Energy (RE) From Typical Co generation Plants Used in Palm Oil Mills. Journal of Engineering and Applied Sciences, 6(6), 433– 439. https://doi.org/10.3923/jeasci.2011.433.439
Nasution, M. A., Herawan, T., & Rivani, M. (2014). Analysis of palm biomass as electricity from palm oil mills in north sumatera. Energy Procedia, 47, 166–172. https://doi.org/10.1016/j.egypro.2014.01.210
Ninduangdee, P., & Kuprianov, V. I. (2016). A study on combustion of oil palm empty fruit bunch in a fluidized bed using alternative bed materials: Performance, emissions, and time-domain changes in the bed condition. Applied Energy, 176, 34–48. https://doi.org/10.1016/j.apenergy.2016.05.063
Noel, B., & June, W. (1999). Volume I – OIL PALM MILL , SYSTEMS AND PROCESS. Update, I.
Nunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2016). Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews, 53, 235–242. https://doi.org/10.1016/j.rser.2015.08.053
Ohimain, E. I., & Izah, S. C. (2017). A review of biogas production from palm oil mill effluents using different configurations of bioreactors. Renewable and Sustainable Energy Reviews, 70(December 2014), 242–253. https://doi.org/10.1016/j.rser.2016.11.221
OpenEI. (2015). Levelized Cost Calculations | Transparent Cost Database. https://openei.org/apps/TCDB/
Pande, G., Akoh, C. C., & Lai, O. M. (2012). Food Uses of Palm Oil and Its Components. Palm Oil: Production, Processing, Characterization, and Uses, 561–586. https://doi.org/10.1016/B978-0-9818936-9-3.50022-8
Pelaez, C. M. (2010). Buenas prácticas de procesamiento en plantas de beneficio : estudio de caso. 31, 64–73.
Ramirez-Contreras, N. E., Arévalo S, A., & Garcia-Nuñez, J. A. (2015). Inventario de la biomasa disponible en plantas de beneficio para su aprovechamiento y caracterización fisicoquímica de la tusa en Colombia. Revista Palmas, 36(4), 41–54. http://publicaciones.fedepalma.org/index.php/palmas/article/view/11644/11636
Ramirez-contreras, N. E., Munar-florez, D. A., Faaij, P. C., & Garcia-nu, J. A. (2020). The GHG emissions and economic performance of the Colombian palm oil sector ; current status and long-term perspectives. 258. https://doi.org/10.1016/j.jclepro.2020.120757
Ramirez-Contreras, N. E., Munar-Florez, D. A., Garcia-Nuñez, J. A., Mosquera-Montoya, M., & Faaij, A. P. C. (2020). The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives. Journal of Cleaner Production, 258. https://doi.org/10.1016/j.jclepro.2020.120757
Ramirez-Contreras, N. E., Ramírez, Á. S. S., González, E. M. G., & Yañez A., E. E. (2011). Caracterización y manejo de subproductos del beneficio del fruto de palma de aceite. Boletín Técnico No. 30, 30, 1–46. https://doi.org/10.5897/AJB11.3582
Rincon Martinez, J. M., & Silva Lora, E. E. (2015). Bioenergía : Fuentes, conversion y sostenibilidad.
Rivera-Méndez, Y. D., Rodríguez, D. T., & Romero, H. M. (2017). Carbon footprint of the production of oil palm (Elaeis guineensis) fresh fruit bunches in Colombia. Journal of Cleaner Production, 149, 743–750. https://doi.org/10.1016/j.jclepro.2017.02.149
Samiran, N. A., Jaafar, M. N. M., Ng, J. H., Lam, S. S., & Chong, C. T. (2016). Progress in biomass gasification technique - With focus on Malaysian palm biomass for syngas production. Renewable and Sustainable Energy Reviews, 62, 1047–1062. https://doi.org/10.1016/j.rser.2016.04.049
Shafie, S. M., Mahlia, T. M. I., Masjuki, H. H., & Ahmad-Yazid, A. (2012). A review on electricity generation based on biomass residue in Malaysia. Renewable and Sustainable Energy Reviews, 16(8), 5879–5889. https://doi.org/10.1016/j.rser.2012.06.031
SISPA. (2020). Evolución histórica anual del fruto procesado, el aceite de palma y el palmiste extraídos. http://sispa.fedepalma.org/sispaweb/default.aspx?Control=Pages/produccion
Sokhansanj, S. (2011). The Effect of Moisture on Heating Values. Biomass Energy Data Book, C, 1–5. http://cta.ornl.gov/bedb
Solarte-Toro, J. C., Chacón-Pérez, Y., & Cardona-Alzate, C. A. (2018). Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electronic Journal of Biotechnology, 33, 52–62. https://doi.org/10.1016/j.ejbt.2018.03.005
Sommart, K., & Pipatmanomai, S. (2011). Assessment and Improvement of Energy Utilization in Crude Palm Oil Mill. 10, 161–166.
Strzalka, R., Schneider, D., & Eicker, U. (2017). Current status of bioenergy technologies in Germany. Renewable and Sustainable Energy Reviews, 72, 801–820. https://doi.org/10.1016/j.rser.2017.01.091
Tai, Z. S., Hubadillah, S. K., Othman, M. H. D., Dzahir, M. I. H. M., Koo, K. N., Tendot, N. I. S. T. I., Ismail, A. F., Rahman, M. A., Jaafar, J., & Aziz, M. H. A. (2019). Influence of pretreatment temperature of palm oil fuel ash on the properties and performance of green ceramic hollow fiber membranes towards oil/water separation application. Separation and Purification Technology, 264–277. https://doi.org/10.1016/j.seppur.2019.04.046
Taylor, G. (2008). Biofuels and the biorefinery concept. Energy Policy, 36(12), 4406–4409. https://doi.org/10.1016/j.enpol.2008.09.069
Tidball, R., Bluestein, J., Rodriguez, N., & Knoke, S. (2010). Cost and performance assumptions for modeling electricity generation technologies. [NREL] - National Renewable Energy Laboratory. November. https://doi.org/10.2172/993653
Tortosa Masiá, A. A., Buhre, B. J. P., Gupta, R. P., & Wall, T. F. (2007). Characterising ash of biomass and waste. Fuel Processing Technology, 88(11–12), 1071–1081. https://doi.org/10.1016/j.fuproc.2007.06.011
Umar, M. S., Jennings, P., & Urmee, T. (2014). Sustainable electricity generation from oil palm biomass wastes in Malaysia: An industry survey. Energy, 67, 496–505. https://doi.org/10.1016/j.energy.2014.01.067
Universidad Industrial de Santander, Centro de Estudios e Investigaciones Ambientales, Unidad de Planeación Minero Energética - UPME, & Instituto de Hidrología Meteorología y estudios ambientales. (2011). Atlas del Potencial Energético de la Biomasa Residual en Colombia (2011 Bucaramanga (Colombia) : Universidad Industrial de Santander (ed.)).
UPME. (2015). Plan Energetico Nacional Colombia: Ideario Energético 2050. Unidad de Planeación Minero Energética, Republica de Colombia, 184. http://www.upme.gov.co/Docs/PEN/PEN_IdearioEnergetico2050.pdf
UPME. (2019). Metodología de calculo de emisiones de gases de efecto invernadero del sistema interconectado nacional.
USDA. (2018). Oilseeds: World Markets and Trade.
Van Loo, S. (2008). The Handbook of Biomass Combustion and Cofiring (Issue January).
Vargas, D. L., Yáñez A, E. E., García Núñez, J. A., Meneses, A., & Cuellar, M. (2011). Cogeneración con biomasa de palma de aceite en el sistema eléctrico colombiano: barreras, perspectivas y oportunidades. Revista Palmas, 32 No. 3(3), 49–62.
Wolf, J. P., & Dong. (2013). 1 – Biomass combustion for power generation: an introduction. In Biomass Combustion Science, Technology and Engineering. Woodhead Publishing Limited. https://doi.org/10.1533/9780857097439.1.3
Wu, T. Y., Mohammad, A. W., Jahim, J. M., & Anuar, N. (2010). Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. Journal of Environmental Management, 91(7), 1467–1490. https://doi.org/10.1016/j.jenvman.2010.02.008
Yeong, S. K., Idris, Z., & Hassan, H. A. (2012). Palm Oleochemicals in Non-food Applications. Palm Oil: Production, Processing, Characterization, and Uses, 587–624. https://doi.org/10.1016/B978-0-9818936-9-3.50023-X
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.program.spa.fl_str_mv Maestría en Eficiencia Energética y Energías Renovables
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/8adb6275-bd31-4bc3-b128-cd640daa03dd/download
https://repositorio.cuc.edu.co/bitstreams/8e0350b7-1f5f-4dbe-b4ce-358d522a6575/download
https://repositorio.cuc.edu.co/bitstreams/37134174-b663-4973-92aa-38f69d9c6525/download
https://repositorio.cuc.edu.co/bitstreams/6b642cbf-b16d-4849-829e-ea4a21c6ea79/download
https://repositorio.cuc.edu.co/bitstreams/a93c023e-cd6c-4e7d-9bf8-6b791f8b0f38/download
bitstream.checksum.fl_str_mv 934f4ca17e109e0a05eaeaba504d7ce4
e30e9215131d99561d40d6b0abbe9bad
d8f700a57b0ca97058cd324876166085
e7cc973422481756a6f23df99520d5b6
aa293cbe7fb5d0b98a5d886c4a994b8e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760741803360256
spelling Sagastume Gutiérrez, AlexisCabello Eras, Juan JoséBarrera Hernández, Juan Camilo2021-05-26T19:28:10Z2021-05-26T19:28:10Z2021Barrera, J. (2021) Potencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia. Trabajo de maestría. Recuperado de https://hdl.handle.net/11323/8286https://hdl.handle.net/11323/8286Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The energy potential of the residual oil palm biomass generated in seven extraction plants located in northern Colombia is evaluated through a cogeneration system with extraction turbine – condensation. For all the cases analyzed, the available biomass not only covers the energy requirements of the process, but it can also supply a surplus of energy. The energy potential of residual biomass ranges from 22.5 - 46.5 MW per year for the cases studied. For palm oil mills with capacities between 21 – 41 tRFF-1 it is estimated that it is possible to obtain surplus electricity between 1.7 – 8.9 MW, considering that the energy use of the empty fruit bunch as fuel can increase between 40 – 60 % the energy provided by the kernel shell and fiber. Regarding environmental performance, the calculated GHG emissions were 1 – 3 g CO2eq per kWh for the cases studied. By replacing the electricity of the national interconnected system, the energy generated by biomass could mitigate between 214 - 385 g CO2eq per ton of fresh fruit bunch per year. Depending on the availability of the empty fruit bunch, its energy use can increase the replacement of emissions by 60 – 80%. Electricity generation can be developed at a level cost of electricity between 131 – 223 COP kWh-1 for the palm oil mills studied considering a ten-year investment, which could be economically attractive considering that the cost of selling electricity in Colombia stood between 113 - 321 COP kWh-1 for 2019.El potencial energético de la biomasa residual de palma de aceite generada en siete plantas extractoras ubicadas en la Zona Norte de Colombia es evaluado a través de un sistema de cogeneración con turbina de extracción – condensación. Para todos los casos evaluados, la biomasa disponible no solo cubre los requerimientos energéticos del proceso, sino que también puede suplir un excedente de energía. El potencial energético de la biomasa residual oscila entre los 22.5 - 46.5 MW anuales para los casos estudiados. Para plantas extractoras de aceite con capacidades entre 21 – 41 tRFF-1 se estima que es posible obtener excedentes de energía eléctrica entre 1.7 – 8.9 MW, considerando que el aprovechamiento energético de la tusa como combustible puede incrementar entre un 40 – 60 % la energía aportada por el cuesco y la fibra. Respecto al desempeño ambiental, las emisiones de GEI calculadas fueron de 1 – 3 g CO2eq por kWh en las diferentes plantas de aceite. En comparación con la energía eléctrica del sistema interconectado nacional, la electricidad generada por la biomasa residual de la extracción del aceite de palma tiene el potencial de reducir entre 214 - 385 g CO2eq por tonelada de fruto procesado al año. Dependiendo de la disponibilidad de la tusa para su aprovechamiento energético, puede incrementarse la reducción de emisiones entre un 60 – 80%. La generación eléctrica puede desarrollarse con un costo nivelado de electricidad entre 131 – 223 COP kWh-1 para las plantas estudiadas considerando una inversión a diez años, lo cual podría ser económicamente atractivo considerando que el costo de venta de electricidad en Colombia se situó entre los 113 - 321 COP kWh-1 para el año 2019.Barrera Hernández, Juan Camiloapplication/pdfspaCorporación Universidad de la CostaMaestría en Eficiencia Energética y Energías RenovablesAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2BiomassPalm oilPower generationCHPBioenergyBiomasaPalma de aceiteGeneración eléctricaCogeneraciónBioenergíaPotencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de ColombiaTrabajo de grado - MaestríaTextinfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/acceptedVersionAbbas, T., Issa, M., & Ilinca, A. (2020). Biomass Cogeneration Technologies: A Review. Journal of Sustainable Bioenergy Systems, 10(01), 1–15. https://doi.org/10.4236/jsbs.2020.101001Abdullah, N., & Sulaiman, F. (2013). The Oil Palm Wastes in Malysia. In Biomass Now -Sustainable Growth and Use (Vol. 3, Issue 1, pp. 97–103). https://doi.org/10.1016/j.jclepro.2012.04.004AlNouss, A., Mckay, G., & Al-Ansari, T. (2018). Optimum Utilization of Biomass for the Production of Power and Fuels using Gasification. In Computer Aided Chemical Engineering (Vol. 43). Elsevier Masson SAS. https://doi.org/10.1016/B978-0-444-64235- 6.50258-8American Society Mechanical Engineering. (2008). Norma ASME PTC4-2008. In Asme (Vol. 2008).Arrieta, F. R. P., Teixeira, F. N., Yáñez, E., Lora, E., & Castillo, E. (2007). Cogeneration potential in the Columbian palm oil industry: Three case studies. Biomass and Bioenergy, 31(7), 503–511. https://doi.org/10.1016/j.biombioe.2007.01.016Asadullah, M. (2014). Barriers of commercial power generation using biomass gasification gas: A review. Renewable and Sustainable Energy Reviews, 29, 201–215. https://doi.org/10.1016/j.rser.2013.08.074Aziz, M. K. A., Morad, N. A., Wambeck, N., & Shah, M. H. (2011). Optimizing palm biomass energy though size reduction. 2011 4th International Conference on Modeling, Simulation and Applied Optimization, ICMSAO 2011, APRIL. https://doi.org/10.1109/ICMSAO.2011.5775516Aziz, M., Kurniawan, T., Oda, T., & Kashiwagi, T. (2016). Advanced power generation using biomass wastes from palm oil mills. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2016.11.031Banco de la República de Colombia. (2021, January 1). Estadísticas Económicas. https://totoro.banrep.gov.co/estadisticas-economicas/Barrera, J., Ramírez, N., Garcia-Nunez, J. A., & Guevara, F. (2016). Diagnóstico del desempeño en consumo de energía eléctrica en plantas de beneficio en Colombia. Palmas, 37(4), 47– 62.Basu, P. (2006). Combustion and Gasification in Fluidized Beds. In CRC Press. https://doi.org/10.1017/CBO9781107415324.004Bazmi, A. A., Zahedi, G., & Hashim, H. (2011). Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation. Renewable and Sustainable Energy Reviews, 15(1), 574–583. https://doi.org/10.1016/j.rser.2010.09.031Bevan Nyakuma, B., Johari, A., & Ahmad, A. (2013). Thermochemical analysis of palm oil wastes as fuel for biomass gasification. Jurnal Teknologi (Sciences and Engineering), 62(3), 73–76. https://doi.org/10.11113/jt.v62.1891Börjesson, M., & Ahlgren, E. O. (2012). Biomass CHP energy systems: A critical assessment. In Comprehensive Renewable Energy (Vol. 5). Elsevier Ltd. https://doi.org/10.1016/B978- 0-08-087872-0.00508-4Caillat, S., & Vakkilainen, E. (2013). 9 – Large-scale biomass combustion plants: an overview. In Biomass Combustion Science, Technology and Engineering. Woodhead Publishing Limited. https://doi.org/10.1533/9780857097439.3.189Cala A, S. L., Yáñez Angarita, E. E., & García Núñez, J. A. (2011). Recuperación de almendra: Sintonización de columnas de separación neumáticas en plantas de beneficio (Fedepalma (ed.)).Cala Gaitán, G., & Bernal Castillo, G. (2008). Procesos modernos de extracción de aceite de palma (Issue 00442).Cenipalma. (2020). XMAC - Extensión de monitoreo Agroclimático. https://geoportal.cenipalma.org/Chang, S. H. (2014). An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass and Bioenergy, 62, 174–181. https://doi.org/10.1016/j.biombioe.2014.01.002Chiew, Y. L., & Shimada, S. (2013). Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer - A case study of Malaysia. Biomass and Bioenergy, 51, 109–124. https://doi.org/10.1016/j.biombioe.2013.01.012Choong, Y. Y., Chou, K. W., & Norli, I. (2018). Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review. Renewable and Sustainable Energy Reviews, 82(January), 2993–3006. https://doi.org/10.1016/j.rser.2017.10.036Congreso de Colombia. (2014). Ley 1715 de 2014. Diario Oficial, 104.Corley, O. T., & Tinker, J. R. (2003). The Oil Palm. In West African Agriculture (pp. 93–104). Cambridge University Press. https://doi.org/10.1017/CBO9781316530122.010CREG. (2018). Resolución No. 30. In Ministerio de Minas y energia (Issue Mayo, p. 13). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c 4474f05258243005a1191/$FILE/Creg030-2018.pdfCruz, A. V. (2016). Lineamientos para la operación eficiente de sistemas de generación de vapor y reducción de emisiones atmosféricas en plantas de beneficio del sector palmero * Guidelines for an Efficient Operation of Steam Generation Systems and the Reduction of Atmospher. Figura 1, 55–64.Dai, L., Wang, Y., Liu, Y., Ruan, R., He, C., Yu, Z., Jiang, L., Zeng, Z., & Tian, X. (2019). Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 107(January), 20–36. https://doi.org/10.1016/j.rser.2019.02.015Dam, J. E. G. Van. (2015). Oil Palm by-products as biocommodities.Daud, Z. A. M., Kaur, D., & Khosla, P. (2012). 18 – Health and Nutritional Properties of Palm Oil and Its Components. Palm Oil, 545–560. https://doi.org/10.1016/B978-0-9818936-9- 3.50021-6Demirbas, A. (2007). Effects of moisture and hydrogen content on the heating value of fuels. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 29(7), 649– 655. https://doi.org/10.1080/009083190957801Dishington, J. M. (2018, February). Fedepalma, 55 años de gestión gremial para desarrollar y consolidar la agroindustria de la palma de aceite en Colombia. El Palmicutor, 552, 5–7. http://web.fedepalma.org/sites/default/files/files/Fedepalma/semanariopalmero/publicaciones/Boletin-El-Palmicultor-de-febrero-de-2018.pdfEras, J. J. C., Morejón, M. B., Gutiérrez, A. S., García, A. P., Ulloa, M. C., Martínez, F. J. R., & Rueda-Bayona, J. G. (2019a). A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9(1), 15–25. https://doi.org/10.32479/ijeep.7108Eras, J. J. C., Morejón, M. B., Gutiérrez, A. S., García, A. P., Ulloa, M. C., Martínez, F. J. R., & Rueda-Bayona, J. G. (2019b). A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9(1), 15–25. https://doi.org/10.32479/ijeep.7108Fedepalma. (2016). Balance económico del sector palmero colombiano en 2015. Boletín Económico, 8. http://web.fedepalma.org/sites/default/files/files/BTE 2016_en baja.pdfFedepalma. (2019). Statistical Yearbook. https://drive.google.com/file/d/1WOrjaYVXpXGDVmLTQcIfS9fLDCxEymy5/viewFedepalma. (2020). MINIANUARIO ESTADÍSTICO 2020. In Principales cifras de la agroindustria de la palma de aceite en Colombia.Fernández, C. A., García, H., Ramirez C, N. E., & García N, J. A. (2016). Impacto de la clarificación dinámica sobre el proceso de extracción y recuperación de aceite de palma crudo Processes in Crude Palm Oil (Case study ). Revista Palmas, 37(3), 47–64. Garcia-Nunez, J. A., Ramirez-Contreras, N. E., Rodriguez, D. T., Silva-Lora, E., Frear, C. S., Stockle, C., & Garcia-Perez, M. (2016a). Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resources, Conservation and Recycling, 110, 99–114. https://doi.org/10.1016/j.resconrec.2016.03.022Garcia-Nunez, J. A., Ramirez-Contreras, N. E., Rodriguez, D. T., Silva-Lora, E., Frear, C. S., Stockle, C., & Garcia-Perez, M. (2016b). Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resources, Conservation and Recycling, 110, 99–114. https://doi.org/10.1016/j.resconrec.2016.03.022Garcia-Nunez, J. A., Rodriguez, D. T., Fontanilla, C. A., Ramirez, N. E., Silva Lora, E. E., Frear, C. S., Stockle, C., Amonette, J., & Garcia-Perez, M. (2016a). Evaluation of alternatives for the evolution of palm oil mills into biorefineries. Biomass and Bioenergy, 95, 310– 329. https://doi.org/10.1016/j.biombioe.2016.05.020Garcia-Nunez, J. A., Rodriguez, D. T., Fontanilla, C. A., Ramirez, N. E., Silva Lora, E. E., Frear, C. S., Stockle, C., Amonette, J., & Garcia-Perez, M. (2016b). Evaluation of alternatives for the evolution of palm oil mills into biorefineries. Biomass and Bioenergy. https://doi.org/10.1016/j.biombioe.2016.05.020Gerssen-Gondelach, S. J., Saygin, D., Wicke, B., Patel, M. K., & Faaij, A. P. C. (2014). Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renewable and Sustainable Energy Reviews, 40(April), 964–998. https://doi.org/10.1016/j.rser.2014.07.197Gómez-Navarro, T., & Ribó-Pérez, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90(March), 131–141. https://doi.org/10.1016/j.rser.2018.03.015Gonzalez-Salazar, M. A., Venturini, M., Poganietz, W. R., Finkenrath, M., Kirsten, T., Acevedo, H., & Spina, P. R. (2016). Development of a technology roadmap for bioenergy exploitation including biofuels, waste-to-energy and power generation & CHP. Applied Energy, 180, 338–352. https://doi.org/10.1016/j.apenergy.2016.07.120Gozan, M., Aulawy, N., Rahman, S. F., & Budiarto, R. (2018). Techno-Economic Analysis of Biogas Power Plant from POME (Palm Oil Mill Effluent) Oil Recovery from Oil Sludge View project Salt quality improvement View project Techno-Economic Analysis of Biogas Power Plant from POME (Palm Oil Mill Effluent). International Journal of Applied Engineering Research, 13(8), 6151–6157. http://www.ripublication.comGuercio, A., & Bini, R. (2017). Biomass-fired Organic Rankine Cycle combined heat and power systems. In Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100510-1.00015-6Hashim, K., Tahiruddin, S., & Asis, A. J. (2012). 8 – Palm and Palm Kernel Oil Production and Processing in Malaysia and Indonesia. Palm Oil, 2008, 235–250. https://doi.org/10.1016/B978-0-9818936-9-3.50011-3Hossain, M. A., Jewaratnam, J., & Ganesan, P. (2016). Prospect of hydrogen production from oil palm biomass by thermochemical process ??? A review. International Journal of Hydrogen Energy, 41(38), 16637–16655. https://doi.org/10.1016/j.ijhydene.2016.07.104Hu, X., & Gholizadeh, M. (2019). Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry, 39(x), 109–143. https://doi.org/10.1016/j.jechem.2019.01.024Huang, Y. F., & Lo, S. L. (2020). Predicting heating value of lignocellulosic biomass based on elemental analysis. Energy, 191(xxxx), 116501. https://doi.org/10.1016/j.energy.2019.116501Hurskainen, M., & Vainikka, P. (2015). Technology options for large-scale solid-fuel combustion. In Fuel Flexible Energy Generation.Husain, Z., Zainal, Z. A., & Abdullah, M. Z. (2002). Analysis of biomass-residue-based cogeneration system in palm oil mills. Biomass and Bioenergy, 24(2), 117–124. https://doi.org/10.1016/S0961-9534(02)00101-0Idris, S. S., Rahman, N. A., & Ismail, K. (2012). Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresource Technology, 123, 581–591. https://doi.org/10.1016/j.biortech.2012.07.065Index Mundi. (2019). Palm Oil Production by Country in 1000 MT. https://www.indexmundi.com/agriculture/?commodity=palm-oilInternational Energy Agency. (2017). Technology Roadmap Delivering Sustainable Bioenergy. In IEA.IPCC. (2006). Stationary combustion. In IPCC Guidelines for National Greenhouse Gas Inventories. https://doi.org/10.1007/BF00914340Kowalczyk-Juśko, A. (2017). The influence of the ash from the biomass on the power boiler pollution. Journal of Ecological Engineering, 18(6), 200–204. https://doi.org/10.12911/22998993/76897Ling-Hoak, O., Keong-Hoe, L., & Khoon-San, C. (2007). Conversion de efluentes y tusas en fertilizante orgánico con cero desperdicios. PALMAS, 28(2), 180–190.Loh, S. K. (2016). The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2016.08.081Luk, H. T., Lam, T. Y. G., Oyedun, A. O., Gebreegziabher, T., & Hui, C. W. (2013). Drying of biomass for power generation: A case study on power generation from empty fruit bunch. Energy, 63, 205–215. https://doi.org/10.1016/j.energy.2013.10.056Malico, I., Nepomuceno Pereira, R., Gonçalves, A. C., & Sousa, A. M. O. (2019). Current status and future perspectives for energy production from solid biomass in the European industry. Renewable and Sustainable Energy Reviews, 112(November 2018), 960–977. https://doi.org/10.1016/j.rser.2019.06.022Malmgren, A., & Riley, G. (2018). Biomass Power Generation ☆. In Reference Module in Earth Systems and Environmental Sciences (Issue December 2017). Elsevier Inc. https://doi.org/10.1016/b978-0-12-409548-9.11014-0Mba, O. I., Dumont, M. J., & Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry - A review. Food Bioscience, 10, 26–41. https://doi.org/10.1016/j.fbio.2015.01.003Medina, J. D. C., Magalhães, A. I., Zamora, H. D., & Melo, J. D. Q. (2019). Oil palm cultivation and production in South America: status and perspectives. Biofuels, Bioproducts and Biorefining, 1–9. https://doi.org/10.1002/bbb.2013Minagricultura, & UPRA. (2017). Colombia: 16 millones de hectáreas aptas para palma de aceite. Palma de Aceite. https://www.upra.gov.co/sala-de-prensa/noticias/- /asset_publisher/GEKyUuxHYSXZ/content/colombia-16-millones-de-hectareas-aptaspara-palma-de-aceiteMinisterio de Hacienda y Crédito Público. (2017). Decreto 926 de 2017. http://es.presidencia.gov.co/normativa/normativa/DECRETO 926 DEL 01 DE JUNIO DE 2017.pdfMohammed, M. A. A., Salmiaton, A., Wan Azlina, W. A. K. G., & Mohamad Amran, M. S. (2012). Gasification of oil palm empty fruit bunches: A characterization and kinetic study. Bioresource Technology, 110, 628–636. https://doi.org/10.1016/j.biortech.2012.01.056Monroy, E. F. C. (2007). Integración energética en el proceso de extracción de aceite de palma. 28, 93–104.Montero V, J. C., Díaz R, C. A., Guevara T, F. E., Cepeda R, A. H., & Barrera H, J. C. (2013). Modelo para medición de eficiencia real de producción y administración integrada de información en Planta de Beneficio Producción. In Boletin técnico No. 33 (Issue 33).Montoya, J., Valdés, C., Chaquea, H., Pecha, M. B., & Chejne, F. (2020). Surplus electricity production and LCOE estimation in Colombian palm oil mills using empty fresh bunches (EFB) as fuel. Energy, 202, 117713. https://doi.org/10.1016/j.energy.2020.117713Mulugetta, Y., Hertwich, E., Riahi, K., Gibon, T., & Neuhoff, K. (2014). Climate Change 2014: Mitigation of climate change. IPCC Fifth Assessment Report, 527–532. https://doi.org/10.1017/CBO9781107415416Nanda, S., Mohammad, J., Reddy, S. N., Kozinski, J. A., & Dalai, A. K. (2014). Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery, 4(2), 157–191. https://doi.org/10.1007/s13399-013-0097-zNasrin, A. B., Ravi, N., Lim, W. S., Choo, Y. M., & Fadzil, A. M. (2011). Assessment of the Performance and Potential Export Renewable Energy (RE) From Typical Co generation Plants Used in Palm Oil Mills. Journal of Engineering and Applied Sciences, 6(6), 433– 439. https://doi.org/10.3923/jeasci.2011.433.439Nasution, M. A., Herawan, T., & Rivani, M. (2014). Analysis of palm biomass as electricity from palm oil mills in north sumatera. Energy Procedia, 47, 166–172. https://doi.org/10.1016/j.egypro.2014.01.210Ninduangdee, P., & Kuprianov, V. I. (2016). A study on combustion of oil palm empty fruit bunch in a fluidized bed using alternative bed materials: Performance, emissions, and time-domain changes in the bed condition. Applied Energy, 176, 34–48. https://doi.org/10.1016/j.apenergy.2016.05.063Noel, B., & June, W. (1999). Volume I – OIL PALM MILL , SYSTEMS AND PROCESS. Update, I.Nunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2016). Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews, 53, 235–242. https://doi.org/10.1016/j.rser.2015.08.053Ohimain, E. I., & Izah, S. C. (2017). A review of biogas production from palm oil mill effluents using different configurations of bioreactors. Renewable and Sustainable Energy Reviews, 70(December 2014), 242–253. https://doi.org/10.1016/j.rser.2016.11.221OpenEI. (2015). Levelized Cost Calculations | Transparent Cost Database. https://openei.org/apps/TCDB/Pande, G., Akoh, C. C., & Lai, O. M. (2012). Food Uses of Palm Oil and Its Components. Palm Oil: Production, Processing, Characterization, and Uses, 561–586. https://doi.org/10.1016/B978-0-9818936-9-3.50022-8Pelaez, C. M. (2010). Buenas prácticas de procesamiento en plantas de beneficio : estudio de caso. 31, 64–73.Ramirez-Contreras, N. E., Arévalo S, A., & Garcia-Nuñez, J. A. (2015). Inventario de la biomasa disponible en plantas de beneficio para su aprovechamiento y caracterización fisicoquímica de la tusa en Colombia. Revista Palmas, 36(4), 41–54. http://publicaciones.fedepalma.org/index.php/palmas/article/view/11644/11636Ramirez-contreras, N. E., Munar-florez, D. A., Faaij, P. C., & Garcia-nu, J. A. (2020). The GHG emissions and economic performance of the Colombian palm oil sector ; current status and long-term perspectives. 258. https://doi.org/10.1016/j.jclepro.2020.120757Ramirez-Contreras, N. E., Munar-Florez, D. A., Garcia-Nuñez, J. A., Mosquera-Montoya, M., & Faaij, A. P. C. (2020). The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives. Journal of Cleaner Production, 258. https://doi.org/10.1016/j.jclepro.2020.120757Ramirez-Contreras, N. E., Ramírez, Á. S. S., González, E. M. G., & Yañez A., E. E. (2011). Caracterización y manejo de subproductos del beneficio del fruto de palma de aceite. Boletín Técnico No. 30, 30, 1–46. https://doi.org/10.5897/AJB11.3582Rincon Martinez, J. M., & Silva Lora, E. E. (2015). Bioenergía : Fuentes, conversion y sostenibilidad.Rivera-Méndez, Y. D., Rodríguez, D. T., & Romero, H. M. (2017). Carbon footprint of the production of oil palm (Elaeis guineensis) fresh fruit bunches in Colombia. Journal of Cleaner Production, 149, 743–750. https://doi.org/10.1016/j.jclepro.2017.02.149Samiran, N. A., Jaafar, M. N. M., Ng, J. H., Lam, S. S., & Chong, C. T. (2016). Progress in biomass gasification technique - With focus on Malaysian palm biomass for syngas production. Renewable and Sustainable Energy Reviews, 62, 1047–1062. https://doi.org/10.1016/j.rser.2016.04.049Shafie, S. M., Mahlia, T. M. I., Masjuki, H. H., & Ahmad-Yazid, A. (2012). A review on electricity generation based on biomass residue in Malaysia. Renewable and Sustainable Energy Reviews, 16(8), 5879–5889. https://doi.org/10.1016/j.rser.2012.06.031SISPA. (2020). Evolución histórica anual del fruto procesado, el aceite de palma y el palmiste extraídos. http://sispa.fedepalma.org/sispaweb/default.aspx?Control=Pages/produccionSokhansanj, S. (2011). The Effect of Moisture on Heating Values. Biomass Energy Data Book, C, 1–5. http://cta.ornl.gov/bedbSolarte-Toro, J. C., Chacón-Pérez, Y., & Cardona-Alzate, C. A. (2018). Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electronic Journal of Biotechnology, 33, 52–62. https://doi.org/10.1016/j.ejbt.2018.03.005Sommart, K., & Pipatmanomai, S. (2011). Assessment and Improvement of Energy Utilization in Crude Palm Oil Mill. 10, 161–166.Strzalka, R., Schneider, D., & Eicker, U. (2017). Current status of bioenergy technologies in Germany. Renewable and Sustainable Energy Reviews, 72, 801–820. https://doi.org/10.1016/j.rser.2017.01.091Tai, Z. S., Hubadillah, S. K., Othman, M. H. D., Dzahir, M. I. H. M., Koo, K. N., Tendot, N. I. S. T. I., Ismail, A. F., Rahman, M. A., Jaafar, J., & Aziz, M. H. A. (2019). Influence of pretreatment temperature of palm oil fuel ash on the properties and performance of green ceramic hollow fiber membranes towards oil/water separation application. Separation and Purification Technology, 264–277. https://doi.org/10.1016/j.seppur.2019.04.046Taylor, G. (2008). Biofuels and the biorefinery concept. Energy Policy, 36(12), 4406–4409. https://doi.org/10.1016/j.enpol.2008.09.069Tidball, R., Bluestein, J., Rodriguez, N., & Knoke, S. (2010). Cost and performance assumptions for modeling electricity generation technologies. [NREL] - National Renewable Energy Laboratory. November. https://doi.org/10.2172/993653Tortosa Masiá, A. A., Buhre, B. J. P., Gupta, R. P., & Wall, T. F. (2007). Characterising ash of biomass and waste. Fuel Processing Technology, 88(11–12), 1071–1081. https://doi.org/10.1016/j.fuproc.2007.06.011Umar, M. S., Jennings, P., & Urmee, T. (2014). Sustainable electricity generation from oil palm biomass wastes in Malaysia: An industry survey. Energy, 67, 496–505. https://doi.org/10.1016/j.energy.2014.01.067Universidad Industrial de Santander, Centro de Estudios e Investigaciones Ambientales, Unidad de Planeación Minero Energética - UPME, & Instituto de Hidrología Meteorología y estudios ambientales. (2011). Atlas del Potencial Energético de la Biomasa Residual en Colombia (2011 Bucaramanga (Colombia) : Universidad Industrial de Santander (ed.)).UPME. (2015). Plan Energetico Nacional Colombia: Ideario Energético 2050. Unidad de Planeación Minero Energética, Republica de Colombia, 184. http://www.upme.gov.co/Docs/PEN/PEN_IdearioEnergetico2050.pdfUPME. (2019). Metodología de calculo de emisiones de gases de efecto invernadero del sistema interconectado nacional.USDA. (2018). Oilseeds: World Markets and Trade.Van Loo, S. (2008). The Handbook of Biomass Combustion and Cofiring (Issue January).Vargas, D. L., Yáñez A, E. E., García Núñez, J. A., Meneses, A., & Cuellar, M. (2011). Cogeneración con biomasa de palma de aceite en el sistema eléctrico colombiano: barreras, perspectivas y oportunidades. Revista Palmas, 32 No. 3(3), 49–62.Wolf, J. P., & Dong. (2013). 1 – Biomass combustion for power generation: an introduction. In Biomass Combustion Science, Technology and Engineering. Woodhead Publishing Limited. https://doi.org/10.1533/9780857097439.1.3Wu, T. Y., Mohammad, A. W., Jahim, J. M., & Anuar, N. (2010). Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. Journal of Environmental Management, 91(7), 1467–1490. https://doi.org/10.1016/j.jenvman.2010.02.008Yeong, S. K., Idris, Z., & Hassan, H. A. (2012). Palm Oleochemicals in Non-food Applications. Palm Oil: Production, Processing, Characterization, and Uses, 587–624. https://doi.org/10.1016/B978-0-9818936-9-3.50023-XPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/8adb6275-bd31-4bc3-b128-cd640daa03dd/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8e0350b7-1f5f-4dbe-b4ce-358d522a6575/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALPotencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia.pdfPotencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia.pdfapplication/pdf1919072https://repositorio.cuc.edu.co/bitstreams/37134174-b663-4973-92aa-38f69d9c6525/downloadd8f700a57b0ca97058cd324876166085MD51THUMBNAILPotencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia.pdf.jpgPotencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia.pdf.jpgimage/jpeg29129https://repositorio.cuc.edu.co/bitstreams/6b642cbf-b16d-4849-829e-ea4a21c6ea79/downloade7cc973422481756a6f23df99520d5b6MD54TEXTPotencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia.pdf.txtPotencial de generación de energía eléctrica a partir de la biomasa residual del proceso de extracción de palma de aceite en la zona norte de Colombia.pdf.txttext/plain139151https://repositorio.cuc.edu.co/bitstreams/a93c023e-cd6c-4e7d-9bf8-6b791f8b0f38/downloadaa293cbe7fb5d0b98a5d886c4a994b8eMD5511323/8286oai:repositorio.cuc.edu.co:11323/82862024-09-17 10:55:11.995http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==