Comparative analysis between different automatic learning environments for sentiment analysis
Sentiment Analysis is a branch of Natural Language Processing in which an emotion is identified through a sentence, phrase or written expression on the Internet, allowing the monitoring of opinions on different topics discussed on the Web. The study discussed in this paper analyzed phrases or senten...
- Autores:
-
amelec, viloria
Varela Izquierdo, Noel
Vargas, Jesús
Pineda, Omar
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7279
- Acceso en línea:
- https://hdl.handle.net/11323/7279
https://repositorio.cuc.edu.co/
- Palabra clave:
- Automatic learning
Comparative analysis
Sentiment analysis
- Rights
- closedAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_b8eef83b074a1f6025f22660e88cb17d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7279 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Comparative analysis between different automatic learning environments for sentiment analysis |
title |
Comparative analysis between different automatic learning environments for sentiment analysis |
spellingShingle |
Comparative analysis between different automatic learning environments for sentiment analysis Automatic learning Comparative analysis Sentiment analysis |
title_short |
Comparative analysis between different automatic learning environments for sentiment analysis |
title_full |
Comparative analysis between different automatic learning environments for sentiment analysis |
title_fullStr |
Comparative analysis between different automatic learning environments for sentiment analysis |
title_full_unstemmed |
Comparative analysis between different automatic learning environments for sentiment analysis |
title_sort |
Comparative analysis between different automatic learning environments for sentiment analysis |
dc.creator.fl_str_mv |
amelec, viloria Varela Izquierdo, Noel Vargas, Jesús Pineda, Omar |
dc.contributor.author.spa.fl_str_mv |
amelec, viloria Varela Izquierdo, Noel Vargas, Jesús Pineda, Omar |
dc.subject.spa.fl_str_mv |
Automatic learning Comparative analysis Sentiment analysis |
topic |
Automatic learning Comparative analysis Sentiment analysis |
description |
Sentiment Analysis is a branch of Natural Language Processing in which an emotion is identified through a sentence, phrase or written expression on the Internet, allowing the monitoring of opinions on different topics discussed on the Web. The study discussed in this paper analyzed phrases or sentences written in Spanish and English expressing opinions about the service of Restaurants and opinions written in the English language about Laptops. Experiments were carried out using 3 automatic classifiers: Support Vector Machine (SVM), Naïve Bayes and Multinomial Naïve Bayes, each one being tested with the three data sets in the Weka automatic learning software and in Python, in order to make a comparison of results between these two tools |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-12T17:37:01Z |
dc.date.available.none.fl_str_mv |
2020-11-12T17:37:01Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.embargoEnd.none.fl_str_mv |
2021-06-19 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2194-5357 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7279 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2194-5357 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7279 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Zhang, Z., Ye, Q., Zhang, Z., Li, Y.: Sentiment classification of internet restaurant reviews written in cantonese. Expert Syst. Appl. 38(6), 7674–7682 (2011) Billyan, B., Sarno, R., Sungkono, K.R., Tangkawarow, I.R.: Fuzzy K-nearest neighbor for restaurants business sentiment analysis on TripAdvisor. In: 2019 International Conference on Information and Communications Technology (ICOIACT), pp. 543–548. IEEE, July 2019 Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B., Varoquaux, G.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013) Laksono, R.A., Sungkono, K.R., Sarno, R., Wahyuni, C.S.: Sentiment analysis of restaurant customer reviews on TripAdvisor using Naïve Bayes. In: 2019 12th International Conference on Information & Communication Technology and System (ICTS), pp. 49–54. IEEE, July 2019 Singh, S., Saikia, L.P.: A comparative analysis of text classification algorithms for ambiguity detection in requirement engineering document using WEKA. In: ICT Analysis and Applications, pp. 345–354. Springer, Singapore (2020) Kumar, A., Jaiswal, A.: Systematic literature review of sentiment analysis on Twitter using soft computing techniques. Concurr. Computa.: Pract. Exp. 32(1), e5107 (2020) Mulay, S.A., Joshi, S.J., Shaha, M.R., Vibhute, H.V., Panaskar, M.P.: Sentiment analysis and opinion mining with social networking for predicting box office collection of movie. Int. J. Emerg. Res. Manag. Technol. 5(1), 74–79 (2016) Liu, S., Lee, I.: Email sentiment analysis through k-means labeling and support vector machine classification. Cybern. Syst. 49(3), 181–199 (2018) Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., AL-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B., De Clercq, O., Hoste, V., Apidianaki, M., Tannier, X., Loukachevitch, N., Kotelnikov, E., Bel, N., Jimenez-Zafra, S.M., Eryigit, G.: Semeval-2016 task 5: aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 19–30. Association for Computational Linguistics, San Diego, June 2016. http://www.aclweb.org/anthology/S16-1002 Ahmad, M., Aftab, S., Bashir, M.S., Hameed, N., Ali, I., Nawaz, Z.: SVM optimization for sentiment analysis. Int. J. Adv. Comput. Sci. Appl. 9(4), 393–398 (2018) Rennie, J.D., Shih, L., Teevan, J., Karger, D.R., et al.: Tackling the poor assumptions of Naive Bayes text classifiers. In: Proceedings of the Twentieth International Conference on Machine Learning, Washington DC, vol. 3, pp. 616–623 (2003) Ahmad, M., Aftab, S., Ali, I.: Sentiment analysis of tweets using SVM. Int. J. Comput. Appl. 177(5), 25–29 (2017) Ducange, P., Fazzolari, M., Petrocchi, M., Vecchio, M.: An effective decision support system for social media listening based on cross-source sentiment analysis models. Eng. Appl. Artif. Intell. 78, 71–85 (2019) Iqbal, F., Hashmi, J.M., Fung, B.C., Batool, R., Khattak, A.M., Aleem, S., Hung, P.C.: A hybrid framework for sentiment analysis using genetic algorithm based feature reduction. IEEE Access 7, 14637–14652 (2019) Silva, J., Varela, N., Ovallos-Gazabon, D., Palma, H.H., Cazallo-Antunez, A., Bilbao, O.R., Llinás, N.O., Lezama, O.B.P.: Data mining and social network analysis on Twitter. In: International Conference on Communication, Computing and Electronics Systems, pp. 401–408. Springer, Singapore (2020) Silva, J., Naveda, A.S., Suarez, R.G., Palma, H.H., Núñez, W.N.: Method for collecting relevant topics from Twitter supported by big data. In: Journal of Physics: Conference Series, vol. 1432, no. 1, p. 012094. IOP Publishing, January 2020 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Advances in Intelligent Systems and Computing |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089721615&doi=10.1007%2f978-3-030-53036-5_14&partnerID=40&md5=a16c1d0bc02ec0dacfd7ced4d831e746 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d0e874bc-b7a4-46bf-8ebd-6865aadc09a3/download https://repositorio.cuc.edu.co/bitstreams/17fde07c-8982-462c-a4a2-870cc3ef307a/download https://repositorio.cuc.edu.co/bitstreams/17463180-c80e-4234-bd6e-f1ad521d5f61/download https://repositorio.cuc.edu.co/bitstreams/9c055914-82a8-4cbd-88f2-c3cc811eb57a/download https://repositorio.cuc.edu.co/bitstreams/fea8c826-9cc0-440a-be3f-c0d454ec9d5d/download |
bitstream.checksum.fl_str_mv |
76c1f4df14993015b971eea793c0aefb 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 53b9c005d1d5c9bfb96df8c26d5386b2 9adf2ec06a941cedd81734d39a8bc2a0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166783522045952 |
spelling |
amelec, viloriaVarela Izquierdo, NoelVargas, JesúsPineda, Omar2020-11-12T17:37:01Z2020-11-12T17:37:01Z20202021-06-192194-5357https://hdl.handle.net/11323/7279Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Sentiment Analysis is a branch of Natural Language Processing in which an emotion is identified through a sentence, phrase or written expression on the Internet, allowing the monitoring of opinions on different topics discussed on the Web. The study discussed in this paper analyzed phrases or sentences written in Spanish and English expressing opinions about the service of Restaurants and opinions written in the English language about Laptops. Experiments were carried out using 3 automatic classifiers: Support Vector Machine (SVM), Naïve Bayes and Multinomial Naïve Bayes, each one being tested with the three data sets in the Weka automatic learning software and in Python, in order to make a comparison of results between these two toolsamelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Varela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Vargas, JesúsPineda, Omar-will be generated-orcid-0000-0002-8239-3906-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAdvances in Intelligent Systems and Computinghttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089721615&doi=10.1007%2f978-3-030-53036-5_14&partnerID=40&md5=a16c1d0bc02ec0dacfd7ced4d831e746Automatic learningComparative analysisSentiment analysisComparative analysis between different automatic learning environments for sentiment analysisPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionZhang, Z., Ye, Q., Zhang, Z., Li, Y.: Sentiment classification of internet restaurant reviews written in cantonese. Expert Syst. Appl. 38(6), 7674–7682 (2011)Billyan, B., Sarno, R., Sungkono, K.R., Tangkawarow, I.R.: Fuzzy K-nearest neighbor for restaurants business sentiment analysis on TripAdvisor. In: 2019 International Conference on Information and Communications Technology (ICOIACT), pp. 543–548. IEEE, July 2019Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B., Varoquaux, G.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)Laksono, R.A., Sungkono, K.R., Sarno, R., Wahyuni, C.S.: Sentiment analysis of restaurant customer reviews on TripAdvisor using Naïve Bayes. In: 2019 12th International Conference on Information & Communication Technology and System (ICTS), pp. 49–54. IEEE, July 2019Singh, S., Saikia, L.P.: A comparative analysis of text classification algorithms for ambiguity detection in requirement engineering document using WEKA. In: ICT Analysis and Applications, pp. 345–354. Springer, Singapore (2020)Kumar, A., Jaiswal, A.: Systematic literature review of sentiment analysis on Twitter using soft computing techniques. Concurr. Computa.: Pract. Exp. 32(1), e5107 (2020)Mulay, S.A., Joshi, S.J., Shaha, M.R., Vibhute, H.V., Panaskar, M.P.: Sentiment analysis and opinion mining with social networking for predicting box office collection of movie. Int. J. Emerg. Res. Manag. Technol. 5(1), 74–79 (2016)Liu, S., Lee, I.: Email sentiment analysis through k-means labeling and support vector machine classification. Cybern. Syst. 49(3), 181–199 (2018)Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., AL-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B., De Clercq, O., Hoste, V., Apidianaki, M., Tannier, X., Loukachevitch, N., Kotelnikov, E., Bel, N., Jimenez-Zafra, S.M., Eryigit, G.: Semeval-2016 task 5: aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 19–30. Association for Computational Linguistics, San Diego, June 2016. http://www.aclweb.org/anthology/S16-1002Ahmad, M., Aftab, S., Bashir, M.S., Hameed, N., Ali, I., Nawaz, Z.: SVM optimization for sentiment analysis. Int. J. Adv. Comput. Sci. Appl. 9(4), 393–398 (2018)Rennie, J.D., Shih, L., Teevan, J., Karger, D.R., et al.: Tackling the poor assumptions of Naive Bayes text classifiers. In: Proceedings of the Twentieth International Conference on Machine Learning, Washington DC, vol. 3, pp. 616–623 (2003)Ahmad, M., Aftab, S., Ali, I.: Sentiment analysis of tweets using SVM. Int. J. Comput. Appl. 177(5), 25–29 (2017)Ducange, P., Fazzolari, M., Petrocchi, M., Vecchio, M.: An effective decision support system for social media listening based on cross-source sentiment analysis models. Eng. Appl. Artif. Intell. 78, 71–85 (2019)Iqbal, F., Hashmi, J.M., Fung, B.C., Batool, R., Khattak, A.M., Aleem, S., Hung, P.C.: A hybrid framework for sentiment analysis using genetic algorithm based feature reduction. IEEE Access 7, 14637–14652 (2019)Silva, J., Varela, N., Ovallos-Gazabon, D., Palma, H.H., Cazallo-Antunez, A., Bilbao, O.R., Llinás, N.O., Lezama, O.B.P.: Data mining and social network analysis on Twitter. In: International Conference on Communication, Computing and Electronics Systems, pp. 401–408. Springer, Singapore (2020)Silva, J., Naveda, A.S., Suarez, R.G., Palma, H.H., Núñez, W.N.: Method for collecting relevant topics from Twitter supported by big data. In: Journal of Physics: Conference Series, vol. 1432, no. 1, p. 012094. IOP Publishing, January 2020PublicationORIGINALCOMPARATIVE ANALYSIS BETWEEN DIFFERENT AUTOMATIC LEARNING ENVIRONMENTS FOR SENTIMENT ANALYSIS.pdfCOMPARATIVE ANALYSIS BETWEEN DIFFERENT AUTOMATIC LEARNING ENVIRONMENTS FOR SENTIMENT ANALYSIS.pdfapplication/pdf179308https://repositorio.cuc.edu.co/bitstreams/d0e874bc-b7a4-46bf-8ebd-6865aadc09a3/download76c1f4df14993015b971eea793c0aefbMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/17fde07c-8982-462c-a4a2-870cc3ef307a/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/17463180-c80e-4234-bd6e-f1ad521d5f61/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILCOMPARATIVE ANALYSIS BETWEEN DIFFERENT AUTOMATIC LEARNING ENVIRONMENTS FOR SENTIMENT ANALYSIS.pdf.jpgCOMPARATIVE ANALYSIS BETWEEN DIFFERENT AUTOMATIC LEARNING ENVIRONMENTS FOR SENTIMENT ANALYSIS.pdf.jpgimage/jpeg41186https://repositorio.cuc.edu.co/bitstreams/9c055914-82a8-4cbd-88f2-c3cc811eb57a/download53b9c005d1d5c9bfb96df8c26d5386b2MD54TEXTCOMPARATIVE ANALYSIS BETWEEN DIFFERENT AUTOMATIC LEARNING ENVIRONMENTS FOR SENTIMENT ANALYSIS.pdf.txtCOMPARATIVE ANALYSIS BETWEEN DIFFERENT AUTOMATIC LEARNING ENVIRONMENTS FOR SENTIMENT ANALYSIS.pdf.txttext/plain1029https://repositorio.cuc.edu.co/bitstreams/fea8c826-9cc0-440a-be3f-c0d454ec9d5d/download9adf2ec06a941cedd81734d39a8bc2a0MD5511323/7279oai:repositorio.cuc.edu.co:11323/72792024-09-17 14:08:23.994http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |