Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia
Objective: Analyze the road crashes in Cartagena (Colombia) and the factors associated with the collision and severity. The aim is to establish a set of rules for defining countermeasures to improve road safety. Methods: Data mining and machine learning techniques were used in 7894 traffic accidents...
- Autores:
-
Ospina Mateus, Holman
Quintana Jiménez, Leonardo Augusto
López-Valdés, Francisco José
Morales Londoño, Natalie
Salas-Navarro, Katherinne
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6023
- Acceso en línea:
- http://hdl.handle.net/11323/6023
https://repositorio.cuc.edu.co/
- Palabra clave:
- Road crashes
Prediction
Data mining
Severity
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_b94259dd7b5478061e648cf3e5dffdd6 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6023 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia |
title |
Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia |
spellingShingle |
Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia Road crashes Prediction Data mining Severity |
title_short |
Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia |
title_full |
Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia |
title_fullStr |
Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia |
title_full_unstemmed |
Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia |
title_sort |
Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia |
dc.creator.fl_str_mv |
Ospina Mateus, Holman Quintana Jiménez, Leonardo Augusto López-Valdés, Francisco José Morales Londoño, Natalie Salas-Navarro, Katherinne |
dc.contributor.author.spa.fl_str_mv |
Ospina Mateus, Holman Quintana Jiménez, Leonardo Augusto López-Valdés, Francisco José Morales Londoño, Natalie Salas-Navarro, Katherinne |
dc.subject.spa.fl_str_mv |
Road crashes Prediction Data mining Severity |
topic |
Road crashes Prediction Data mining Severity |
description |
Objective: Analyze the road crashes in Cartagena (Colombia) and the factors associated with the collision and severity. The aim is to establish a set of rules for defining countermeasures to improve road safety. Methods: Data mining and machine learning techniques were used in 7894 traffic accidents from 2016 to 2017. The severity was determined between low (84%) and high (16%). Five classification algorithms to predict the accident severity were applied with WEKA Software (Waikato Environment for Knowledge Analysis). Including Decision Tree (DT-J48), Rule Induction (PART), Support Vector Machines (SVMs), Naïve Bayes (NB), and Multilayer Perceptron (MLP). The effectiveness of each algorithm was implemented using cross-validation with 10-fold. Decision rules were defined from the results of the different methods. Results: The methods applied are consistent and similar in the overall results of precision, accuracy, recall, and area under the ROC curve. Conclusions: 12 decision rules were defined based on the methods applied. The rules defined show motorcyclists, cyclists, including pedestrians, as the most vulnerable road users. Men and women motorcyclists between 20–39 years are prone in accidents with high severity. When a motorcycle or cyclist is not involved in the accident, the probable severity is low. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-02-11T15:30:17Z |
dc.date.available.none.fl_str_mv |
2020-02-11T15:30:17Z |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/11323/6023 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
http://hdl.handle.net/11323/6023 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d08df391-7b81-4de5-a9df-328722df5118/download https://repositorio.cuc.edu.co/bitstreams/22dedde4-ef3e-41cc-a678-398644d7dff4/download https://repositorio.cuc.edu.co/bitstreams/3aefea70-d138-4cdc-8f61-c5146debb4a2/download https://repositorio.cuc.edu.co/bitstreams/bd7e808d-75fd-486d-be4f-efd8842378c7/download https://repositorio.cuc.edu.co/bitstreams/547e97f1-3a2c-4baa-a521-2187d081ef08/download |
bitstream.checksum.fl_str_mv |
4f0e5671ccf59b9046ff16ad0d878d7c 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 8f738f0cbaaf625d9a744af95210feb5 ffa17e32c5c4ec96106d996e26ac44cc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760677601148928 |
spelling |
Ospina Mateus, HolmanQuintana Jiménez, Leonardo AugustoLópez-Valdés, Francisco JoséMorales Londoño, NatalieSalas-Navarro, Katherinne2020-02-11T15:30:17Z2020-02-11T15:30:17Z2019http://hdl.handle.net/11323/6023Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Objective: Analyze the road crashes in Cartagena (Colombia) and the factors associated with the collision and severity. The aim is to establish a set of rules for defining countermeasures to improve road safety. Methods: Data mining and machine learning techniques were used in 7894 traffic accidents from 2016 to 2017. The severity was determined between low (84%) and high (16%). Five classification algorithms to predict the accident severity were applied with WEKA Software (Waikato Environment for Knowledge Analysis). Including Decision Tree (DT-J48), Rule Induction (PART), Support Vector Machines (SVMs), Naïve Bayes (NB), and Multilayer Perceptron (MLP). The effectiveness of each algorithm was implemented using cross-validation with 10-fold. Decision rules were defined from the results of the different methods. Results: The methods applied are consistent and similar in the overall results of precision, accuracy, recall, and area under the ROC curve. Conclusions: 12 decision rules were defined based on the methods applied. The rules defined show motorcyclists, cyclists, including pedestrians, as the most vulnerable road users. Men and women motorcyclists between 20–39 years are prone in accidents with high severity. When a motorcycle or cyclist is not involved in the accident, the probable severity is low.Ospina Mateus, Holman-will be generated-orcid-0000-0002-2385-774X-600Quintana Jiménez, Leonardo AugustoLópez-Valdés, Francisco JoséMorales Londoño, Natalie-will be generated-orcid-0000-0002-5964-7015-600Salas-Navarro, Katherinne-will be generated-orcid-0000-0002-6290-3542-600engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Road crashesPredictionData miningSeverityUsing Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, ColombiaPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALUsing Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia.pdfUsing Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia.pdfapplication/pdf103417https://repositorio.cuc.edu.co/bitstreams/d08df391-7b81-4de5-a9df-328722df5118/download4f0e5671ccf59b9046ff16ad0d878d7cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/22dedde4-ef3e-41cc-a678-398644d7dff4/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/3aefea70-d138-4cdc-8f61-c5146debb4a2/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILUsing Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia.pdf.jpgUsing Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia.pdf.jpgimage/jpeg56784https://repositorio.cuc.edu.co/bitstreams/bd7e808d-75fd-486d-be4f-efd8842378c7/download8f738f0cbaaf625d9a744af95210feb5MD55TEXTUsing Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia.pdf.txtUsing Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia.pdf.txttext/plain1676https://repositorio.cuc.edu.co/bitstreams/547e97f1-3a2c-4baa-a521-2187d081ef08/downloadffa17e32c5c4ec96106d996e26ac44ccMD5611323/6023oai:repositorio.cuc.edu.co:11323/60232024-09-16 16:44:47.588http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |