Intelligent sine cosine optimization with deep transfer learning based crops type classification using hyperspectral images

Hyperspectral Remote Sensing (HRS) is an emergent, multidisciplinary paradigm with several applications, which are developed on the basis of material spectroscopy, radiative transfer, and imaging spectroscopy. HRS plays a vital role in agriculture for crops type classification and soil prediction. T...

Full description

Autores:
Escorcia-Gutierrez, Jose
Gamarra, Margarita
Torres Torres, Melitsa
Madera, Natasha
Calabria- Sarmiento, Juan Carlos
Mansour, Romany F.
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9383
Acceso en línea:
https://hdl.handle.net/11323/9383
https://doi.org/10.1080/07038992.2022.2081538
https://repositorio.cuc.edu.co/
Palabra clave:
Hyperspectral Remote Sensing (HRS)
Material spectroscopy
Agriculture
Rights
embargoedAccess
License
© 2022 Informa UK Limited
id RCUC2_b9617a525c1ad6232b48a451d3e22c65
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9383
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Intelligent sine cosine optimization with deep transfer learning based crops type classification using hyperspectral images
dc.title.translated.eng.fl_str_mv Optimisation intelligente du sinus-cosinus et classification des types de cultures basée sur l'apprentissage par transfert profond à l’aide d’images hyperspectrales
title Intelligent sine cosine optimization with deep transfer learning based crops type classification using hyperspectral images
spellingShingle Intelligent sine cosine optimization with deep transfer learning based crops type classification using hyperspectral images
Hyperspectral Remote Sensing (HRS)
Material spectroscopy
Agriculture
title_short Intelligent sine cosine optimization with deep transfer learning based crops type classification using hyperspectral images
title_full Intelligent sine cosine optimization with deep transfer learning based crops type classification using hyperspectral images
title_fullStr Intelligent sine cosine optimization with deep transfer learning based crops type classification using hyperspectral images
title_full_unstemmed Intelligent sine cosine optimization with deep transfer learning based crops type classification using hyperspectral images
title_sort Intelligent sine cosine optimization with deep transfer learning based crops type classification using hyperspectral images
dc.creator.fl_str_mv Escorcia-Gutierrez, Jose
Gamarra, Margarita
Torres Torres, Melitsa
Madera, Natasha
Calabria- Sarmiento, Juan Carlos
Mansour, Romany F.
dc.contributor.author.spa.fl_str_mv Escorcia-Gutierrez, Jose
Gamarra, Margarita
Torres Torres, Melitsa
Madera, Natasha
Calabria- Sarmiento, Juan Carlos
Mansour, Romany F.
dc.subject.proposal.eng.fl_str_mv Hyperspectral Remote Sensing (HRS)
Material spectroscopy
Agriculture
topic Hyperspectral Remote Sensing (HRS)
Material spectroscopy
Agriculture
description Hyperspectral Remote Sensing (HRS) is an emergent, multidisciplinary paradigm with several applications, which are developed on the basis of material spectroscopy, radiative transfer, and imaging spectroscopy. HRS plays a vital role in agriculture for crops type classification and soil prediction. The recently developed artificial intelligence techniques can be used for crops type classification using HRS. This study develops an Intelligent Sine Cosine Optimization with Deep Transfer Learning Based Crop Type Classification (ISCO-DTLCTC) model. The ISCO-DTLCTC technique comprises initial preprocessing step to extract the region of interest. The information gain-based feature reduction technique is employed to reduce the dimensionality of the original hyperspectral images. In addition, a fusion of 3 deep convolutional neural networks models namely, VGG16, SqueezeNet, and Dense-EfficientNet perform feature extraction process. Furthermore, sine cosine optimization (SCO) algorithm with Modified Elman Neural Network (MENN) model is applied for crops type classification. The design of SCO algorithm helps to proficiently select the parameters involved in the MENN model. The performance validation of the ISCO-DTLCTC model is carried out using benchmark datasets and the results are inspected under several measures. Extensive comparative results demonstrated the betterment of the ISCO-DTLCTC model over the state of art approaches with maximum accuracy of 99.99%.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-19T18:34:17Z
dc.date.available.none.fl_str_mv 2022-07-19T18:34:17Z
2023-06-22
dc.date.issued.none.fl_str_mv 2022-06-22
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv José Escorcia-Gutierrez, Margarita Gamarra, Melitsa Torres-Torres, Natasha Madera, Juan C. Calabria-Sarmiento & Romany F. Mansour (2022): Intelligent Sine Cosine Optimization with Deep Transfer Learning Based Crops Type Classification Using Hyperspectral Images, Canadian Journal of Remote Sensing, DOI: 10.1080/07038992.2022.2081538
dc.identifier.issn.spa.fl_str_mv 0703-8992
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9383
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1080/07038992.2022.2081538
dc.identifier.doi.spa.fl_str_mv 10.1080/07038992.2022.2081538
dc.identifier.eissn.spa.fl_str_mv 1712-7971
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv José Escorcia-Gutierrez, Margarita Gamarra, Melitsa Torres-Torres, Natasha Madera, Juan C. Calabria-Sarmiento & Romany F. Mansour (2022): Intelligent Sine Cosine Optimization with Deep Transfer Learning Based Crops Type Classification Using Hyperspectral Images, Canadian Journal of Remote Sensing, DOI: 10.1080/07038992.2022.2081538
0703-8992
10.1080/07038992.2022.2081538
1712-7971
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9383
https://doi.org/10.1080/07038992.2022.2081538
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Canadian Journal of Remote Sensing
dc.relation.references.spa.fl_str_mv 1. Abualigah, L., and Diabat, A. 2021. “Advances in sine cosine algorithm: A comprehensive survey.” Artificial Intelligence Review, Vol. 54(No. 4): pp. 2567–2608. doi:https://doi.org/10.1007/s10462-020-09909-3. [Crossref], [Web of Science ®], [Google Scholar]
2. Ang, K.L.-M., and Seng, J.K.P. 2021. “Big data and machine learning with hyperspectral information in agriculture.” IEEE Access, Vol. 9: pp. 36699–36718. doi:https://doi.org/10.1109/ACCESS.2021.3051196. [Crossref], [Google Scholar]
3. Bernardo, L.S., Damaševičius, R., de Albuquerque, V.H.C., and Maskeliūnas, R. 2021. “A hybrid two-stage SqueezeNet and support vector machine system for Parkinson’s disease detection based on handwritten spiral patterns.” Advanced Machine Learning Techniques in Data Analysis. Vol. 31: pp. 549–561. [Google Scholar]
4. Bhosle, K., and Musande, V. 2019. “Evaluation of deep learning CNN model for land use land cover classification and crop identification using hyperspectral remote sensing images.” Journal of the Indian Society of Remote Sensing, Vol. 47(No. 11): pp. 1949–1958. doi:https://doi.org/10.1007/s12524-019-01041-2. [Crossref], [Web of Science ®], [Google Scholar]
5. Chasmer, L.E., Ryerson, R.A., and Coburn, C.A. 2022. “Educating the next generation of remote sensing specialists: Skills and industry needs in a changing world.” Canadian Journal of Remote Sensing, Vol. 48(No. 1): pp. 55–70. doi:https://doi.org/10.1080/07038992.2021.1925531. [Taylor & Francis Online], [Google Scholar]
6. Jamali, A., Mahdianpari, M., Brisco, B., Granger, J., Mohammadimanesh, F., and Salehi, B. 2021. “Wetland mapping using multi-spectral satellite imagery and deep convolutional neural networks: A case study in Newfoundland and Labrador.” Canadian Journal of Remote Sensing, Vol. 47(No. 2): pp. 243–260. doi:https://doi.org/10.1080/07038992.2021.1901562. [Taylor & Francis Online], [Google Scholar]
7. Kuo, B.-C., Ho, H.-H., Li, C.-H., Hung, C.-C., and Taur, J.-S. 2014. “A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7(No. 1): pp. 317–326. doi:https://doi.org/10.1109/JSTARS.2013.2262926. [Crossref], [Web of Science ®], [Google Scholar]
8. Lassalle, G. 2021. “Monitoring natural and anthropogenic plant stressors by hyperspectral remote sensing: Recommendations and guidelines based on a meta-review.” The Science of the Total Environment, Vol. 788(No. September): pp. 147758. doi:https://doi.org/10.1016/j.scitotenv.2021.147758. [Crossref], [PubMed], [Google Scholar]
9. Lu, B., Dao, P., Liu, J., He, Y., and Shang, J. 2020. “Recent advances of hyperspectral imaging technology and applications in agriculture.” Remote Sensing, Vol. 12(No. 16): pp. 2659. doi:https://doi.org/10.3390/rs12162659. [Crossref], [Web of Science ®], [Google Scholar]
10. Luo, F., Du, B., Zhang, L., Zhang, L., and Tao, D. 2019. “Feature learning using spatial-spectral hypergraph discriminant analysis for hyperspectral image.” IEEE Transactions on Cybernetics, Vol. 49(No. 7): pp. 2406–2419. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
11. Mansour, R., Escorcia-Gutierrez, J., Gamarra, M., Villanueva, J.A., and Leal, N. 2021. “Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model.” Image and Vision Computing, Vol. 112: pp. 104229. doi:https://doi.org/10.1016/j.imavis.2021.104229. [Crossref], [Google Scholar]
12. Meneghini, A., Rahimzadeh-Bajgiran, P., Livingston, W., and Weiskittel, A. 2022. “Detecting white pine needle damage through satellite remote sensing.” Canadian Journal of Remote Sensing, Vol. 48(No. 2): pp. 239–257. doi:https://doi.org/10.1080/07038992.2021.2023317. [Taylor & Francis Online], [Google Scholar]
13. Nayak, D.R., Padhy, N., Mallick, P.K., Zymbler, M., and Kumar, S. 2022. “Brain tumor classification using dense efficient-net.” Axioms, Vol. 11(No. 1): pp. 34. doi:https://doi.org/10.3390/axioms11010034. [Crossref], [Google Scholar]
14. Papp, L., van Leeuwen, B., Szilassi, P., Tobak, Z., Szatmári, J., Árvai, M., Mészáros, J., and Pásztor, L. 2021. “Monitoring invasive plant species using hyperspectral remote sensing data.” Land, Vol. 10(No. 1): pp. 29. doi:https://doi.org/10.3390/land10010029. [Crossref], [Google Scholar]
15. Roy, S., Mondal, R., Paoletti, M.E., Haut, J.M., and Plaza, A. 2021. “Morphological convolutional neural networks for hyperspectral image classification.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14: pp. 8689–8702. doi:https://doi.org/10.1109/JSTARS.2021.3088228. [Crossref], [Google Scholar]
16. Shi, H., Cao, G., Ge, Z., Zhang, Y., and Fu, P. 2021. “Double-branch network with pyramidal convolution and iterative attention for hyperspectral image classification.” Remote Sensing, Vol. 13(No. 7): pp. 1403. doi:https://doi.org/10.3390/rs13071403. [Crossref], [Google Scholar]
17. Singh, N., and Singh, P. 2021. “A hybrid ensemble-filter wrapper feature selection approach for medical data classification.” Chemometrics and Intelligent Laboratory Systems, Vol. 217: pp. 104396. doi:https://doi.org/10.1016/j.chemolab.2021.104396. [Crossref], [Google Scholar]
18. Singh, P., Pandey, P.C., Petropoulos, G.P., Pavlides, A., Srivastava, P.K., Koutsias, N., Deng, K.A.K., and Bao, Y. 2020. “Hyperspectral remote sensing in precision agriculture: Present status, challenges, and future trends.” Hyperspectral Remote Sensing, Vol. 2020: pp. 121–146. [Crossref], [Google Scholar]
19. Song, Z., and Wang, J. 2021. “Automatic identification of atrial fibrillation based on the Modified Elman Neural Network with exponential moving average algorithm.” Measurement, Vol. 183: pp. 109806. doi:https://doi.org/10.1016/j.measurement.2021.109806. [Crossref], [Google Scholar]
20. Sun, H., Zheng, X., Lu, X., and Wu, S. 2020. “Spectral–spatial attention network for hyperspectral image classification.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 58(No. 5): pp. 3232–3245. doi:https://doi.org/10.1109/TGRS.2019.2951160. [Crossref], [Web of Science ®], [Google Scholar]
21. Talkhabi, M., Shamsi, M., and Aghaei, M. 2022. Fruit Recognition and Classification Using Deep Learning (Case Study Date Plant) (No. 7292). EasyChair. [Google Scholar]
22. Thenkabail, P.S., Lyon, J.G. and Huete, A. eds., 2018. Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation. CRC press. [Crossref], [Google Scholar]
23. Uddin, M.P., Mamun, M.A., and Hossain, M.A. 2021. “PCA-based feature reduction for hyperspectral remote sensing image classification.” IETE Technical Review, Vol. 38(No. 4): pp. 377–396. doi:https://doi.org/10.1080/02564602.2020.1740615. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
24. Wan, S., Yeh, M.-L., and Ma, H.-L. 2021. “An innovative intelligent system with integrated CNN and SVM: Considering various crops through hyperspectral image data.” ISPRS International Journal of Geo-Information, Vol. 10(No. 4): pp. 242. doi:https://doi.org/10.3390/ijgi10040242. [Crossref], [Google Scholar]
25. Wei, L., Wang, K., Lu, Q., Liang, Y., Li, H., Wang, Z., Wang, R., and Cao, L. 2021. “Crops fine classification in airborne hyperspectral imagery based on multi-feature fusion and deep learning.” Remote Sensing, Vol. 13(No. 15): pp. 2917. doi:https://doi.org/10.3390/rs13152917. [Crossref], [Web of Science ®], [Google Scholar]
26. Zhao, C., Zhao, H., Wang, G., and Chen, H. 2020. “Hybrid depth-separable residual networks for hyperspectral image classification.” Complexity, Vol. 2020: pp. 1–17. doi:https://doi.org/10.1155/2020/4608647. [Crossref], [Google Scholar]
dc.relation.citationendpage.spa.fl_str_mv 13
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.rights.spa.fl_str_mv © 2022 Informa UK Limited
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv © 2022 Informa UK Limited
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Taylor and Francis Ltd.
dc.publisher.place.spa.fl_str_mv United Kingdom
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.tandfonline.com/doi/full/10.1080/07038992.2022.2081538
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/52f924e7-4d32-4ec0-8eb9-084d6659c62d/download
https://repositorio.cuc.edu.co/bitstreams/1df63bae-4c27-4f4c-b2a3-34d401c83380/download
https://repositorio.cuc.edu.co/bitstreams/60db927b-fc38-456c-8d9e-f8cb18ff0efe/download
https://repositorio.cuc.edu.co/bitstreams/3b2ce787-246f-47dd-8f00-6c581c8bb702/download
bitstream.checksum.fl_str_mv 41616d0a5da30039f7d4ce9e192bcaaf
e30e9215131d99561d40d6b0abbe9bad
ea59d15926e5c71c3d46354c3ae27662
c1f2b6b0385986d5b019d7d9365bd2ec
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760784264396800
spelling Escorcia-Gutierrez, JoseGamarra, MargaritaTorres Torres, MelitsaMadera, NatashaCalabria- Sarmiento, Juan CarlosMansour, Romany F.2022-07-19T18:34:17Z2023-06-222022-07-19T18:34:17Z2022-06-22José Escorcia-Gutierrez, Margarita Gamarra, Melitsa Torres-Torres, Natasha Madera, Juan C. Calabria-Sarmiento & Romany F. Mansour (2022): Intelligent Sine Cosine Optimization with Deep Transfer Learning Based Crops Type Classification Using Hyperspectral Images, Canadian Journal of Remote Sensing, DOI: 10.1080/07038992.2022.20815380703-8992https://hdl.handle.net/11323/9383https://doi.org/10.1080/07038992.2022.208153810.1080/07038992.2022.20815381712-7971Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Hyperspectral Remote Sensing (HRS) is an emergent, multidisciplinary paradigm with several applications, which are developed on the basis of material spectroscopy, radiative transfer, and imaging spectroscopy. HRS plays a vital role in agriculture for crops type classification and soil prediction. The recently developed artificial intelligence techniques can be used for crops type classification using HRS. This study develops an Intelligent Sine Cosine Optimization with Deep Transfer Learning Based Crop Type Classification (ISCO-DTLCTC) model. The ISCO-DTLCTC technique comprises initial preprocessing step to extract the region of interest. The information gain-based feature reduction technique is employed to reduce the dimensionality of the original hyperspectral images. In addition, a fusion of 3 deep convolutional neural networks models namely, VGG16, SqueezeNet, and Dense-EfficientNet perform feature extraction process. Furthermore, sine cosine optimization (SCO) algorithm with Modified Elman Neural Network (MENN) model is applied for crops type classification. The design of SCO algorithm helps to proficiently select the parameters involved in the MENN model. The performance validation of the ISCO-DTLCTC model is carried out using benchmark datasets and the results are inspected under several measures. Extensive comparative results demonstrated the betterment of the ISCO-DTLCTC model over the state of art approaches with maximum accuracy of 99.99%.La télédétection hyperspectrale (HRS) est une technologie émergente et multidisciplinaire ayant plusieurs applications développées sur la base de la spectroscopie des matériaux, du transfert radiatif et de la spectroscopie des images. L’HRS joue un rôle essentiel en agriculture pour la classification des types de cultures et la prévision des sols. Les techniques d’intelligence artificielle (IA) récemment développées peuvent être utilisées pour la classification des types de cultures à l’aide de HRS. Cette étude développe un modèle intelligent d’optimisation du sinus-cosinus avec une classification des types de cultures basée sur l’apprentissage par transfert profond (ISCO-DTLCTC). La technique ISCO-DTLCTC comprend une étape initiale de prétraitement pour extraire la région d’intérêt (RoI). La technique IGFR (Information Gain Based Feature Reduction) est utilisée pour réduire la dimensionnalité des images hyperspectrales originales. Une fusion de trois modèles DCNN (Deep Convolutional Neural Networks), à savoir VGG16, SqueezeNet et Dense-EfficientNet, effectue un processus d’extraction des principales caractéristiques. En outre, l’algorithme d’optimisation du sinus-cosinus (SCO) avec le modèle MENN (Modified Elman Neural Network) est appliqué à la classification des types de cultures. La conception de l’algorithme SCO permet de sélectionner efficacement les paramètres impliqués dans le modèle MENN. La validation des performances du modèle ISCO-DTLCTC est effectuée à l’aide d’ensembles de données de référence et les résultats sont validés avec différents paramètres. Les résultats démontrent l’efficacité du modèle ISCO-DTLCTC par rapport aux approches de pointe avec une précision maximale de 99,99%.13 páginasapplication/pdfengTaylor and Francis Ltd.United Kingdom© 2022 Informa UK LimitedAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfIntelligent sine cosine optimization with deep transfer learning based crops type classification using hyperspectral imagesOptimisation intelligente du sinus-cosinus et classification des types de cultures basée sur l'apprentissage par transfert profond à l’aide d’images hyperspectralesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.tandfonline.com/doi/full/10.1080/07038992.2022.2081538Canadian Journal of Remote Sensing1. Abualigah, L., and Diabat, A. 2021. “Advances in sine cosine algorithm: A comprehensive survey.” Artificial Intelligence Review, Vol. 54(No. 4): pp. 2567–2608. doi:https://doi.org/10.1007/s10462-020-09909-3. [Crossref], [Web of Science ®], [Google Scholar]2. Ang, K.L.-M., and Seng, J.K.P. 2021. “Big data and machine learning with hyperspectral information in agriculture.” IEEE Access, Vol. 9: pp. 36699–36718. doi:https://doi.org/10.1109/ACCESS.2021.3051196. [Crossref], [Google Scholar]3. Bernardo, L.S., Damaševičius, R., de Albuquerque, V.H.C., and Maskeliūnas, R. 2021. “A hybrid two-stage SqueezeNet and support vector machine system for Parkinson’s disease detection based on handwritten spiral patterns.” Advanced Machine Learning Techniques in Data Analysis. Vol. 31: pp. 549–561. [Google Scholar]4. Bhosle, K., and Musande, V. 2019. “Evaluation of deep learning CNN model for land use land cover classification and crop identification using hyperspectral remote sensing images.” Journal of the Indian Society of Remote Sensing, Vol. 47(No. 11): pp. 1949–1958. doi:https://doi.org/10.1007/s12524-019-01041-2. [Crossref], [Web of Science ®], [Google Scholar]5. Chasmer, L.E., Ryerson, R.A., and Coburn, C.A. 2022. “Educating the next generation of remote sensing specialists: Skills and industry needs in a changing world.” Canadian Journal of Remote Sensing, Vol. 48(No. 1): pp. 55–70. doi:https://doi.org/10.1080/07038992.2021.1925531. [Taylor & Francis Online], [Google Scholar]6. Jamali, A., Mahdianpari, M., Brisco, B., Granger, J., Mohammadimanesh, F., and Salehi, B. 2021. “Wetland mapping using multi-spectral satellite imagery and deep convolutional neural networks: A case study in Newfoundland and Labrador.” Canadian Journal of Remote Sensing, Vol. 47(No. 2): pp. 243–260. doi:https://doi.org/10.1080/07038992.2021.1901562. [Taylor & Francis Online], [Google Scholar]7. Kuo, B.-C., Ho, H.-H., Li, C.-H., Hung, C.-C., and Taur, J.-S. 2014. “A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7(No. 1): pp. 317–326. doi:https://doi.org/10.1109/JSTARS.2013.2262926. [Crossref], [Web of Science ®], [Google Scholar]8. Lassalle, G. 2021. “Monitoring natural and anthropogenic plant stressors by hyperspectral remote sensing: Recommendations and guidelines based on a meta-review.” The Science of the Total Environment, Vol. 788(No. September): pp. 147758. doi:https://doi.org/10.1016/j.scitotenv.2021.147758. [Crossref], [PubMed], [Google Scholar]9. Lu, B., Dao, P., Liu, J., He, Y., and Shang, J. 2020. “Recent advances of hyperspectral imaging technology and applications in agriculture.” Remote Sensing, Vol. 12(No. 16): pp. 2659. doi:https://doi.org/10.3390/rs12162659. [Crossref], [Web of Science ®], [Google Scholar]10. Luo, F., Du, B., Zhang, L., Zhang, L., and Tao, D. 2019. “Feature learning using spatial-spectral hypergraph discriminant analysis for hyperspectral image.” IEEE Transactions on Cybernetics, Vol. 49(No. 7): pp. 2406–2419. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]11. Mansour, R., Escorcia-Gutierrez, J., Gamarra, M., Villanueva, J.A., and Leal, N. 2021. “Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model.” Image and Vision Computing, Vol. 112: pp. 104229. doi:https://doi.org/10.1016/j.imavis.2021.104229. [Crossref], [Google Scholar]12. Meneghini, A., Rahimzadeh-Bajgiran, P., Livingston, W., and Weiskittel, A. 2022. “Detecting white pine needle damage through satellite remote sensing.” Canadian Journal of Remote Sensing, Vol. 48(No. 2): pp. 239–257. doi:https://doi.org/10.1080/07038992.2021.2023317. [Taylor & Francis Online], [Google Scholar]13. Nayak, D.R., Padhy, N., Mallick, P.K., Zymbler, M., and Kumar, S. 2022. “Brain tumor classification using dense efficient-net.” Axioms, Vol. 11(No. 1): pp. 34. doi:https://doi.org/10.3390/axioms11010034. [Crossref], [Google Scholar]14. Papp, L., van Leeuwen, B., Szilassi, P., Tobak, Z., Szatmári, J., Árvai, M., Mészáros, J., and Pásztor, L. 2021. “Monitoring invasive plant species using hyperspectral remote sensing data.” Land, Vol. 10(No. 1): pp. 29. doi:https://doi.org/10.3390/land10010029. [Crossref], [Google Scholar]15. Roy, S., Mondal, R., Paoletti, M.E., Haut, J.M., and Plaza, A. 2021. “Morphological convolutional neural networks for hyperspectral image classification.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14: pp. 8689–8702. doi:https://doi.org/10.1109/JSTARS.2021.3088228. [Crossref], [Google Scholar]16. Shi, H., Cao, G., Ge, Z., Zhang, Y., and Fu, P. 2021. “Double-branch network with pyramidal convolution and iterative attention for hyperspectral image classification.” Remote Sensing, Vol. 13(No. 7): pp. 1403. doi:https://doi.org/10.3390/rs13071403. [Crossref], [Google Scholar]17. Singh, N., and Singh, P. 2021. “A hybrid ensemble-filter wrapper feature selection approach for medical data classification.” Chemometrics and Intelligent Laboratory Systems, Vol. 217: pp. 104396. doi:https://doi.org/10.1016/j.chemolab.2021.104396. [Crossref], [Google Scholar]18. Singh, P., Pandey, P.C., Petropoulos, G.P., Pavlides, A., Srivastava, P.K., Koutsias, N., Deng, K.A.K., and Bao, Y. 2020. “Hyperspectral remote sensing in precision agriculture: Present status, challenges, and future trends.” Hyperspectral Remote Sensing, Vol. 2020: pp. 121–146. [Crossref], [Google Scholar]19. Song, Z., and Wang, J. 2021. “Automatic identification of atrial fibrillation based on the Modified Elman Neural Network with exponential moving average algorithm.” Measurement, Vol. 183: pp. 109806. doi:https://doi.org/10.1016/j.measurement.2021.109806. [Crossref], [Google Scholar]20. Sun, H., Zheng, X., Lu, X., and Wu, S. 2020. “Spectral–spatial attention network for hyperspectral image classification.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 58(No. 5): pp. 3232–3245. doi:https://doi.org/10.1109/TGRS.2019.2951160. [Crossref], [Web of Science ®], [Google Scholar]21. Talkhabi, M., Shamsi, M., and Aghaei, M. 2022. Fruit Recognition and Classification Using Deep Learning (Case Study Date Plant) (No. 7292). EasyChair. [Google Scholar]22. Thenkabail, P.S., Lyon, J.G. and Huete, A. eds., 2018. Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation. CRC press. [Crossref], [Google Scholar]23. Uddin, M.P., Mamun, M.A., and Hossain, M.A. 2021. “PCA-based feature reduction for hyperspectral remote sensing image classification.” IETE Technical Review, Vol. 38(No. 4): pp. 377–396. doi:https://doi.org/10.1080/02564602.2020.1740615. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]24. Wan, S., Yeh, M.-L., and Ma, H.-L. 2021. “An innovative intelligent system with integrated CNN and SVM: Considering various crops through hyperspectral image data.” ISPRS International Journal of Geo-Information, Vol. 10(No. 4): pp. 242. doi:https://doi.org/10.3390/ijgi10040242. [Crossref], [Google Scholar]25. Wei, L., Wang, K., Lu, Q., Liang, Y., Li, H., Wang, Z., Wang, R., and Cao, L. 2021. “Crops fine classification in airborne hyperspectral imagery based on multi-feature fusion and deep learning.” Remote Sensing, Vol. 13(No. 15): pp. 2917. doi:https://doi.org/10.3390/rs13152917. [Crossref], [Web of Science ®], [Google Scholar]26. Zhao, C., Zhao, H., Wang, G., and Chen, H. 2020. “Hybrid depth-separable residual networks for hyperspectral image classification.” Complexity, Vol. 2020: pp. 1–17. doi:https://doi.org/10.1155/2020/4608647. [Crossref], [Google Scholar]131Hyperspectral Remote Sensing (HRS)Material spectroscopyAgriculturePublicationORIGINALIntelligent Sine Cosine Optimization with Deep Transfer Learning Based Crops Type Classification Using Hyperspectral Images.pdfIntelligent Sine Cosine Optimization with Deep Transfer Learning Based Crops Type Classification Using Hyperspectral Images.pdfapplication/pdf2647442https://repositorio.cuc.edu.co/bitstreams/52f924e7-4d32-4ec0-8eb9-084d6659c62d/download41616d0a5da30039f7d4ce9e192bcaafMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/1df63bae-4c27-4f4c-b2a3-34d401c83380/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTIntelligent Sine Cosine Optimization with Deep Transfer Learning Based Crops Type Classification Using Hyperspectral Images.pdf.txtIntelligent Sine Cosine Optimization with Deep Transfer Learning Based Crops Type Classification Using Hyperspectral Images.pdf.txttext/plain40802https://repositorio.cuc.edu.co/bitstreams/60db927b-fc38-456c-8d9e-f8cb18ff0efe/downloadea59d15926e5c71c3d46354c3ae27662MD53THUMBNAILIntelligent Sine Cosine Optimization with Deep Transfer Learning Based Crops Type Classification Using Hyperspectral Images.pdf.jpgIntelligent Sine Cosine Optimization with Deep Transfer Learning Based Crops Type Classification Using Hyperspectral Images.pdf.jpgimage/jpeg10463https://repositorio.cuc.edu.co/bitstreams/3b2ce787-246f-47dd-8f00-6c581c8bb702/downloadc1f2b6b0385986d5b019d7d9365bd2ecMD5411323/9383oai:repositorio.cuc.edu.co:11323/93832024-09-17 11:08:31.602https://creativecommons.org/licenses/by-nc/4.0/© 2022 Informa UK Limitedopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==