Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia)
Municipal solid remains an issue that needs to be addressed globally towards a more circular economy and lower environmental impacts. In Colombia, over 96% of municipal solid wastes are landfilled, with little recycling or revalorisation of wastes and several environmental implications. With the tec...
- Autores:
-
Sagastume, Alexis
MENDOZA FANDIÑO, JORGE MARIO
Cabello Eras, Juan José
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9052
- Acceso en línea:
- https://hdl.handle.net/11323/9052
https://doi.org/10.1080/19397038.2021.1993378
https://repositorio.cuc.edu.co/
- Palabra clave:
- Municipal solid wastes
Waste-to-energy
Renewable energy
- Rights
- embargoedAccess
- License
- Copyright © 2022 Informa UK Limited
id |
RCUC2_b974fe122dc0f1be9e19ba125025b8bc |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9052 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia) |
title |
Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia) |
spellingShingle |
Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia) Municipal solid wastes Waste-to-energy Renewable energy |
title_short |
Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia) |
title_full |
Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia) |
title_fullStr |
Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia) |
title_full_unstemmed |
Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia) |
title_sort |
Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia) |
dc.creator.fl_str_mv |
Sagastume, Alexis MENDOZA FANDIÑO, JORGE MARIO Cabello Eras, Juan José |
dc.contributor.author.spa.fl_str_mv |
Sagastume, Alexis MENDOZA FANDIÑO, JORGE MARIO Cabello Eras, Juan José |
dc.subject.proposal.eng.fl_str_mv |
Municipal solid wastes Waste-to-energy Renewable energy |
topic |
Municipal solid wastes Waste-to-energy Renewable energy |
description |
Municipal solid remains an issue that needs to be addressed globally towards a more circular economy and lower environmental impacts. In Colombia, over 96% of municipal solid wastes are landfilled, with little recycling or revalorisation of wastes and several environmental implications. With the technological development of different waste-to-energy routes, the energy revalorisation of solid wastes is increasingly becoming an attractive business opportunity. The waste-to-energy potential of the Atlantic Department (Colombia) was estimated based on the characteristics and daily availability of municipal solid wastes for different technologic routes. The implementation of the technological routes discussed could replace from 1 to 49 % of the demand for energy carriers like natural gas, electricity, or gasoline. This energy potential could replace from 2 to 106% of the energy demanded by the power generation, transport, residential, industrial, and commercial sectors. Furthermore, these technology routes could reduce greenhouse gas emissions by 46 to 92% of the greenhouse gas emissions resulting from landfilling. These results stress the need to upgrade energy policies in the country and to introduce new incentives to overcome economic and other barriers precluding the widespread use of waste-to-energy technologies. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-10-26 |
dc.date.accessioned.none.fl_str_mv |
2022-03-07T13:43:26Z |
dc.date.available.none.fl_str_mv |
2022-10-26 2022-03-07T13:43:26Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Alexis Sagastume Gutiérrez, Jorge M. Mendoza Fandiño & Juan J. Cabello Eras (2021) Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia), International Journal of Sustainable Engineering, 14:6, 1809-1825, DOI: 10.1080/19397038.2021.19933 |
dc.identifier.issn.spa.fl_str_mv |
1939-7038 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9052 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1080/19397038.2021.1993378 |
dc.identifier.doi.spa.fl_str_mv |
10.1080/19397038.2021.1993378 |
dc.identifier.eissn.spa.fl_str_mv |
1939-7046 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Alexis Sagastume Gutiérrez, Jorge M. Mendoza Fandiño & Juan J. Cabello Eras (2021) Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia), International Journal of Sustainable Engineering, 14:6, 1809-1825, DOI: 10.1080/19397038.2021.19933 1939-7038 10.1080/19397038.2021.1993378 1939-7046 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9052 https://doi.org/10.1080/19397038.2021.1993378 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
International Journal of Sustainable Engineering |
dc.relation.references.spa.fl_str_mv |
Alzate, S., B. Restrepo-Cuestas, and Á. Jaramillo-Duque. 2019. “Municipal Solid Waste as A Source of Electric Power Generation in Colombia: A Techno-economic Evaluation under Different Scenarios.” Resources 8 (1): 1–16. . Alzate-Arias, S., Á. Jaramillo-Duque, F. Villada, and B. Restrepo-Cuestas. 2018. “Assessment of Government Incentives for Energy From waste in Colombia.” Sustainability 10 (4): 1–16. . Angelidaki, I., L. Xie, G. Luo, Y. Zhang, H. Oechsner, A. Lemmer, R. Munoz, and P. G. Kougias. 2019. “Biogas Upgrading: Current and Emerging Technologies”. 2nd. In Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, 2nd ed., pp. 817–843. Elsevier. . Annepu, R. K. 2012. Sustainable Solid Waste Management in India. In Department of Earth and Environmental Engineering at Columbia University. New York. http://www.seas.columbia.edu/earth/wtert/sofos/SustainableSolidWasteManagementinIndia_Final.pdf Arias-Gaviria, J., S. X. Carvajal-Quintero, and S. Arango-Aramburo. 2019. “Understanding Dynamics and Policy for Renewable Energy Diffusion in Colombia.” Renew. Energy 139: 1111–1119. . Barampouti, E. M., S. Mai, D. Malamis, K. Moustakas, and M. Loizidou. 2019. “Liquid Biofuels from the Organic Fraction of Municipal Solid Waste: A Review.” Renew. Sustain. Energy Rev 110: 298–314. . Basu, P. 2013. “Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory, Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory.” Academic Press. . Beyene, H. D., A. A. Werkneh, and T. G. Ambaye. 2018. “Current Updates on Waste to Energy (Wte) Technologies: A Review. Renew.” Energy Focus 24: 1–11. . Bolsa Mercantil de Colombia, 2016. Mercado de gas natural. Boundy, B., S. W. Diegel, L. Wright, and S. C. Davis. 2011. Biomas Energy Data Book. 4th ed. U.S.: Department of Energy, Tenesse. Browne, J. D., E. Allen, and J. D. Murphy. 2014. “Assessing the Variability in Biomethane Production from the Organic Fraction of Municipal Solid Waste in Batch and Continuous Operation.” Applied Energy 128: 307–314. . Brunner, P. H., and H. Rechberger. 2015. “Waste to Energy - Key Element for Sustainable Waste Management.” Waste Manag 37: 3–12. . Cabello, J. J., M. Balbis, A. Sagastume, A. Pardo, M. J. Cabello, F. J. Rey, and J. G. Rueda-Bayona. 2019. “A Look to the Electricity Generation from Non-conventional Renewable Energy Sources in Colombia.” Int. J. Energy Econ. Policy 9. . Callegari, A., S. Bolognesi, D. Cecconet, and A. G. Capodaglio. 2020. “Production Technologies, Current Role, and Future Prospects of Biofuels Feedstocks: A State-of-the-art Review.” Crit. Rev. Environ. Sci. Technol 50 (4): 384–436. . Campuzano, R., and S. González-Martínez. 2016. “Characteristics of the Organic Fraction of Municipal Solid Waste and Methane Production: A Review, Waste Management.” Elsevier Ltd. . Castillo, M., E. F. Cristancho, and D. E. Victor Arellano, A. 2006. “Study of the Operational Conditions for Anaerobic Digestion of Urban Solid Wastes.” Waste Manag 26 (5): 546–556. . CEIC, 2020. Colombia | CO: Discount Rate: End of Period | Economic Indicators [WWW Document]. Money Mark. Policy Rates Annu. Cengel, Y., M. Boles, and M. Kanoglu. 2019. Thermodynamics: An Engineering Approach. 9th ed. New York: McGraw-Hill Education. Chen, D., L. Yin, H. Wang, and P. He. 2014. “Pyrolysis Technologies for Municipal Solid Waste: A Review.” Waste Manag 34 (12): 2466–2486. . Cheng, H., and Y. Hu. 2010. “Municipal Solid Waste (MSW) as a Renewable Source of Energy: Current and Future Practices in China.” Bioresour. Technol 101 (11): 3816–3824. . Cheng, H., Y. Zhang, A. Meng, and Q. Li. 2007. “Municipal Solid Waste Fueled Power Generation in China: A Case Study of Waste-to-energy in Changchun City.” Environmental Science & Technology 41 (21): 7509–7515. . Chifari, R., S. Lo Piano, S. Matsumoto, and T. Tasaki. 2017. “Does Recyclable Separation Reduce the Cost of Municipal Waste Management in Japan?” Waste Manag 60: 32–41. . Concentra, 2020. Consumo y suscriptores por departamento | Concentra. Informes de Gas Natural [WWW Document]. Congreso de la República de Colombia, 2015. Ley 1753 de 2015. Colombia. Council, W. E., 2016. World Energy Resources | 2016, World Energy Resources 2016. World Energy Council, London, United Kingdom. Accessed 25 Mar 2020 http://www.worldenergy.org/wp-content/uploads/2013/09/Complete_WER_2013_Survey.pdf Dalmo, F. C., N. M. Simão, H. Q. Lima, A. C. de, Medina Jimenez, S. Nebra, G. Martins, R. Palacios-Bereche, and P. Henrique de Mello Sant’Ana. 2019. “Energy Recovery Overview of Municipal Solid Waste in São Paulo State, Brazil.” J. Clean. Prod 212: 461–474. . Dang, Y., D. Sun, T. L. Woodard, L.-Y. Wang, K. P. Nevin, and D. E. Holmes. 2017. “Stimulation of the Anaerobic Digestion of the Dry Organic Fraction of Municipal Solid Waste (OFMSW) with Carbon-based Conductive Materials.” Bioresource Technology 238: 30–38. . Davis, M., A. Moronkeji, M. Ahiduzzaman, and A. Kumar. 2020. “Assessment of Renewable Energy Transition Pathways for a Fossil Fuel-dependent Electricity-producing Jurisdiction.” Energy Sustain. Dev 59: 243–261. . De Morais Lima, P., F. Olivo, P. L. Paulo, V. Schalch, and C. Cimpan. 2019. “Life Cycle Assessment of Prospective MSW Management Based on Integrated Management Planning in Campo Grande, Brazil.” Waste Manag 90: 59–71. . Dereli, R. K., M. E. Ersahin, C. Y. Gomec, I. Ozturk, and O. Ozdemir. 2010. “Co-digestion of the Organic Fraction of Municipal Solid Waste with Primary Sludge at a Municipal Wastewater Treatment Plant in Turkey.” Waste Manag. Res 28 (5): 404–410. . Di Maria, F., and C. Micale. 2015. “Life Cycle Analysis of Incineration Compared to Anaerobic Digestion Followed by Composting for Managing Organic Waste: The Influence of System Components for an Italian District.” The International Journal of Life Cycle Assessment 20 (3): 377–388. . Ding, Y., J. Zhao, J.-W. Liu, J. Zhou, L. Cheng, J. Zhao, Z. Shao, et al. 2021. “A Review of China’s Municipal Solid Waste (MSW) and Comparison with International Regions: Management and Technologies in Treatment and Resource Utilization.” Journal of Cleaner Production 293: 126144. . Dong, J., Y. Tang, A. Nzihou, Y. Chi, E. Weiss-Hortala, and M. Ni. 2018. “Life Cycle Assessment of Pyrolysis, Gasification and Incineration Waste-to-energy Technologies: Theoretical Analysis and Case Study of Commercial Plants.” Sci. Total Environ. J 626: 744–753. . EPA, 2021. Basic Information about Landfill Gas [WWW Document]. Landfill Methane Outreach Progr. CONTACT US. Escamilla-García, P. E., R. H. Camarillo-López, R. Carrasco-Hernández, E. Fernández-Rodríguez, and J. M. Legal-Hernández. 2020. “Technical and Economic Analysis of Energy Generation from Waste Incineration in Mexico.” Energy Strateg. Rev 31: 100542. . European Parliament. 2008. “Directive 2008/122/EC of the European Parliament and of the Council.” Official Journal of the European Union, L312, 3–30. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN. Federación Nacional de Biomcombustible, 2020. Precio De Alcohol Carburtante (Etanol) [WWW Document]. Estadísticas. Accessed 19 Jan 2021. https://www.fedebiocombustibles.com/estadistica-precios-titulo-Alcohol_Carburante_(Etanol).htm Gabriel, C. A., J. Kirkwood, S. Walton, and E. L. Rose. 2016. “How Do Developing Country Constraints Affect Renewable Energy Entrepreneurs? Energy Sustain.” Dev 35: 52–66. . Gebreslassie, M. G., H. B. Gebreyesus, M. T. Gebretsadik, S. T. Bahta, and S. E. Birkie. 2020. “Characterization of Municipal Solid Waste’s Potential for Power Generation at Mekelle City as a Waste Minimisation Strategy.” Int. J. Sustain. Eng 13 (1): 68–75. . Ghosh, P., S. Sengupta, L. Singh, and A. Sahay. 2020. “Life Cycle Assessment of Waste-to-bioenergy Processes: A Review.” In Bioreactors, edited by L. Singh, A. Yousuf, and D. M. Mahapatra, 105–122. Amsterdam, Netherlands: Elsevier. . Giusti, L. 2009. “A Review of Waste Management Practices and Their Impact on Human Health.” Waste Manag 29 (8): 2227–2239. . Gobierno Nacional, 2014. Ley 1715, Congreso de la República de Colombia. Götz, M., J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert, and T. Kolb. 2016. “Renewable Power-to-Gas: A Technological and Economic Review.” Renewable Energy 85: 1371–1390. . Guevara, P., and D. M. Rodriguez. 2013. “Area Metropolitana de Barranquilla.” In CCAC Municipal Solid Waste Initiative. Vienna, Austria. https://www.waste.ccacoalition.org/sites/default/files/files/events_documents/PriscilaGuevara-PRESENTACIONVIENA-AUSTRIARESIDUOS-DR.pdf Guo, M., W. Song, and J. Buhain. 2015. “Bioenergy and Biofuels: History, Status, and Perspective.” Renew. Sustain. Energy Rev 42: 712–725. . He, Z., J. Xiong, T. S. Ng, B. Fan, and C. A. Shoemaker. 2017. “Managing Competitive Municipal Solid Waste Treatment Systems: An Agent-based Approach.” European Journal of Operational Research 263 (3): 1063–1077. . Holmgren, J., 2014. The Road to Awesome [WWW Document]. Lanzatech. Hoornweg, D., and P. Bhada-Tata. 2012. What a Waste: A Global Review of Solid Waste Management. Washington: World Bank. IDEAM. 2016. Inventario nacional y departamental de gases efecto invernadero. Colombia: Instituto de Hidrología, Meteorología y Estudios Ambientales. IEA. 2017. Technology Roadmap. Delivering sustainable bioenergy. Paris, France: IEA Publications. IEA, 2020. Total Energy Supply (TES) by Source, World 1990-2018 [WWW Document]. Data Stat. URL https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energysupply&indicator=TPESbySource (accessed 29 12 20). Interstate Waste Technologies. 2017. Overview of IWT’s Waste to Ethanol Project. Los Angeles. Jaiswal, A., and S. Kumar. 2019. “Waste Legislation across the Globe: An Overview.” In Current Developments in Biotechnology and Bioengineering: Waste Treatment Processes for Energy Generation, 11–30. Amsterdam, Netherlands: Elsevier. . Karagiannidis, A., and G. Perkoulidis. 2009. “A Multi-criteria Ranking of Different Technologies for the Anaerobic Digestion for Energy Recovery of the Organic Fraction of Municipal Solid Wastes.” Bioresource Technology 100 (8): 2355–2360. . Kumar, A., and S. R. Samadder. 2017. “A Review on Technological Options of Waste to Energy for Effective Management of Municipal Solid Waste.” Waste Manag 69: 407–422. . Kumar Tyagi, V., L. A. Fdez-Güelfo, Y. Zhou, C. J. Álvarez-Gallego, L. I. Romero Garcia, and W. J. Ng, 2018. Anaerobic Co-digestion of Organic Fraction of Municipal Solid Waste (OFMSW): Progress and Challenges. Renewable and Sustainable Energy Reviews 93: 380–399. Kyriakis, E., C. Psomopoulos, and K. Kalkanis. 2019. “Investigating the Correlation of Purchase Power Parity (PPP) with the Adopted Waste Management Method in EU28.” Soc. Sci 8 (5): 162. . Larsson, A., I. Gunnasrsson, and F. Tengberg, 2019. The GoBiGas project demonstration of the production of biomethane from biomass via gasification. Leme, M. M. V., M. H. Rocha, E. E. S. Lora, O. J. Venturini, B. M. Lopes, and C. H. Ferreira. 2014. “Techno-economic Analysis and Environmental Impact Assessment of Energy Recovery from Municipal Solid Waste (MSW) in Brazil.” Resour. Conserv. Recycl 87: 8–20. . Li, Y., X. Zhao, Y. Li, and X. Li. 2015. “Waste Incineration Industry and Development Policies in China.” Waste Manag 46: 234–241. . Liebetrau, J., T. Reinelt, A. Agostini, B. Linke, and J. D. Murphy, 2017. Methane Emissions from Biogas Plants. Methods for measurement, results and effect on greenhouse gas balance of electricity produced. IEA Bioenergy. Lombardi, L., E. Carnevale, and A. Corti. 2015. “A Review of Technologies and Performances of Thermal Treatment Systems for Energy Recovery from Waste.” Waste Manag 37: 26–44. . Lu, J. W., S. Zhang, J. Hai, and M. Lei. 2017. “Status and Perspectives of Municipal Solid Waste Incineration in China: A Comparison with Developed Regions.” Waste Manag 69: 170–186. . Mainali, B., S. Pachauri, N. D. Rao, and S. Silveira. 2014. “Assessing Rural Energy Sustainability in Developing Countries.” Energy Sustain. Dev 19: 15–28. . Malinauskaite, J., H. Jouhara, D. Czajczyńska, P. Stanchev, E. Katsou, P. Rostkowski, R. J. Thorne, et al. 2017. “Municipal Solid Waste Management and Waste-to-energy in the Context of a Circular Economy and Energy Recycling in Europe.” Energy 141: 2013–2044. . Marchettini, N., R. Ridolfi, and M. Rustici. 2007. “An Environmental Analysis for Comparing Waste Management Options and Strategies.” Waste Manag 27 (4): 562–571. . Melo, A. I. 2014. “Vista de Generación de residuos sólidos en el municipio de Galapa (Atlántico) y su aprovechamiento como forma de minimizar la problemática ambiental.” Rev. INGE CUC 10: 89–96. MINMINAS. 2018. Boletín Estadístico Trimestre II De 2018 Abril a Junio. Bogota, Colombia: MINISTERIO DE MINAS Y ENERGIA (MINMINAS). MINVIVIENDA. 2016. Resolución 596 De 2016. Bogotá, Colombia. MINVIVIENDA. 2018. Decreto 2412. Bogotá, Colombia. Mohee, R., and A. Mudhoo. 2012. “Energy from Biomass in Mauritius: Overview of Research and Applications”. In Waste to Energy. Opportunities and Challenges for Developing and Transition Economies, edited by A. Karagiannidis, 297–322. London, United Kingdom. . Mukherjee, C., J. Denney, E. G. Mbonimpa, J. Slagley, and R. Bhowmik. 2020. “A Review on Municipal Solid Waste-to-energy Trends in the USA.” Renew. Sustain. Energy Rev 119: 109512. . Murphy, J. D., and E. McKeogh. 2004. “Technical, Economic and Environmental Analysis of Energy Production from Municipal Solid Waste.” Renew. Energy 29 (7): 1043–1057. . Ndukwu, M. C., D. I. Onwude, L. Bennamoun, F. I. Abam, M. Simo-Tagne, I. T. Horsfall, and T. A. Briggs. 2020. “Nigeria’s Energy Deficit: The Challenges and Eco- Friendly Approach in Reducing the Energy Gap.” Int. J. Sustain. Eng 1–18. . Nguyen, H. H., S. Heaven, and C. Banks. 2014. “Energy Potential from the Anaerobic Digestion of Food Waste in Municipal Solid Waste Stream of Urban Areas in Vietnam.” Int. J. Energy Environ. Eng 5 (4): 365–374. . Nielsen, M., O.-K. Nielsen, and M. Thomsen. 2010. “Emissions from Decentralised CHP Plants 2007 - Energinet.dk.” In Environmental Project No, 07/1882. Aarhus, Denmark: National Environmental Research Institute. Nikkhah, A., I. Bagheri, C. Psomopoulos, H. Payman, H. Zareiforoush, M. El, H. Assad, A. Bakhshipour, and S. Ghnimi. 2019. “Energy Sources, Part A: Recovery, Utilization, and Environmental Effects Sustainable Second-generation Biofuel Production Potential in a Developing Country Case Study.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. Nzihou, A., N. J. Themelis, M. Kemiha, and Y. Benhamou. 2012. “Dioxin Emissions from Municipal Solid Waste Incinerators (Mswis) in France.” Waste Manag 32 (12): 2273–2277. . Octavianthy, D., and W. W. Purwanto, 2019. Municipal Solid Waste to Electricity Using Anaerobic Digestion and Incineration Conversion Technologies: A Comparative Study, in: 2nd IEEE International Conference on Innovative Research and Development, ICIRD 2019, Jakarta, Indonesia. OECD. 2020. Environment at a Glance 2020. Paris, France: OECD Publisher. . Pan, S. Y., M. A. Du, H. I. Te, I. H. Liu, E. E. Chang, and P. C. Chiang. 2015. “Strategies on Implementation of Waste-to-energy (WTE) Supply Chain for Circular Economy System: A Review.” J. Clean. Prod 108: 409–421. . Panepinto, D., V. Tedesco, E. Brizio, and G. Genon. 2014. “Environmental Performances and Energy Efficiency for MSW Gasification Treatment.” Waste and Biomass Valorization 6 (1): 123–135. . Patumsawad, S., & Cliffe, K. R. (2002). Experimental study on fluidised bed combustion of high moisture municipal solid waste. Energy Conversion and Management, 43(17), 2329–2340. Pham, T. P. T., R. Kaushik, G. K. Parshetti, R. Mahmood, and R. Balasubramanian. 2015. “Food Waste-to-energy Conversion Technologies: Current Status and Future Directions.” Waste Manag 38: 399–408. . Pivato, A., S. Vanin, R. Raga, M. C. Lavagnolo, A. Barausse, A. Rieple, A. Laurent, and R. Cossu. 2016. “Use of Digestate from a Decentralized On-farm Biogas Plant as Fertilizer in Soils: An Ecotoxicological Study for Future Indicators in Risk and Life Cycle Assessment.” Waste Manag 49: 378–389. . Pour, N., P. A. Webley, and P. J. Cook. 2018. “Potential for Using Municipal Solid Waste as a Resource for Bioenergy with Carbon Capture and Storage (BECCS).” Int. J. Greenh. Gas Control 68: 1–15. . Psomopoulos, C. S., I. Limperis, and K. Kalkanis, 2019. Evaluating the Energy Demand for Municipal Solid Wastes Treatment Facilities: A Critical Approach toward Sustainable Development. AIP Conf. Proc, Vienna, Austria. 2190. Rahman, S. M. S., A. Azeem, and F. Ahammed. 2017. “Selection of an Appropriate Waste-to-energy Conversion Technology for Dhaka City, Bangladesh.” Int. J. Sustain. Eng 10: 1–6. . Rajaeifar, M. A., H. Ghanavati, B. B. Dashti, R. Heijungs, M. Aghbashlo, and M. Tabatabaei. 2017. “Electricity Generation and GHG Emission Reduction Potentials through Different Municipal Solid Waste Management Technologies: A Comparative Review.” Renew. Sustain. Energy Rev 79: 414–439. . Ramírez, R., J. C. Arce, C. Jeréz, Y. Puertas, L. Gómez, J. Riaño, and O. Diaz. 2018. Boletín estadístico de minas y energía 2018. Bogotá, Colombia: Unidad de Planeación Minero Energética (UPME). Rapport, J., R. Zhang, B. M. Jenkins, R. B. Williams, A. Schwarzenegger, L. S. Adams, M. R. Brown, and B. Chair. 2008. Current Anaerobic Digestion Technologies Used for Treatment of Municipal Organic Solid Waste. California: Integrated Waste Management Board. Raven, R. P. J. M., and K. H. Gregersen. 2007. “Biogas Plants in Denmark: Successes and Setbacks.” Renew. Sustain. Energy Rev 11 (1): 116–132. . Reddy, P. J. 2016. Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies. Chennai, India: CRC press. Ribé, V. 2018. “OBSOLETE: Environmental Issues of Energy and Natural Resources.” In Reference Module in Earth Systems and Environmental Sciences. Amsterdam, The Netherlands: Elsevier. . Rocamora, I., S. T. Wagland, R. Villa, E. W. Simpson, O. Fernández, and Y. Bajón-Fernández. 2020. “Dry Anaerobic Digestion of Organic Waste: A Review of Operational Parameters and Their Impact on Process Performance.” Bioresour. Technol 299: 122681. . Rollinson, A. N., and J. M. Oladejo. 2019. “‘Patented Blunderings’ Efficiency Awareness, and Self-sustainability Claims in the Pyrolysis Energy from Waste Sector.” Resour. Conserv. Recycl 141: 233–242. . Sagastume, A., J. J. Cabello Eras, L. Hens, and C. Vandecasteele. 2020. “The Energy Potential of Agriculture, Agroindustrial, Livestock, and Slaughterhouse Biomass Wastes through Direct Combustion and Anaerobic Digestion. The Case of Colombia.” J. Clean. Prod 269: 122317. . Sataloff, R. T., M. M. Johns, and K. M. Kost. 2018. Principles and Applications of Fermentation Technology. 1st ed. Maryland, USA: John Wiley & Sons, . Sauve, G., and K. Van Acker. 2020. “The Environmental Impacts of Municipal Solid Waste Landfills in Europe: A Life Cycle Assessment of Proper Reference Cases to Support Decision Making.” Journal of Environmental Management 261: 110216. . Secretaría de Planeación. 2015. Plan De Gestión Integral De Residuos Sólidos - PGIRS 2016-2017. Barranquilla, Colombia. Seemann, M., and H. Thunman. 2019. “Methane Synthesis.” In Substitute Natural Gas from Waste: Technical Assessment and Industrial Applications of Biochemical and Thermochemical Processes, edited by Massimiliano Materazzi, Pier Ugo Foscolo, 221–243. London, United Kingdom: Elsevier. . Siddiqi, A., M. Haraguchi, and V. Narayanamurti. 2020. “Urban Waste to Energy Recovery Assessment Simulations for Developing Countries.” Word Dev 131: 104949. . Siddique, R. 2008. “Waste Materials and By-products in Concrete, Waste Materials and By-Products in Concrete.” Springer-Verlag Berlin Heidelberg. Berlin, . Silva, L. J., S. De V.b. Da, I. F. S. dos, J. H. R. Mensah, A. T. T. Gonçalves, and R. M. Barros. 2020. “Incineration of Municipal Solid Waste in Brazil: An Analysis of the Economically Viable Energy Potential.” Renew. Energy 149: 1386–1394. . Slorach, P. C., H. K. Jeswani, R. Cuéllar-Franca, and A. Azapagic. 2019. “Environmental Sustainability of Anaerobic Digestion of Household Food Waste.” Journal of Environmental Management 236: 798–814. . Stürmer, B., F. Kirchmeyr, K. Kovacs, F. Hofmann, D. Collins, C. Ingremeau, and J. Stambasky, 2016. Technical-economic analysis for determining the feasibility threshold for tradable biomethane certificates. Superservicios. 2017. “Disposición Final De Residuos Sólidos.” In Informe nacional - 2016. Bogotá, Colombia: Superintendencia de Servicios Públicos Domiciliarios (SUPERSERVISIOS). Superservicios, 2018. Informe de disposición final de residuos sólidos – 2017. Bogotá. Superservicios, 2019. Disposición Final de Residuos Sólidos. SUPERSERVICIOS. 2020. Consolidado Energía Por Empresa Departamento Y Municipio [WWW Document]. Bogotá, Colombia: Sist. Único Inf. Serv. Públicos Domic. Surendra, K. C., D. Takara, A. G. Hashimoto, and S. K. Khanal. 2014. “Biogas as a Sustainable Energy Source for Developing Countries: Opportunities and Challenges.” Renew. Sustain. Energy Rev 31: 846–859. . Themelis, N. J., M. E. Diaz Barriga, P. Estevez, and M. Gaviota Velasco. 2013. Guidebook for the Application of Waste to Energy Technologies in Latin America and Other Developing Regions. New York: EARTH ENGINEERING CENTER, COLUMBIA UNIVERSITY. Thermoselect, S. A. 2003. Thermoselect. An advanced Field Proven High Temperature Recycling Process. Locarno, Switzerland. Thrän, D., E. Billig, T. Persson, M. Svensson, J. Daniel-Gromke, J. Ponitka, M. Seiffert, et al. 2014. Biomethane-status and Factors Affecting Market Development and Trade. Paris, France: IEA Bioenergy. Thunman, H., 2018. GoBiGas demonstration – a vital step for a large-scale transition from fossil fuels to advanced biofuels and electrofuels. Thunman, H., and M. Seemann. 2019. “The GoBiGas Plant.” In Substitute Natural Gas from Waste: Technical Assessment and Industrial Applications of Biochemical and Thermochemical Processes, edited by M. Materazzi and P. U. Foscolo, 455–474. London, United Kingdom: Elsevier . . Thunman, H., C. Gustavsson, A. Larsson, I. Gunnarsson, and F. Tengberg. 2019. “Economic Assessment of Advanced Biofuel Production via Gasification Using Cost Data from the GoBiGas Plant.” Energy Sci. Eng 7 (1): 217–229. . Triana-Jiménez, K. M., and M. E. Velásquez Lozano. 2019. “Comparison of Biogas Production Obtained from Samples of Mitú and Sibundoy Municipal Solid Waste Comparación Del Potencial De Producción De Biogás Obtenido a Partir De Residuos Sólidos Urbanos Provenientes De Mitú Y De Sibundoy.” Ing. E Investig 39: 31–36. . Tschaplinski, T. J., and S. D. Simpson. 2019. Development of a Sustainable Green Chemistry Platform for Production of Acetone and Downstream Drop-in Fuel and Commodity Products Directly from Biomass Syngas via a Novel Energy Conserving Route in Engineered Acetogenic Bacteria. Tennessee, USA: Oak Ridge National Laboratory. Udomsri, S., M. P. Petrov, A. R. Martin, and T. H. Fransson. 2011. “Clean Energy Conversion from Municipal Solid Waste and Climate Change Mitigation in Thailand: Waste Management and Thermodynamic Evaluation.” Energy Sustain. Dev 15 (4): 355–364. . UPME. 2013. Cadena Del Gas Licuado Del Petroleo 2013. Bogota, Colombia: Unidad de Planeación Minero Energética (UPME). US EPA, 2018. National Overview: Facts and Figures on Materials, Wastes and Recycling [WWW Document]. Facts Fig. about Mater. Waste Recycl. Valencia, J., C. Correa, N. Niño, C. Valles, and C. Pérez, 2016. Boletín estadístico de minas y energía 2012 – 2016. Velasquez, M. 2018. Estimación de la huella de carbono de fuentes fijas industriales de la ciudad de Barranquilla. Colombia: Universidad del Norte. Vergel Acero, J. L. 2020. Tratamiento de residuos sólidos en el marco de la emergencia por COVID-19. Bogotá, Colombia: Ministerio de Vivienda, Ciudad y Territorio de Colombia (MINVIVIENDA). Waldheim, L., 2018. Gasification of Waste for Energy Carriers. A review, IEA Bioenergy. IEA Bioenergy. Wang, Z., & Geng, L. (2015). Carbon emissions calculation from municipal solid waste and the influencing factors analysis in China. Journal of Cleaner Production, 104, 177–184. XM, 2020. Noviembre 2020 [WWW Document]. Energía y Merc. Precio promedio y energía transada. Accessed 20 Jan 2021 http://www.xm.com.co/_layouts/xlviewer.aspx?id=/Precio.PromedioyEnergaTransada/Noviembre_2020.xlsx&Source=http%3A%2F%2Fwww.xm.com.co%2FPrecio%2520Promedio%2520y%2520Energa%2520Transada%2FForms%2FAllItems.aspx&DefaultItemOpen=1 Yang, N., H. Zhang, L. M. Shao, F. Lü, and P. J. He. 2013. “Greenhouse Gas Emissions during MSW Landfilling in China: Influence of Waste Characteristics and LFG Treatment Measures.” Journal of Environmental Management 129: 510–521. . Yap, H. Y., and J. D. Nixon. 2015. “A Multi-criteria Analysis of Options for Energy Recovery from Municipal Solid Waste in India and the UK.” Waste Manag 46: 265–277. . Zaman, A. U. 2010. “Comparative Study of Municipal Solid Waste Treatment Technologies.” Int. J. Environ. Sci. Technol 7 (2): 225–234. . Zhao, X., J. Gang, G. Wu, A. Li, and L. Wang. 2016. “Economic Analysis of Waste-to-energy Industry in China.” Waste Manag 48: 604–618. Zheng, L., J. Song, C. Li, Y. Gao, P. Geng, B. Qu, and L. Lin. 2014. “Preferential Policies Promote Municipal Solid Waste (MSW) to Energy in China: Current Status and Prospects.” Renew. Sustain. Energy Rev. |
dc.relation.citationissue.spa.fl_str_mv |
6 |
dc.relation.citationvolume.spa.fl_str_mv |
14 |
dc.rights.spa.fl_str_mv |
Copyright © 2022 Informa UK Limited Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Copyright © 2022 Informa UK Limited Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.city.none.fl_str_mv |
Barranquilla |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Taylor and Francis Ltd. |
dc.publisher.place.spa.fl_str_mv |
United Kingdom |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.tandfonline.com/doi/full/10.1080/19397038.2021.1993378 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/db1c8829-f3a5-4939-89d0-01f86ab02be3/download https://repositorio.cuc.edu.co/bitstreams/69227906-8700-44fb-8006-f36a796ad888/download https://repositorio.cuc.edu.co/bitstreams/4d27d38e-0ece-4fd3-a3e6-5f73c4912868/download https://repositorio.cuc.edu.co/bitstreams/c404d4d6-60c2-4774-b86b-f36ca963bdd4/download |
bitstream.checksum.fl_str_mv |
71d36db2194c95222ca95e4bae1bc866 e30e9215131d99561d40d6b0abbe9bad aeb94d021f85450376ab3f1fb4aa269a 33cc1b69793be70536487cfdbf65890b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166911680053248 |
spelling |
Sagastume, AlexisMENDOZA FANDIÑO, JORGE MARIOCabello Eras, Juan José2022-03-07T13:43:26Z2022-10-262022-03-07T13:43:26Z2021-10-26Alexis Sagastume Gutiérrez, Jorge M. Mendoza Fandiño & Juan J. Cabello Eras (2021) Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia), International Journal of Sustainable Engineering, 14:6, 1809-1825, DOI: 10.1080/19397038.2021.199331939-7038https://hdl.handle.net/11323/9052https://doi.org/10.1080/19397038.2021.199337810.1080/19397038.2021.19933781939-7046Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Municipal solid remains an issue that needs to be addressed globally towards a more circular economy and lower environmental impacts. In Colombia, over 96% of municipal solid wastes are landfilled, with little recycling or revalorisation of wastes and several environmental implications. With the technological development of different waste-to-energy routes, the energy revalorisation of solid wastes is increasingly becoming an attractive business opportunity. The waste-to-energy potential of the Atlantic Department (Colombia) was estimated based on the characteristics and daily availability of municipal solid wastes for different technologic routes. The implementation of the technological routes discussed could replace from 1 to 49 % of the demand for energy carriers like natural gas, electricity, or gasoline. This energy potential could replace from 2 to 106% of the energy demanded by the power generation, transport, residential, industrial, and commercial sectors. Furthermore, these technology routes could reduce greenhouse gas emissions by 46 to 92% of the greenhouse gas emissions resulting from landfilling. These results stress the need to upgrade energy policies in the country and to introduce new incentives to overcome economic and other barriers precluding the widespread use of waste-to-energy technologies.application/pdfengTaylor and Francis Ltd.United KingdomCopyright © 2022 Informa UK LimitedAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfAlternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia)Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.tandfonline.com/doi/full/10.1080/19397038.2021.1993378BarranquillaColombiaInternational Journal of Sustainable EngineeringAlzate, S., B. Restrepo-Cuestas, and Á. Jaramillo-Duque. 2019. “Municipal Solid Waste as A Source of Electric Power Generation in Colombia: A Techno-economic Evaluation under Different Scenarios.” Resources 8 (1): 1–16. .Alzate-Arias, S., Á. Jaramillo-Duque, F. Villada, and B. Restrepo-Cuestas. 2018. “Assessment of Government Incentives for Energy From waste in Colombia.” Sustainability 10 (4): 1–16. .Angelidaki, I., L. Xie, G. Luo, Y. Zhang, H. Oechsner, A. Lemmer, R. Munoz, and P. G. Kougias. 2019. “Biogas Upgrading: Current and Emerging Technologies”. 2nd. In Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, 2nd ed., pp. 817–843. Elsevier. .Annepu, R. K. 2012. Sustainable Solid Waste Management in India. In Department of Earth and Environmental Engineering at Columbia University. New York. http://www.seas.columbia.edu/earth/wtert/sofos/SustainableSolidWasteManagementinIndia_Final.pdfArias-Gaviria, J., S. X. Carvajal-Quintero, and S. Arango-Aramburo. 2019. “Understanding Dynamics and Policy for Renewable Energy Diffusion in Colombia.” Renew. Energy 139: 1111–1119. .Barampouti, E. M., S. Mai, D. Malamis, K. Moustakas, and M. Loizidou. 2019. “Liquid Biofuels from the Organic Fraction of Municipal Solid Waste: A Review.” Renew. Sustain. Energy Rev 110: 298–314. .Basu, P. 2013. “Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory, Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory.” Academic Press. .Beyene, H. D., A. A. Werkneh, and T. G. Ambaye. 2018. “Current Updates on Waste to Energy (Wte) Technologies: A Review. Renew.” Energy Focus 24: 1–11. .Bolsa Mercantil de Colombia, 2016. Mercado de gas natural.Boundy, B., S. W. Diegel, L. Wright, and S. C. Davis. 2011. Biomas Energy Data Book. 4th ed. U.S.: Department of Energy, Tenesse.Browne, J. D., E. Allen, and J. D. Murphy. 2014. “Assessing the Variability in Biomethane Production from the Organic Fraction of Municipal Solid Waste in Batch and Continuous Operation.” Applied Energy 128: 307–314. .Brunner, P. H., and H. Rechberger. 2015. “Waste to Energy - Key Element for Sustainable Waste Management.” Waste Manag 37: 3–12. .Cabello, J. J., M. Balbis, A. Sagastume, A. Pardo, M. J. Cabello, F. J. Rey, and J. G. Rueda-Bayona. 2019. “A Look to the Electricity Generation from Non-conventional Renewable Energy Sources in Colombia.” Int. J. Energy Econ. Policy 9. .Callegari, A., S. Bolognesi, D. Cecconet, and A. G. Capodaglio. 2020. “Production Technologies, Current Role, and Future Prospects of Biofuels Feedstocks: A State-of-the-art Review.” Crit. Rev. Environ. Sci. Technol 50 (4): 384–436. .Campuzano, R., and S. González-Martínez. 2016. “Characteristics of the Organic Fraction of Municipal Solid Waste and Methane Production: A Review, Waste Management.” Elsevier Ltd. .Castillo, M., E. F. Cristancho, and D. E. Victor Arellano, A. 2006. “Study of the Operational Conditions for Anaerobic Digestion of Urban Solid Wastes.” Waste Manag 26 (5): 546–556. .CEIC, 2020. Colombia | CO: Discount Rate: End of Period | Economic Indicators [WWW Document]. Money Mark. Policy Rates Annu.Cengel, Y., M. Boles, and M. Kanoglu. 2019. Thermodynamics: An Engineering Approach. 9th ed. New York: McGraw-Hill Education.Chen, D., L. Yin, H. Wang, and P. He. 2014. “Pyrolysis Technologies for Municipal Solid Waste: A Review.” Waste Manag 34 (12): 2466–2486. .Cheng, H., and Y. Hu. 2010. “Municipal Solid Waste (MSW) as a Renewable Source of Energy: Current and Future Practices in China.” Bioresour. Technol 101 (11): 3816–3824. .Cheng, H., Y. Zhang, A. Meng, and Q. Li. 2007. “Municipal Solid Waste Fueled Power Generation in China: A Case Study of Waste-to-energy in Changchun City.” Environmental Science & Technology 41 (21): 7509–7515. .Chifari, R., S. Lo Piano, S. Matsumoto, and T. Tasaki. 2017. “Does Recyclable Separation Reduce the Cost of Municipal Waste Management in Japan?” Waste Manag 60: 32–41. .Concentra, 2020. Consumo y suscriptores por departamento | Concentra. Informes de Gas Natural [WWW Document].Congreso de la República de Colombia, 2015. Ley 1753 de 2015. Colombia.Council, W. E., 2016. World Energy Resources | 2016, World Energy Resources 2016. World Energy Council, London, United Kingdom. Accessed 25 Mar 2020 http://www.worldenergy.org/wp-content/uploads/2013/09/Complete_WER_2013_Survey.pdfDalmo, F. C., N. M. Simão, H. Q. Lima, A. C. de, Medina Jimenez, S. Nebra, G. Martins, R. Palacios-Bereche, and P. Henrique de Mello Sant’Ana. 2019. “Energy Recovery Overview of Municipal Solid Waste in São Paulo State, Brazil.” J. Clean. Prod 212: 461–474. .Dang, Y., D. Sun, T. L. Woodard, L.-Y. Wang, K. P. Nevin, and D. E. Holmes. 2017. “Stimulation of the Anaerobic Digestion of the Dry Organic Fraction of Municipal Solid Waste (OFMSW) with Carbon-based Conductive Materials.” Bioresource Technology 238: 30–38. .Davis, M., A. Moronkeji, M. Ahiduzzaman, and A. Kumar. 2020. “Assessment of Renewable Energy Transition Pathways for a Fossil Fuel-dependent Electricity-producing Jurisdiction.” Energy Sustain. Dev 59: 243–261. .De Morais Lima, P., F. Olivo, P. L. Paulo, V. Schalch, and C. Cimpan. 2019. “Life Cycle Assessment of Prospective MSW Management Based on Integrated Management Planning in Campo Grande, Brazil.” Waste Manag 90: 59–71. .Dereli, R. K., M. E. Ersahin, C. Y. Gomec, I. Ozturk, and O. Ozdemir. 2010. “Co-digestion of the Organic Fraction of Municipal Solid Waste with Primary Sludge at a Municipal Wastewater Treatment Plant in Turkey.” Waste Manag. Res 28 (5): 404–410. .Di Maria, F., and C. Micale. 2015. “Life Cycle Analysis of Incineration Compared to Anaerobic Digestion Followed by Composting for Managing Organic Waste: The Influence of System Components for an Italian District.” The International Journal of Life Cycle Assessment 20 (3): 377–388. .Ding, Y., J. Zhao, J.-W. Liu, J. Zhou, L. Cheng, J. Zhao, Z. Shao, et al. 2021. “A Review of China’s Municipal Solid Waste (MSW) and Comparison with International Regions: Management and Technologies in Treatment and Resource Utilization.” Journal of Cleaner Production 293: 126144. .Dong, J., Y. Tang, A. Nzihou, Y. Chi, E. Weiss-Hortala, and M. Ni. 2018. “Life Cycle Assessment of Pyrolysis, Gasification and Incineration Waste-to-energy Technologies: Theoretical Analysis and Case Study of Commercial Plants.” Sci. Total Environ. J 626: 744–753. .EPA, 2021. Basic Information about Landfill Gas [WWW Document]. Landfill Methane Outreach Progr. CONTACT US.Escamilla-García, P. E., R. H. Camarillo-López, R. Carrasco-Hernández, E. Fernández-Rodríguez, and J. M. Legal-Hernández. 2020. “Technical and Economic Analysis of Energy Generation from Waste Incineration in Mexico.” Energy Strateg. Rev 31: 100542. .European Parliament. 2008. “Directive 2008/122/EC of the European Parliament and of the Council.” Official Journal of the European Union, L312, 3–30. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN.Federación Nacional de Biomcombustible, 2020. Precio De Alcohol Carburtante (Etanol) [WWW Document]. Estadísticas. Accessed 19 Jan 2021. https://www.fedebiocombustibles.com/estadistica-precios-titulo-Alcohol_Carburante_(Etanol).htmGabriel, C. A., J. Kirkwood, S. Walton, and E. L. Rose. 2016. “How Do Developing Country Constraints Affect Renewable Energy Entrepreneurs? Energy Sustain.” Dev 35: 52–66. .Gebreslassie, M. G., H. B. Gebreyesus, M. T. Gebretsadik, S. T. Bahta, and S. E. Birkie. 2020. “Characterization of Municipal Solid Waste’s Potential for Power Generation at Mekelle City as a Waste Minimisation Strategy.” Int. J. Sustain. Eng 13 (1): 68–75. .Ghosh, P., S. Sengupta, L. Singh, and A. Sahay. 2020. “Life Cycle Assessment of Waste-to-bioenergy Processes: A Review.” In Bioreactors, edited by L. Singh, A. Yousuf, and D. M. Mahapatra, 105–122. Amsterdam, Netherlands: Elsevier. .Giusti, L. 2009. “A Review of Waste Management Practices and Their Impact on Human Health.” Waste Manag 29 (8): 2227–2239. .Gobierno Nacional, 2014. Ley 1715, Congreso de la República de Colombia.Götz, M., J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert, and T. Kolb. 2016. “Renewable Power-to-Gas: A Technological and Economic Review.” Renewable Energy 85: 1371–1390. .Guevara, P., and D. M. Rodriguez. 2013. “Area Metropolitana de Barranquilla.” In CCAC Municipal Solid Waste Initiative. Vienna, Austria. https://www.waste.ccacoalition.org/sites/default/files/files/events_documents/PriscilaGuevara-PRESENTACIONVIENA-AUSTRIARESIDUOS-DR.pdfGuo, M., W. Song, and J. Buhain. 2015. “Bioenergy and Biofuels: History, Status, and Perspective.” Renew. Sustain. Energy Rev 42: 712–725. .He, Z., J. Xiong, T. S. Ng, B. Fan, and C. A. Shoemaker. 2017. “Managing Competitive Municipal Solid Waste Treatment Systems: An Agent-based Approach.” European Journal of Operational Research 263 (3): 1063–1077. .Holmgren, J., 2014. The Road to Awesome [WWW Document]. Lanzatech.Hoornweg, D., and P. Bhada-Tata. 2012. What a Waste: A Global Review of Solid Waste Management. Washington: World Bank.IDEAM. 2016. Inventario nacional y departamental de gases efecto invernadero. Colombia: Instituto de Hidrología, Meteorología y Estudios Ambientales.IEA. 2017. Technology Roadmap. Delivering sustainable bioenergy. Paris, France: IEA Publications.IEA, 2020. Total Energy Supply (TES) by Source, World 1990-2018 [WWW Document]. Data Stat. URL https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energysupply&indicator=TPESbySource (accessed 29 12 20).Interstate Waste Technologies. 2017. Overview of IWT’s Waste to Ethanol Project. Los Angeles.Jaiswal, A., and S. Kumar. 2019. “Waste Legislation across the Globe: An Overview.” In Current Developments in Biotechnology and Bioengineering: Waste Treatment Processes for Energy Generation, 11–30. Amsterdam, Netherlands: Elsevier. .Karagiannidis, A., and G. Perkoulidis. 2009. “A Multi-criteria Ranking of Different Technologies for the Anaerobic Digestion for Energy Recovery of the Organic Fraction of Municipal Solid Wastes.” Bioresource Technology 100 (8): 2355–2360. .Kumar, A., and S. R. Samadder. 2017. “A Review on Technological Options of Waste to Energy for Effective Management of Municipal Solid Waste.” Waste Manag 69: 407–422. .Kumar Tyagi, V., L. A. Fdez-Güelfo, Y. Zhou, C. J. Álvarez-Gallego, L. I. Romero Garcia, and W. J. Ng, 2018. Anaerobic Co-digestion of Organic Fraction of Municipal Solid Waste (OFMSW): Progress and Challenges. Renewable and Sustainable Energy Reviews 93: 380–399.Kyriakis, E., C. Psomopoulos, and K. Kalkanis. 2019. “Investigating the Correlation of Purchase Power Parity (PPP) with the Adopted Waste Management Method in EU28.” Soc. Sci 8 (5): 162. .Larsson, A., I. Gunnasrsson, and F. Tengberg, 2019. The GoBiGas project demonstration of the production of biomethane from biomass via gasification.Leme, M. M. V., M. H. Rocha, E. E. S. Lora, O. J. Venturini, B. M. Lopes, and C. H. Ferreira. 2014. “Techno-economic Analysis and Environmental Impact Assessment of Energy Recovery from Municipal Solid Waste (MSW) in Brazil.” Resour. Conserv. Recycl 87: 8–20. .Li, Y., X. Zhao, Y. Li, and X. Li. 2015. “Waste Incineration Industry and Development Policies in China.” Waste Manag 46: 234–241. .Liebetrau, J., T. Reinelt, A. Agostini, B. Linke, and J. D. Murphy, 2017. Methane Emissions from Biogas Plants. Methods for measurement, results and effect on greenhouse gas balance of electricity produced. IEA Bioenergy.Lombardi, L., E. Carnevale, and A. Corti. 2015. “A Review of Technologies and Performances of Thermal Treatment Systems for Energy Recovery from Waste.” Waste Manag 37: 26–44. .Lu, J. W., S. Zhang, J. Hai, and M. Lei. 2017. “Status and Perspectives of Municipal Solid Waste Incineration in China: A Comparison with Developed Regions.” Waste Manag 69: 170–186. .Mainali, B., S. Pachauri, N. D. Rao, and S. Silveira. 2014. “Assessing Rural Energy Sustainability in Developing Countries.” Energy Sustain. Dev 19: 15–28. .Malinauskaite, J., H. Jouhara, D. Czajczyńska, P. Stanchev, E. Katsou, P. Rostkowski, R. J. Thorne, et al. 2017. “Municipal Solid Waste Management and Waste-to-energy in the Context of a Circular Economy and Energy Recycling in Europe.” Energy 141: 2013–2044. .Marchettini, N., R. Ridolfi, and M. Rustici. 2007. “An Environmental Analysis for Comparing Waste Management Options and Strategies.” Waste Manag 27 (4): 562–571. .Melo, A. I. 2014. “Vista de Generación de residuos sólidos en el municipio de Galapa (Atlántico) y su aprovechamiento como forma de minimizar la problemática ambiental.” Rev. INGE CUC 10: 89–96.MINMINAS. 2018. Boletín Estadístico Trimestre II De 2018 Abril a Junio. Bogota, Colombia: MINISTERIO DE MINAS Y ENERGIA (MINMINAS).MINVIVIENDA. 2016. Resolución 596 De 2016. Bogotá, Colombia.MINVIVIENDA. 2018. Decreto 2412. Bogotá, Colombia.Mohee, R., and A. Mudhoo. 2012. “Energy from Biomass in Mauritius: Overview of Research and Applications”. In Waste to Energy. Opportunities and Challenges for Developing and Transition Economies, edited by A. Karagiannidis, 297–322. London, United Kingdom. .Mukherjee, C., J. Denney, E. G. Mbonimpa, J. Slagley, and R. Bhowmik. 2020. “A Review on Municipal Solid Waste-to-energy Trends in the USA.” Renew. Sustain. Energy Rev 119: 109512. .Murphy, J. D., and E. McKeogh. 2004. “Technical, Economic and Environmental Analysis of Energy Production from Municipal Solid Waste.” Renew. Energy 29 (7): 1043–1057. .Ndukwu, M. C., D. I. Onwude, L. Bennamoun, F. I. Abam, M. Simo-Tagne, I. T. Horsfall, and T. A. Briggs. 2020. “Nigeria’s Energy Deficit: The Challenges and Eco- Friendly Approach in Reducing the Energy Gap.” Int. J. Sustain. Eng 1–18. .Nguyen, H. H., S. Heaven, and C. Banks. 2014. “Energy Potential from the Anaerobic Digestion of Food Waste in Municipal Solid Waste Stream of Urban Areas in Vietnam.” Int. J. Energy Environ. Eng 5 (4): 365–374. .Nielsen, M., O.-K. Nielsen, and M. Thomsen. 2010. “Emissions from Decentralised CHP Plants 2007 - Energinet.dk.” In Environmental Project No, 07/1882. Aarhus, Denmark: National Environmental Research Institute.Nikkhah, A., I. Bagheri, C. Psomopoulos, H. Payman, H. Zareiforoush, M. El, H. Assad, A. Bakhshipour, and S. Ghnimi. 2019. “Energy Sources, Part A: Recovery, Utilization, and Environmental Effects Sustainable Second-generation Biofuel Production Potential in a Developing Country Case Study.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.Nzihou, A., N. J. Themelis, M. Kemiha, and Y. Benhamou. 2012. “Dioxin Emissions from Municipal Solid Waste Incinerators (Mswis) in France.” Waste Manag 32 (12): 2273–2277. .Octavianthy, D., and W. W. Purwanto, 2019. Municipal Solid Waste to Electricity Using Anaerobic Digestion and Incineration Conversion Technologies: A Comparative Study, in: 2nd IEEE International Conference on Innovative Research and Development, ICIRD 2019, Jakarta, Indonesia.OECD. 2020. Environment at a Glance 2020. Paris, France: OECD Publisher. .Pan, S. Y., M. A. Du, H. I. Te, I. H. Liu, E. E. Chang, and P. C. Chiang. 2015. “Strategies on Implementation of Waste-to-energy (WTE) Supply Chain for Circular Economy System: A Review.” J. Clean. Prod 108: 409–421. .Panepinto, D., V. Tedesco, E. Brizio, and G. Genon. 2014. “Environmental Performances and Energy Efficiency for MSW Gasification Treatment.” Waste and Biomass Valorization 6 (1): 123–135. .Patumsawad, S., & Cliffe, K. R. (2002). Experimental study on fluidised bed combustion of high moisture municipal solid waste. Energy Conversion and Management, 43(17), 2329–2340.Pham, T. P. T., R. Kaushik, G. K. Parshetti, R. Mahmood, and R. Balasubramanian. 2015. “Food Waste-to-energy Conversion Technologies: Current Status and Future Directions.” Waste Manag 38: 399–408. .Pivato, A., S. Vanin, R. Raga, M. C. Lavagnolo, A. Barausse, A. Rieple, A. Laurent, and R. Cossu. 2016. “Use of Digestate from a Decentralized On-farm Biogas Plant as Fertilizer in Soils: An Ecotoxicological Study for Future Indicators in Risk and Life Cycle Assessment.” Waste Manag 49: 378–389. .Pour, N., P. A. Webley, and P. J. Cook. 2018. “Potential for Using Municipal Solid Waste as a Resource for Bioenergy with Carbon Capture and Storage (BECCS).” Int. J. Greenh. Gas Control 68: 1–15. .Psomopoulos, C. S., I. Limperis, and K. Kalkanis, 2019. Evaluating the Energy Demand for Municipal Solid Wastes Treatment Facilities: A Critical Approach toward Sustainable Development. AIP Conf. Proc, Vienna, Austria. 2190.Rahman, S. M. S., A. Azeem, and F. Ahammed. 2017. “Selection of an Appropriate Waste-to-energy Conversion Technology for Dhaka City, Bangladesh.” Int. J. Sustain. Eng 10: 1–6. .Rajaeifar, M. A., H. Ghanavati, B. B. Dashti, R. Heijungs, M. Aghbashlo, and M. Tabatabaei. 2017. “Electricity Generation and GHG Emission Reduction Potentials through Different Municipal Solid Waste Management Technologies: A Comparative Review.” Renew. Sustain. Energy Rev 79: 414–439. .Ramírez, R., J. C. Arce, C. Jeréz, Y. Puertas, L. Gómez, J. Riaño, and O. Diaz. 2018. Boletín estadístico de minas y energía 2018. Bogotá, Colombia: Unidad de Planeación Minero Energética (UPME).Rapport, J., R. Zhang, B. M. Jenkins, R. B. Williams, A. Schwarzenegger, L. S. Adams, M. R. Brown, and B. Chair. 2008. Current Anaerobic Digestion Technologies Used for Treatment of Municipal Organic Solid Waste. California: Integrated Waste Management Board.Raven, R. P. J. M., and K. H. Gregersen. 2007. “Biogas Plants in Denmark: Successes and Setbacks.” Renew. Sustain. Energy Rev 11 (1): 116–132. .Reddy, P. J. 2016. Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies. Chennai, India: CRC press.Ribé, V. 2018. “OBSOLETE: Environmental Issues of Energy and Natural Resources.” In Reference Module in Earth Systems and Environmental Sciences. Amsterdam, The Netherlands: Elsevier. .Rocamora, I., S. T. Wagland, R. Villa, E. W. Simpson, O. Fernández, and Y. Bajón-Fernández. 2020. “Dry Anaerobic Digestion of Organic Waste: A Review of Operational Parameters and Their Impact on Process Performance.” Bioresour. Technol 299: 122681. .Rollinson, A. N., and J. M. Oladejo. 2019. “‘Patented Blunderings’ Efficiency Awareness, and Self-sustainability Claims in the Pyrolysis Energy from Waste Sector.” Resour. Conserv. Recycl 141: 233–242. .Sagastume, A., J. J. Cabello Eras, L. Hens, and C. Vandecasteele. 2020. “The Energy Potential of Agriculture, Agroindustrial, Livestock, and Slaughterhouse Biomass Wastes through Direct Combustion and Anaerobic Digestion. The Case of Colombia.” J. Clean. Prod 269: 122317. .Sataloff, R. T., M. M. Johns, and K. M. Kost. 2018. Principles and Applications of Fermentation Technology. 1st ed. Maryland, USA: John Wiley & Sons, .Sauve, G., and K. Van Acker. 2020. “The Environmental Impacts of Municipal Solid Waste Landfills in Europe: A Life Cycle Assessment of Proper Reference Cases to Support Decision Making.” Journal of Environmental Management 261: 110216. .Secretaría de Planeación. 2015. Plan De Gestión Integral De Residuos Sólidos - PGIRS 2016-2017. Barranquilla, Colombia.Seemann, M., and H. Thunman. 2019. “Methane Synthesis.” In Substitute Natural Gas from Waste: Technical Assessment and Industrial Applications of Biochemical and Thermochemical Processes, edited by Massimiliano Materazzi, Pier Ugo Foscolo, 221–243. London, United Kingdom: Elsevier. .Siddiqi, A., M. Haraguchi, and V. Narayanamurti. 2020. “Urban Waste to Energy Recovery Assessment Simulations for Developing Countries.” Word Dev 131: 104949. .Siddique, R. 2008. “Waste Materials and By-products in Concrete, Waste Materials and By-Products in Concrete.” Springer-Verlag Berlin Heidelberg. Berlin, .Silva, L. J., S. De V.b. Da, I. F. S. dos, J. H. R. Mensah, A. T. T. Gonçalves, and R. M. Barros. 2020. “Incineration of Municipal Solid Waste in Brazil: An Analysis of the Economically Viable Energy Potential.” Renew. Energy 149: 1386–1394. .Slorach, P. C., H. K. Jeswani, R. Cuéllar-Franca, and A. Azapagic. 2019. “Environmental Sustainability of Anaerobic Digestion of Household Food Waste.” Journal of Environmental Management 236: 798–814. .Stürmer, B., F. Kirchmeyr, K. Kovacs, F. Hofmann, D. Collins, C. Ingremeau, and J. Stambasky, 2016. Technical-economic analysis for determining the feasibility threshold for tradable biomethane certificates.Superservicios. 2017. “Disposición Final De Residuos Sólidos.” In Informe nacional - 2016. Bogotá, Colombia: Superintendencia de Servicios Públicos Domiciliarios (SUPERSERVISIOS).Superservicios, 2018. Informe de disposición final de residuos sólidos – 2017. Bogotá.Superservicios, 2019. Disposición Final de Residuos Sólidos.SUPERSERVICIOS. 2020. Consolidado Energía Por Empresa Departamento Y Municipio [WWW Document]. Bogotá, Colombia: Sist. Único Inf. Serv. Públicos Domic.Surendra, K. C., D. Takara, A. G. Hashimoto, and S. K. Khanal. 2014. “Biogas as a Sustainable Energy Source for Developing Countries: Opportunities and Challenges.” Renew. Sustain. Energy Rev 31: 846–859. .Themelis, N. J., M. E. Diaz Barriga, P. Estevez, and M. Gaviota Velasco. 2013. Guidebook for the Application of Waste to Energy Technologies in Latin America and Other Developing Regions. New York: EARTH ENGINEERING CENTER, COLUMBIA UNIVERSITY.Thermoselect, S. A. 2003. Thermoselect. An advanced Field Proven High Temperature Recycling Process. Locarno, Switzerland.Thrän, D., E. Billig, T. Persson, M. Svensson, J. Daniel-Gromke, J. Ponitka, M. Seiffert, et al. 2014. Biomethane-status and Factors Affecting Market Development and Trade. Paris, France: IEA Bioenergy.Thunman, H., 2018. GoBiGas demonstration – a vital step for a large-scale transition from fossil fuels to advanced biofuels and electrofuels.Thunman, H., and M. Seemann. 2019. “The GoBiGas Plant.” In Substitute Natural Gas from Waste: Technical Assessment and Industrial Applications of Biochemical and Thermochemical Processes, edited by M. Materazzi and P. U. Foscolo, 455–474. London, United Kingdom: Elsevier . .Thunman, H., C. Gustavsson, A. Larsson, I. Gunnarsson, and F. Tengberg. 2019. “Economic Assessment of Advanced Biofuel Production via Gasification Using Cost Data from the GoBiGas Plant.” Energy Sci. Eng 7 (1): 217–229. .Triana-Jiménez, K. M., and M. E. Velásquez Lozano. 2019. “Comparison of Biogas Production Obtained from Samples of Mitú and Sibundoy Municipal Solid Waste Comparación Del Potencial De Producción De Biogás Obtenido a Partir De Residuos Sólidos Urbanos Provenientes De Mitú Y De Sibundoy.” Ing. E Investig 39: 31–36. .Tschaplinski, T. J., and S. D. Simpson. 2019. Development of a Sustainable Green Chemistry Platform for Production of Acetone and Downstream Drop-in Fuel and Commodity Products Directly from Biomass Syngas via a Novel Energy Conserving Route in Engineered Acetogenic Bacteria. Tennessee, USA: Oak Ridge National Laboratory.Udomsri, S., M. P. Petrov, A. R. Martin, and T. H. Fransson. 2011. “Clean Energy Conversion from Municipal Solid Waste and Climate Change Mitigation in Thailand: Waste Management and Thermodynamic Evaluation.” Energy Sustain. Dev 15 (4): 355–364. .UPME. 2013. Cadena Del Gas Licuado Del Petroleo 2013. Bogota, Colombia: Unidad de Planeación Minero Energética (UPME).US EPA, 2018. National Overview: Facts and Figures on Materials, Wastes and Recycling [WWW Document]. Facts Fig. about Mater. Waste Recycl.Valencia, J., C. Correa, N. Niño, C. Valles, and C. Pérez, 2016. Boletín estadístico de minas y energía 2012 – 2016.Velasquez, M. 2018. Estimación de la huella de carbono de fuentes fijas industriales de la ciudad de Barranquilla. Colombia: Universidad del Norte.Vergel Acero, J. L. 2020. Tratamiento de residuos sólidos en el marco de la emergencia por COVID-19. Bogotá, Colombia: Ministerio de Vivienda, Ciudad y Territorio de Colombia (MINVIVIENDA).Waldheim, L., 2018. Gasification of Waste for Energy Carriers. A review, IEA Bioenergy. IEA Bioenergy.Wang, Z., & Geng, L. (2015). Carbon emissions calculation from municipal solid waste and the influencing factors analysis in China. Journal of Cleaner Production, 104, 177–184.XM, 2020. Noviembre 2020 [WWW Document]. Energía y Merc. Precio promedio y energía transada. Accessed 20 Jan 2021 http://www.xm.com.co/_layouts/xlviewer.aspx?id=/Precio.PromedioyEnergaTransada/Noviembre_2020.xlsx&Source=http%3A%2F%2Fwww.xm.com.co%2FPrecio%2520Promedio%2520y%2520Energa%2520Transada%2FForms%2FAllItems.aspx&DefaultItemOpen=1Yang, N., H. Zhang, L. M. Shao, F. Lü, and P. J. He. 2013. “Greenhouse Gas Emissions during MSW Landfilling in China: Influence of Waste Characteristics and LFG Treatment Measures.” Journal of Environmental Management 129: 510–521. .Yap, H. Y., and J. D. Nixon. 2015. “A Multi-criteria Analysis of Options for Energy Recovery from Municipal Solid Waste in India and the UK.” Waste Manag 46: 265–277. .Zaman, A. U. 2010. “Comparative Study of Municipal Solid Waste Treatment Technologies.” Int. J. Environ. Sci. Technol 7 (2): 225–234. .Zhao, X., J. Gang, G. Wu, A. Li, and L. Wang. 2016. “Economic Analysis of Waste-to-energy Industry in China.” Waste Manag 48: 604–618.Zheng, L., J. Song, C. Li, Y. Gao, P. Geng, B. Qu, and L. Lin. 2014. “Preferential Policies Promote Municipal Solid Waste (MSW) to Energy in China: Current Status and Prospects.” Renew. Sustain. Energy Rev.614Municipal solid wastesWaste-to-energyRenewable energyPublicationORIGINALAlternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia).pdfAlternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia).pdfapplication/pdf58857https://repositorio.cuc.edu.co/bitstreams/db1c8829-f3a5-4939-89d0-01f86ab02be3/download71d36db2194c95222ca95e4bae1bc866MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/69227906-8700-44fb-8006-f36a796ad888/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTAlternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia).pdf.txtAlternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia).pdf.txttext/plain1635https://repositorio.cuc.edu.co/bitstreams/4d27d38e-0ece-4fd3-a3e6-5f73c4912868/downloadaeb94d021f85450376ab3f1fb4aa269aMD53THUMBNAILAlternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia).pdf.jpgAlternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia).pdf.jpgimage/jpeg11498https://repositorio.cuc.edu.co/bitstreams/c404d4d6-60c2-4774-b86b-f36ca963bdd4/download33cc1b69793be70536487cfdbf65890bMD5411323/9052oai:repositorio.cuc.edu.co:11323/90522024-09-17 14:25:22.703https://creativecommons.org/licenses/by-nc-sa/4.0/Copyright © 2022 Informa UK Limitedopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |