Comparative analysis between different automatic learning environments for sentiment analysis

Sentiment Analysis is a branch of Natural Language Processing in which an emotion is identified through a sentence, phrase or written expression on the Internet, allowing the monitoring of opinions on different topics discussed on the Web. The study discussed in this paper analyzed phrases or senten...

Full description

Autores:
amelec, viloria
Varela Izquierdo, Noel
Vargas, Jesús
Pineda, Omar
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7279
Acceso en línea:
https://hdl.handle.net/11323/7279
https://repositorio.cuc.edu.co/
Palabra clave:
Automatic learning
Comparative analysis
Sentiment analysis
Rights
closedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_b8eef83b074a1f6025f22660e88cb17d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7279
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Comparative analysis between different automatic learning environments for sentiment analysis
title Comparative analysis between different automatic learning environments for sentiment analysis
spellingShingle Comparative analysis between different automatic learning environments for sentiment analysis
Automatic learning
Comparative analysis
Sentiment analysis
title_short Comparative analysis between different automatic learning environments for sentiment analysis
title_full Comparative analysis between different automatic learning environments for sentiment analysis
title_fullStr Comparative analysis between different automatic learning environments for sentiment analysis
title_full_unstemmed Comparative analysis between different automatic learning environments for sentiment analysis
title_sort Comparative analysis between different automatic learning environments for sentiment analysis
dc.creator.fl_str_mv amelec, viloria
Varela Izquierdo, Noel
Vargas, Jesús
Pineda, Omar
dc.contributor.author.spa.fl_str_mv amelec, viloria
Varela Izquierdo, Noel
Vargas, Jesús
Pineda, Omar
dc.subject.spa.fl_str_mv Automatic learning
Comparative analysis
Sentiment analysis
topic Automatic learning
Comparative analysis
Sentiment analysis
description Sentiment Analysis is a branch of Natural Language Processing in which an emotion is identified through a sentence, phrase or written expression on the Internet, allowing the monitoring of opinions on different topics discussed on the Web. The study discussed in this paper analyzed phrases or sentences written in Spanish and English expressing opinions about the service of Restaurants and opinions written in the English language about Laptops. Experiments were carried out using 3 automatic classifiers: Support Vector Machine (SVM), Naïve Bayes and Multinomial Naïve Bayes, each one being tested with the three data sets in the Weka automatic learning software and in Python, in order to make a comparison of results between these two tools
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-12T17:37:01Z
dc.date.available.none.fl_str_mv 2020-11-12T17:37:01Z
dc.date.issued.none.fl_str_mv 2020
dc.date.embargoEnd.none.fl_str_mv 2021-06-19
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2194-5357
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7279
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2194-5357
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7279
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Zhang, Z., Ye, Q., Zhang, Z., Li, Y.: Sentiment classification of internet restaurant reviews written in cantonese. Expert Syst. Appl. 38(6), 7674–7682 (2011)
Billyan, B., Sarno, R., Sungkono, K.R., Tangkawarow, I.R.: Fuzzy K-nearest neighbor for restaurants business sentiment analysis on TripAdvisor. In: 2019 International Conference on Information and Communications Technology (ICOIACT), pp. 543–548. IEEE, July 2019
Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B., Varoquaux, G.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)
Laksono, R.A., Sungkono, K.R., Sarno, R., Wahyuni, C.S.: Sentiment analysis of restaurant customer reviews on TripAdvisor using Naïve Bayes. In: 2019 12th International Conference on Information & Communication Technology and System (ICTS), pp. 49–54. IEEE, July 2019
Singh, S., Saikia, L.P.: A comparative analysis of text classification algorithms for ambiguity detection in requirement engineering document using WEKA. In: ICT Analysis and Applications, pp. 345–354. Springer, Singapore (2020)
Kumar, A., Jaiswal, A.: Systematic literature review of sentiment analysis on Twitter using soft computing techniques. Concurr. Computa.: Pract. Exp. 32(1), e5107 (2020)
Mulay, S.A., Joshi, S.J., Shaha, M.R., Vibhute, H.V., Panaskar, M.P.: Sentiment analysis and opinion mining with social networking for predicting box office collection of movie. Int. J. Emerg. Res. Manag. Technol. 5(1), 74–79 (2016)
Liu, S., Lee, I.: Email sentiment analysis through k-means labeling and support vector machine classification. Cybern. Syst. 49(3), 181–199 (2018)
Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., AL-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B., De Clercq, O., Hoste, V., Apidianaki, M., Tannier, X., Loukachevitch, N., Kotelnikov, E., Bel, N., Jimenez-Zafra, S.M., Eryigit, G.: Semeval-2016 task 5: aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 19–30. Association for Computational Linguistics, San Diego, June 2016. http://www.aclweb.org/anthology/S16-1002
Ahmad, M., Aftab, S., Bashir, M.S., Hameed, N., Ali, I., Nawaz, Z.: SVM optimization for sentiment analysis. Int. J. Adv. Comput. Sci. Appl. 9(4), 393–398 (2018)
Rennie, J.D., Shih, L., Teevan, J., Karger, D.R., et al.: Tackling the poor assumptions of Naive Bayes text classifiers. In: Proceedings of the Twentieth International Conference on Machine Learning, Washington DC, vol. 3, pp. 616–623 (2003)
Ahmad, M., Aftab, S., Ali, I.: Sentiment analysis of tweets using SVM. Int. J. Comput. Appl. 177(5), 25–29 (2017)
Ducange, P., Fazzolari, M., Petrocchi, M., Vecchio, M.: An effective decision support system for social media listening based on cross-source sentiment analysis models. Eng. Appl. Artif. Intell. 78, 71–85 (2019)
Iqbal, F., Hashmi, J.M., Fung, B.C., Batool, R., Khattak, A.M., Aleem, S., Hung, P.C.: A hybrid framework for sentiment analysis using genetic algorithm based feature reduction. IEEE Access 7, 14637–14652 (2019)
Silva, J., Varela, N., Ovallos-Gazabon, D., Palma, H.H., Cazallo-Antunez, A., Bilbao, O.R., Llinás, N.O., Lezama, O.B.P.: Data mining and social network analysis on Twitter. In: International Conference on Communication, Computing and Electronics Systems, pp. 401–408. Springer, Singapore (2020)
Silva, J., Naveda, A.S., Suarez, R.G., Palma, H.H., Núñez, W.N.: Method for collecting relevant topics from Twitter supported by big data. In: Journal of Physics: Conference Series, vol. 1432, no. 1, p. 012094. IOP Publishing, January 2020
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Advances in Intelligent Systems and Computing
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089721615&doi=10.1007%2f978-3-030-53036-5_14&partnerID=40&md5=a16c1d0bc02ec0dacfd7ced4d831e746
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d0e874bc-b7a4-46bf-8ebd-6865aadc09a3/download
https://repositorio.cuc.edu.co/bitstreams/17fde07c-8982-462c-a4a2-870cc3ef307a/download
https://repositorio.cuc.edu.co/bitstreams/17463180-c80e-4234-bd6e-f1ad521d5f61/download
https://repositorio.cuc.edu.co/bitstreams/9c055914-82a8-4cbd-88f2-c3cc811eb57a/download
https://repositorio.cuc.edu.co/bitstreams/fea8c826-9cc0-440a-be3f-c0d454ec9d5d/download
bitstream.checksum.fl_str_mv 76c1f4df14993015b971eea793c0aefb
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
53b9c005d1d5c9bfb96df8c26d5386b2
9adf2ec06a941cedd81734d39a8bc2a0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166783522045952
spelling amelec, viloriaVarela Izquierdo, NoelVargas, JesúsPineda, Omar2020-11-12T17:37:01Z2020-11-12T17:37:01Z20202021-06-192194-5357https://hdl.handle.net/11323/7279Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Sentiment Analysis is a branch of Natural Language Processing in which an emotion is identified through a sentence, phrase or written expression on the Internet, allowing the monitoring of opinions on different topics discussed on the Web. The study discussed in this paper analyzed phrases or sentences written in Spanish and English expressing opinions about the service of Restaurants and opinions written in the English language about Laptops. Experiments were carried out using 3 automatic classifiers: Support Vector Machine (SVM), Naïve Bayes and Multinomial Naïve Bayes, each one being tested with the three data sets in the Weka automatic learning software and in Python, in order to make a comparison of results between these two toolsamelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Varela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Vargas, JesúsPineda, Omar-will be generated-orcid-0000-0002-8239-3906-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAdvances in Intelligent Systems and Computinghttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089721615&doi=10.1007%2f978-3-030-53036-5_14&partnerID=40&md5=a16c1d0bc02ec0dacfd7ced4d831e746Automatic learningComparative analysisSentiment analysisComparative analysis between different automatic learning environments for sentiment analysisPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionZhang, Z., Ye, Q., Zhang, Z., Li, Y.: Sentiment classification of internet restaurant reviews written in cantonese. Expert Syst. Appl. 38(6), 7674–7682 (2011)Billyan, B., Sarno, R., Sungkono, K.R., Tangkawarow, I.R.: Fuzzy K-nearest neighbor for restaurants business sentiment analysis on TripAdvisor. In: 2019 International Conference on Information and Communications Technology (ICOIACT), pp. 543–548. IEEE, July 2019Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B., Varoquaux, G.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)Laksono, R.A., Sungkono, K.R., Sarno, R., Wahyuni, C.S.: Sentiment analysis of restaurant customer reviews on TripAdvisor using Naïve Bayes. In: 2019 12th International Conference on Information & Communication Technology and System (ICTS), pp. 49–54. IEEE, July 2019Singh, S., Saikia, L.P.: A comparative analysis of text classification algorithms for ambiguity detection in requirement engineering document using WEKA. In: ICT Analysis and Applications, pp. 345–354. Springer, Singapore (2020)Kumar, A., Jaiswal, A.: Systematic literature review of sentiment analysis on Twitter using soft computing techniques. Concurr. Computa.: Pract. Exp. 32(1), e5107 (2020)Mulay, S.A., Joshi, S.J., Shaha, M.R., Vibhute, H.V., Panaskar, M.P.: Sentiment analysis and opinion mining with social networking for predicting box office collection of movie. Int. J. Emerg. Res. Manag. Technol. 5(1), 74–79 (2016)Liu, S., Lee, I.: Email sentiment analysis through k-means labeling and support vector machine classification. Cybern. Syst. 49(3), 181–199 (2018)Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., AL-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B., De Clercq, O., Hoste, V., Apidianaki, M., Tannier, X., Loukachevitch, N., Kotelnikov, E., Bel, N., Jimenez-Zafra, S.M., Eryigit, G.: Semeval-2016 task 5: aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 19–30. Association for Computational Linguistics, San Diego, June 2016. http://www.aclweb.org/anthology/S16-1002Ahmad, M., Aftab, S., Bashir, M.S., Hameed, N., Ali, I., Nawaz, Z.: SVM optimization for sentiment analysis. Int. J. Adv. Comput. Sci. Appl. 9(4), 393–398 (2018)Rennie, J.D., Shih, L., Teevan, J., Karger, D.R., et al.: Tackling the poor assumptions of Naive Bayes text classifiers. In: Proceedings of the Twentieth International Conference on Machine Learning, Washington DC, vol. 3, pp. 616–623 (2003)Ahmad, M., Aftab, S., Ali, I.: Sentiment analysis of tweets using SVM. Int. J. Comput. Appl. 177(5), 25–29 (2017)Ducange, P., Fazzolari, M., Petrocchi, M., Vecchio, M.: An effective decision support system for social media listening based on cross-source sentiment analysis models. Eng. Appl. Artif. Intell. 78, 71–85 (2019)Iqbal, F., Hashmi, J.M., Fung, B.C., Batool, R., Khattak, A.M., Aleem, S., Hung, P.C.: A hybrid framework for sentiment analysis using genetic algorithm based feature reduction. IEEE Access 7, 14637–14652 (2019)Silva, J., Varela, N., Ovallos-Gazabon, D., Palma, H.H., Cazallo-Antunez, A., Bilbao, O.R., Llinás, N.O., Lezama, O.B.P.: Data mining and social network analysis on Twitter. In: International Conference on Communication, Computing and Electronics Systems, pp. 401–408. Springer, Singapore (2020)Silva, J., Naveda, A.S., Suarez, R.G., Palma, H.H., Núñez, W.N.: Method for collecting relevant topics from Twitter supported by big data. In: Journal of Physics: Conference Series, vol. 1432, no. 1, p. 012094. IOP Publishing, January 2020PublicationORIGINALCOMPARATIVE ANALYSIS BETWEEN DIFFERENT AUTOMATIC LEARNING ENVIRONMENTS FOR SENTIMENT ANALYSIS.pdfCOMPARATIVE ANALYSIS BETWEEN DIFFERENT AUTOMATIC LEARNING ENVIRONMENTS FOR SENTIMENT ANALYSIS.pdfapplication/pdf179308https://repositorio.cuc.edu.co/bitstreams/d0e874bc-b7a4-46bf-8ebd-6865aadc09a3/download76c1f4df14993015b971eea793c0aefbMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/17fde07c-8982-462c-a4a2-870cc3ef307a/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/17463180-c80e-4234-bd6e-f1ad521d5f61/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILCOMPARATIVE ANALYSIS BETWEEN DIFFERENT AUTOMATIC LEARNING ENVIRONMENTS FOR SENTIMENT ANALYSIS.pdf.jpgCOMPARATIVE ANALYSIS BETWEEN DIFFERENT AUTOMATIC LEARNING ENVIRONMENTS FOR SENTIMENT ANALYSIS.pdf.jpgimage/jpeg41186https://repositorio.cuc.edu.co/bitstreams/9c055914-82a8-4cbd-88f2-c3cc811eb57a/download53b9c005d1d5c9bfb96df8c26d5386b2MD54TEXTCOMPARATIVE ANALYSIS BETWEEN DIFFERENT AUTOMATIC LEARNING ENVIRONMENTS FOR SENTIMENT ANALYSIS.pdf.txtCOMPARATIVE ANALYSIS BETWEEN DIFFERENT AUTOMATIC LEARNING ENVIRONMENTS FOR SENTIMENT ANALYSIS.pdf.txttext/plain1029https://repositorio.cuc.edu.co/bitstreams/fea8c826-9cc0-440a-be3f-c0d454ec9d5d/download9adf2ec06a941cedd81734d39a8bc2a0MD5511323/7279oai:repositorio.cuc.edu.co:11323/72792024-09-17 14:08:23.994http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==