Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia

Objective: Analyze the road crashes in Cartagena (Colombia) and the factors associated with the collision and severity. The aim is to establish a set of rules for defining countermeasures to improve road safety. Methods: Data mining and machine learning techniques were used in 7894 traffic accidents...

Full description

Autores:
Ospina Mateus, Holman
Quintana Jiménez, Leonardo Augusto
López-Valdés, Francisco José
Morales Londoño, Natalie
Salas-Navarro, Katherinne
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6023
Acceso en línea:
http://hdl.handle.net/11323/6023
https://repositorio.cuc.edu.co/
Palabra clave:
Road crashes
Prediction
Data mining
Severity
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_b94259dd7b5478061e648cf3e5dffdd6
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6023
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia
title Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia
spellingShingle Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia
Road crashes
Prediction
Data mining
Severity
title_short Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia
title_full Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia
title_fullStr Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia
title_full_unstemmed Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia
title_sort Using Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia
dc.creator.fl_str_mv Ospina Mateus, Holman
Quintana Jiménez, Leonardo Augusto
López-Valdés, Francisco José
Morales Londoño, Natalie
Salas-Navarro, Katherinne
dc.contributor.author.spa.fl_str_mv Ospina Mateus, Holman
Quintana Jiménez, Leonardo Augusto
López-Valdés, Francisco José
Morales Londoño, Natalie
Salas-Navarro, Katherinne
dc.subject.spa.fl_str_mv Road crashes
Prediction
Data mining
Severity
topic Road crashes
Prediction
Data mining
Severity
description Objective: Analyze the road crashes in Cartagena (Colombia) and the factors associated with the collision and severity. The aim is to establish a set of rules for defining countermeasures to improve road safety. Methods: Data mining and machine learning techniques were used in 7894 traffic accidents from 2016 to 2017. The severity was determined between low (84%) and high (16%). Five classification algorithms to predict the accident severity were applied with WEKA Software (Waikato Environment for Knowledge Analysis). Including Decision Tree (DT-J48), Rule Induction (PART), Support Vector Machines (SVMs), Naïve Bayes (NB), and Multilayer Perceptron (MLP). The effectiveness of each algorithm was implemented using cross-validation with 10-fold. Decision rules were defined from the results of the different methods. Results: The methods applied are consistent and similar in the overall results of precision, accuracy, recall, and area under the ROC curve. Conclusions: 12 decision rules were defined based on the methods applied. The rules defined show motorcyclists, cyclists, including pedestrians, as the most vulnerable road users. Men and women motorcyclists between 20–39 years are prone in accidents with high severity. When a motorcycle or cyclist is not involved in the accident, the probable severity is low.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-02-11T15:30:17Z
dc.date.available.none.fl_str_mv 2020-02-11T15:30:17Z
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/6023
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url http://hdl.handle.net/11323/6023
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d08df391-7b81-4de5-a9df-328722df5118/download
https://repositorio.cuc.edu.co/bitstreams/22dedde4-ef3e-41cc-a678-398644d7dff4/download
https://repositorio.cuc.edu.co/bitstreams/3aefea70-d138-4cdc-8f61-c5146debb4a2/download
https://repositorio.cuc.edu.co/bitstreams/bd7e808d-75fd-486d-be4f-efd8842378c7/download
https://repositorio.cuc.edu.co/bitstreams/547e97f1-3a2c-4baa-a521-2187d081ef08/download
bitstream.checksum.fl_str_mv 4f0e5671ccf59b9046ff16ad0d878d7c
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
8f738f0cbaaf625d9a744af95210feb5
ffa17e32c5c4ec96106d996e26ac44cc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760677601148928
spelling Ospina Mateus, HolmanQuintana Jiménez, Leonardo AugustoLópez-Valdés, Francisco JoséMorales Londoño, NatalieSalas-Navarro, Katherinne2020-02-11T15:30:17Z2020-02-11T15:30:17Z2019http://hdl.handle.net/11323/6023Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Objective: Analyze the road crashes in Cartagena (Colombia) and the factors associated with the collision and severity. The aim is to establish a set of rules for defining countermeasures to improve road safety. Methods: Data mining and machine learning techniques were used in 7894 traffic accidents from 2016 to 2017. The severity was determined between low (84%) and high (16%). Five classification algorithms to predict the accident severity were applied with WEKA Software (Waikato Environment for Knowledge Analysis). Including Decision Tree (DT-J48), Rule Induction (PART), Support Vector Machines (SVMs), Naïve Bayes (NB), and Multilayer Perceptron (MLP). The effectiveness of each algorithm was implemented using cross-validation with 10-fold. Decision rules were defined from the results of the different methods. Results: The methods applied are consistent and similar in the overall results of precision, accuracy, recall, and area under the ROC curve. Conclusions: 12 decision rules were defined based on the methods applied. The rules defined show motorcyclists, cyclists, including pedestrians, as the most vulnerable road users. Men and women motorcyclists between 20–39 years are prone in accidents with high severity. When a motorcycle or cyclist is not involved in the accident, the probable severity is low.Ospina Mateus, Holman-will be generated-orcid-0000-0002-2385-774X-600Quintana Jiménez, Leonardo AugustoLópez-Valdés, Francisco JoséMorales Londoño, Natalie-will be generated-orcid-0000-0002-5964-7015-600Salas-Navarro, Katherinne-will be generated-orcid-0000-0002-6290-3542-600engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Road crashesPredictionData miningSeverityUsing Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, ColombiaPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALUsing Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia.pdfUsing Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia.pdfapplication/pdf103417https://repositorio.cuc.edu.co/bitstreams/d08df391-7b81-4de5-a9df-328722df5118/download4f0e5671ccf59b9046ff16ad0d878d7cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/22dedde4-ef3e-41cc-a678-398644d7dff4/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/3aefea70-d138-4cdc-8f61-c5146debb4a2/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILUsing Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia.pdf.jpgUsing Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia.pdf.jpgimage/jpeg56784https://repositorio.cuc.edu.co/bitstreams/bd7e808d-75fd-486d-be4f-efd8842378c7/download8f738f0cbaaf625d9a744af95210feb5MD55TEXTUsing Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia.pdf.txtUsing Data-mining Techniques for the prediction of the severity of road crashes in Cartagena, Colombia.pdf.txttext/plain1676https://repositorio.cuc.edu.co/bitstreams/547e97f1-3a2c-4baa-a521-2187d081ef08/downloadffa17e32c5c4ec96106d996e26ac44ccMD5611323/6023oai:repositorio.cuc.edu.co:11323/60232024-09-16 16:44:47.588http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=