Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system
In this paper, the performance of a gas/oil heat recovery unit is assessed experimentally and by the development of an Aspen model and artificial neural networks. The heat recovery unit is a cross-flow heat exchanger used to recover the residual heat of the exhaust gases coming from a microturbine t...
- Autores:
-
Amaris, Carlos
Miranda, Bárbara
BALBIS MOREJON, MILEN
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7308
- Acceso en línea:
- https://hdl.handle.net/11323/7308
https://doi.org/10.1016/j.tsep.2020.100684
https://repositorio.cuc.edu.co/
- Palabra clave:
- Cooling and power
Energy cogeneration
Exhaust gasesHeat exchanger
Heat recovery
Thermal oil
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_b806c00156eac2df44b03077a66248e7 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7308 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system |
title |
Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system |
spellingShingle |
Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system Cooling and power Energy cogeneration Exhaust gasesHeat exchanger Heat recovery Thermal oil |
title_short |
Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system |
title_full |
Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system |
title_fullStr |
Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system |
title_full_unstemmed |
Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system |
title_sort |
Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system |
dc.creator.fl_str_mv |
Amaris, Carlos Miranda, Bárbara BALBIS MOREJON, MILEN |
dc.contributor.author.spa.fl_str_mv |
Amaris, Carlos Miranda, Bárbara BALBIS MOREJON, MILEN |
dc.subject.spa.fl_str_mv |
Cooling and power Energy cogeneration Exhaust gasesHeat exchanger Heat recovery Thermal oil |
topic |
Cooling and power Energy cogeneration Exhaust gasesHeat exchanger Heat recovery Thermal oil |
description |
In this paper, the performance of a gas/oil heat recovery unit is assessed experimentally and by the development of an Aspen model and artificial neural networks. The heat recovery unit is a cross-flow heat exchanger used to recover the residual heat of the exhaust gases coming from a microturbine to drive an absorption chiller. The test facility consists mainly of a microturbine, a heat recovery unit, and an air-cooled absorption chiller. The experiments were conducted at partial power loads and different thermal oil mass flows. Regarding the models, the Aspen model depends on inlet conditions, the mechanical description of the heat recovery unit, and the fluids thermophysical properties, whereas the ANN model consists of 3 trained artificial neurons, 4 inputs (inlet flows and temperatures), and 2 outputs (thermal load and overall heat transfer coefficient). The experimental tests show that the recovery unit recovers from 18.8 kW to 8.1 kW when the microturbine power output is varied from 23 kWe to 4 kWe. Results also show that the overall heat transfer coefficient ranges between 243 W.m−2.K−1 and 89 W.m−2.K−1, while they evidence that the overall heat transfer resistance is controlled by the exhaust gases heat transfer resistance. Furthermore, simulation results show that the Aspen model predicts the heat recovery unit thermal load and overall heat transfer coefficient with average relative differences of 0.93% and 11.27%, respectively, to the experiments. The ANN model evidences average relative differences of 0.51% and 3.48% for the thermal load and overall heat transfer coefficient, respectively. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-13T19:53:02Z |
dc.date.available.none.fl_str_mv |
2020-11-13T19:53:02Z |
dc.date.issued.none.fl_str_mv |
2020-11-01 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2451-9049 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7308 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.tsep.2020.100684 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2451-9049 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7308 https://doi.org/10.1016/j.tsep.2020.100684 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Thermal Science and Engineering Progress |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S2451904920302043 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/b36842c4-721d-4f07-bc2e-f4ffcb71ca80/download https://repositorio.cuc.edu.co/bitstreams/790cff67-2d1d-447b-a340-8445fbdbe23c/download https://repositorio.cuc.edu.co/bitstreams/477037a9-bb7e-435f-9336-7379815492d7/download https://repositorio.cuc.edu.co/bitstreams/5d7dd5cf-5a72-4917-9ed1-6feeac25dcd1/download https://repositorio.cuc.edu.co/bitstreams/5a26ab30-0336-4679-b89d-6bd589c29efa/download |
bitstream.checksum.fl_str_mv |
fc10729eda1451fe264f93c1840ba5a8 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 4d54c7d72e1ec39b3d949b38b90ebb5f 5b0f4354f3c7c9af3bddf6a1aa54d162 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166825528000512 |
spelling |
Amaris, CarlosMiranda, BárbaraBALBIS MOREJON, MILEN2020-11-13T19:53:02Z2020-11-13T19:53:02Z2020-11-012451-9049https://hdl.handle.net/11323/7308https://doi.org/10.1016/j.tsep.2020.100684Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this paper, the performance of a gas/oil heat recovery unit is assessed experimentally and by the development of an Aspen model and artificial neural networks. The heat recovery unit is a cross-flow heat exchanger used to recover the residual heat of the exhaust gases coming from a microturbine to drive an absorption chiller. The test facility consists mainly of a microturbine, a heat recovery unit, and an air-cooled absorption chiller. The experiments were conducted at partial power loads and different thermal oil mass flows. Regarding the models, the Aspen model depends on inlet conditions, the mechanical description of the heat recovery unit, and the fluids thermophysical properties, whereas the ANN model consists of 3 trained artificial neurons, 4 inputs (inlet flows and temperatures), and 2 outputs (thermal load and overall heat transfer coefficient). The experimental tests show that the recovery unit recovers from 18.8 kW to 8.1 kW when the microturbine power output is varied from 23 kWe to 4 kWe. Results also show that the overall heat transfer coefficient ranges between 243 W.m−2.K−1 and 89 W.m−2.K−1, while they evidence that the overall heat transfer resistance is controlled by the exhaust gases heat transfer resistance. Furthermore, simulation results show that the Aspen model predicts the heat recovery unit thermal load and overall heat transfer coefficient with average relative differences of 0.93% and 11.27%, respectively, to the experiments. The ANN model evidences average relative differences of 0.51% and 3.48% for the thermal load and overall heat transfer coefficient, respectively.Amaris, CarlosMiranda, Bárbara-will be generated-orcid-0000-0003-3530-1498-600BALBIS MOREJON, MILEN-will be generated-orcid-0000-0002-8053-6651-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Thermal Science and Engineering Progresshttps://www.sciencedirect.com/science/article/abs/pii/S2451904920302043Cooling and powerEnergy cogenerationExhaust gasesHeat exchangerHeat recoveryThermal oilExperimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration systemPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALExperimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system.pdfExperimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system.pdfapplication/pdf54866https://repositorio.cuc.edu.co/bitstreams/b36842c4-721d-4f07-bc2e-f4ffcb71ca80/downloadfc10729eda1451fe264f93c1840ba5a8MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/790cff67-2d1d-447b-a340-8445fbdbe23c/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/477037a9-bb7e-435f-9336-7379815492d7/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILExperimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system.pdf.jpgExperimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system.pdf.jpgimage/jpeg51276https://repositorio.cuc.edu.co/bitstreams/5d7dd5cf-5a72-4917-9ed1-6feeac25dcd1/download4d54c7d72e1ec39b3d949b38b90ebb5fMD54TEXTExperimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system.pdf.txtExperimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system.pdf.txttext/plain1947https://repositorio.cuc.edu.co/bitstreams/5a26ab30-0336-4679-b89d-6bd589c29efa/download5b0f4354f3c7c9af3bddf6a1aa54d162MD5511323/7308oai:repositorio.cuc.edu.co:11323/73082024-09-17 14:14:35.921http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |