Investigation and optimization of the performance of energy systems in the textile industry by using chp systems

With the general progression of small communities toward greater industrialization, energy consumption in this sector has increased. The continued growth of energy consumption seen in Iran, along with the low efficiency of production, transmission, and the distribution of energy, has led to the proj...

Full description

Autores:
Morozova, Tatiana Victorovna
Alayi, Reza
Grimaldo Guerrero, John William
Sharifpur, Mohsen
Ebazadeh, Yaser
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9122
Acceso en línea:
https://hdl.handle.net/11323/9122
https://doi.org/10.3390/su14031551
https://repositorio.cuc.edu.co/
Palabra clave:
CHP
Textile industry
Gas turbine
Optimization
Rights
openAccess
License
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
id RCUC2_b73b829822dfb6ce2eaeb9973f74ca9c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9122
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Investigation and optimization of the performance of energy systems in the textile industry by using chp systems
title Investigation and optimization of the performance of energy systems in the textile industry by using chp systems
spellingShingle Investigation and optimization of the performance of energy systems in the textile industry by using chp systems
CHP
Textile industry
Gas turbine
Optimization
title_short Investigation and optimization of the performance of energy systems in the textile industry by using chp systems
title_full Investigation and optimization of the performance of energy systems in the textile industry by using chp systems
title_fullStr Investigation and optimization of the performance of energy systems in the textile industry by using chp systems
title_full_unstemmed Investigation and optimization of the performance of energy systems in the textile industry by using chp systems
title_sort Investigation and optimization of the performance of energy systems in the textile industry by using chp systems
dc.creator.fl_str_mv Morozova, Tatiana Victorovna
Alayi, Reza
Grimaldo Guerrero, John William
Sharifpur, Mohsen
Ebazadeh, Yaser
dc.contributor.author.spa.fl_str_mv Morozova, Tatiana Victorovna
Alayi, Reza
Grimaldo Guerrero, John William
Sharifpur, Mohsen
Ebazadeh, Yaser
dc.subject.proposal.eng.fl_str_mv CHP
Textile industry
Gas turbine
Optimization
topic CHP
Textile industry
Gas turbine
Optimization
description With the general progression of small communities toward greater industrialization, energy consumption in this sector has increased. The continued growth of energy consumption seen in Iran, along with the low efficiency of production, transmission, and the distribution of energy, has led to the projection of an unfavorable future for this sector. The purpose of this study is to reduce fuel consumption and increase system efficiency by considering the optimal position of the turbine. In this regard, turbine modeling has been performed by considering different positioning scenarios. Afterward, the result from applying each scenario was compared with another scenario in terms of the parameters of electrical energy production, gas consumption, the final energy produced by the system, and the ratio of energy produced to overall gas consumption. After comparing different scenarios, considering all 4 parameters, Scenario 7 was selected as the most suitable positioning for gas turbine placement. Scenario 7 showed the highest gas consumption; of course, high power generation is the most desirable, the most reliable and, ultimately, the most profitable outcome of energy production. According to our results, the amount of electrical energy produced in the selected scenario is 4,991,160.3 kWh; the gas consumption in this case is 0.22972 kg/s.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-04-07T20:50:55Z
dc.date.available.none.fl_str_mv 2022-04-07T20:50:55Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv : Victorovna Morozova, T.; Alayi, R.; Grimaldo Guerrero, J.W.; Sharifpur, M.; Ebazadeh, Y. Investigation and Optimization of the Performance of Energy Systems in the Textile Industry by Using CHP Systems. Sustainability 2022, 14, 1551. https://doi.org/10.3390/su14031551
dc.identifier.issn.spa.fl_str_mv 2071-1050
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9122
dc.identifier.url.spa.fl_str_mv https://doi.org/10.3390/su14031551
dc.identifier.doi.spa.fl_str_mv 10.3390/su14031551
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv : Victorovna Morozova, T.; Alayi, R.; Grimaldo Guerrero, J.W.; Sharifpur, M.; Ebazadeh, Y. Investigation and Optimization of the Performance of Energy Systems in the Textile Industry by Using CHP Systems. Sustainability 2022, 14, 1551. https://doi.org/10.3390/su14031551
2071-1050
10.3390/su14031551
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9122
https://doi.org/10.3390/su14031551
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Sustainability
dc.relation.references.spa.fl_str_mv 1. Chu, X.; Yang, D.; Li, J. Sustainability assessment of combined cooling, heating, and power systems under carbon emission regulations. Sustainability 2019, 11, 5917. [Google Scholar] [CrossRef]
2. Alayi, R.; Kasaeian, A.; Atabi, F. Thermal analysis of parabolic trough concentration pho-tovoltaic/thermal system for using in buildings. Environ. Prog. Sustain. Energy 2019, 38, 13220. [Google Scholar] [CrossRef]
3. Ghorbani, B. Development of an Integrated Structure for the Tri-Generation of Power, Liquid Carbon Dioxide, and Medium Pressure team Using a Molten Carbonate Fuel Cell, a Dual Pressure Linde-Hampson Liquefaction Plant, and a Heat Recovery Steam Generator. Sustainability 2021, 13, 8347. [CrossRef]
4. Argyrou, M.C.; Christodoulides, P.; Kalogirou, S.A. Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications. Renew. Sustain. Energy Rev. 2018, 94, 804–821. [CrossRef]
5. Mirzaei, M.; Ahmadi, M.H.; Mobin, M.; Nazari, M.A.; Alayi, R. Energy, exergy and eco-nomics analysis of an ORC working with several fluids and utilizes smelting furnace gases as heat source. Therm. Sci. Eng. Prog. 2018, 5, 230–237. [CrossRef]
6. Zhao, Y.; Liu, G.; Li, L.; Yang, Q.; Tang, B.; Liu, Y. Expansion devices for organic Rankine cycle (ORC) using in low temperature heat recovery: A review. Energy Convers. Manag. 2019, 199, 111944. [CrossRef]
7. Chen, L.; Wang, Y.; Xie, M.; Ye, K.; Mohtaram, S. Energy and exergy analysis of two modified adiabatic compressed air energy storage (A-CAES) system for cogeneration of power and cooling on the base of volatile fluid. J. Energy Storage 2021, 42, 103009. [CrossRef]
8. Li, B.; Wang, S.S. Thermo-economic analysis and optimization of a novel carbon dioxide based combined cooling and power system. Energy Convers. Manag. 2019, 199, 112048. [CrossRef]
9. Yuan, J.; Wu, C.; Xu, X.; Liu, C. Multi-mode analysis and comparison of four different carbon dioxide-based combined cooling and power cycles for the distributed energy system. Energy Convers. Manag. 2021, 244, 114476. [CrossRef]
10. Alayi, R.; Mohkam, M.; Seyednouri, S.R.; Ahmadi, M.H.; Sharifpur, M. Energy/economic analysis and optimization of on-grid photovoltaic system using CPSO algorithm. Sustainability 2021, 13, 12420. [CrossRef]
11. Anvari, S.; Desideri, U.; Taghavifar, H. Design of a combined power, heating and cooling system at sized and undersized configurations for a reference building: Technoeconomic and topological considerations in Iran and Italy. Appl. Energy 2020, 258, 114105. [CrossRef]
12. Adebayo, T.S.; Rjoub, H. A new perspective into the impact of renewable and nonrenewable energy consumption on environmental degradation in Argentina: A time–frequency analysis. Environ. Sci. Pollut. Res. 2021, 1–17. [CrossRef] [PubMed]
13. Wang, Z.; Zhang, C.; Li, H.; Zhao, Y. A multi agent-based optimal control method for combined cooling and power systems with thermal energy storage. In Building Simulation; Tsinghua University Press: Beijing, China, 2021; Volume 14, pp. 1709–1723.
14. Mughal, N.; Arif, A.; Jain, V.; Chupradit, S.; Shabbir, M.S.; Ramos-Meza, C.S.; Zhanbayev, R. The role of technological innovation in environmental pollution, energy consumption and sustainable economic growth: Evidence from South Asian economies. Energy Strategy Rev. 2022, 39, 100745. [CrossRef]
15. Chong, C.T.; Van Fan, Y.; Lee, C.T.; Klemeš, J.J. Post COVID-19 ENERGY sustainability and carbon emissions neutrality. Energy 2021, 241, 122801. [CrossRef]
16. Hoang, A.T. Waste heat recovery from diesel engines based on Organic Rankine Cycle. Appl. Energy 2018, 231, 138–166. [CrossRef]
17. Adebayo, T.S.; Rjoub, H. Assessment of the role of trade and renewable energy consumption on consumption-based carbon emissions: Evidence from the MINT economies. Environ. Sci. Pollut. Res. 2021, 28, 58271–58283. [CrossRef]
18. Krishna, K.S.; Kumar, K.S. A review on hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2015, 52, 907–916. [CrossRef]
19. Onar, O.C.; Khaligh, A. Chapter 2—Energy Sources. In Alternative Energy in Power Electronics; Rashid, M.H., Ed.; utterworthHeinemann: Boston, MA, USA, 2015; pp. 81–154.
20. Adebayo, T.S.; Rjoub, H.; Akinsola, G.D.; Oladipupo, S.D. The asymmetric effects of renewable energy consumption and trade openness on carbon emissions in Sweden: New evidence from quantile-on-quantile regression approach. Environ. Sci. Pollut. Res. 2021, 29, 1875–1886. [CrossRef]
21. Lu, H.; Huang, K.; Azimi, M.; Guo, L. Blockchain technology in the oil and gas industry: A review of applications, opportunities, challenges, and risks. IEEE Access 2019, 7, 41426–41444. [CrossRef]
22. Fuel Shares of Total Primary Energy Supply. Available online: https://www.iea.org/publications/freepublications/publication/key-world-energy-statistics-2014.html (accessed on 20 September 2014).
23. Odugbesan, J.A.; Rjoub, H. Relationship among economic growth, energy consumption, CO2 emission, and urbanization: Evidence from MINT countries. Sage Open 2020, 10, 2158244020914648. [CrossRef]
24. Alayi, R.; Kumar, R.; Seydnouri, S.R.; Ahmadi, M.H.; Issakhov, A. Energy, environment and economic analyses of a parabolic trough concentrating photovoltaic/thermal system. Int. J. Low-Carbon Technol. 2021, 16, 570–576. [CrossRef]
25. Wang, J.; Han, Z.; Guan, Z. Hybrid solar-assisted combined cooling, heating, and power systems: A review. Renew. Sustain. Energy Rev. 2020, 133, 110256. [CrossRef]
26. Mokhatab, S.; Poe, W.A.; Mak, J.Y. Chapter 1—Natural Gas Fundamentals. In Handbook of Natural Gas Transmission and Processing, 3rd ed.; Gulf Professional Publishing: Boston, MA, USA, 2015; pp. 1–36.
27. Alayi, R.; Ahmadi, M.H.; Visei, A.R.; Sharma, S.; Najafi, A. Technical and environmental analysis of photovoltaic and solar water heater cogeneration system: A case study of Saveh City. Int. J. Low-Carbon Technol. 2021, 16, 447–453. [CrossRef]
28. Global Temperature. Available online: http://data.giss.nasa.gov/gistemp/graphs_v3/ (accessed on 7 April 2021).
29. Han, Z.; Guo, S. Investigation of operation strategy of combined cooling, heating and power (CCHP) system based on advanced adiabatic compressed air energy storage. Energy 2018, 160, 290–308. [CrossRef]
30. Farahbakhsh, M.T.; Chahartaghi, M. Performance analysis and economic assessment of a combined cooling heating and power (CCHP) system in wastewater treatment plants (WWTPs). Energy Convers. Manag. 2020, 224, 113351. [CrossRef]
31. Cogeneration. Available online: https://en.wikipedia.org/wiki/Cogeneration (accessed on 19 December 2021).
32. Mollenhauer, E.; Christidis, A.; Tsatsaronis, G. Increasing the flexibility of combined heat and power plants with heat pumps and thermal energy storage. J. Energy Resour. Technol. 2018, 140, 020907. [CrossRef]
33. Nouri, M.; Namar, M.M.; Jahanian, O. Analysis of a developed Brayton cycled CHP system using ORC and CAES based on first and second law of thermodynamics. J. Therm. Anal. Calorim. 2019, 135, 1743–1752. [CrossRef]
34. Fotouhi, R.; Movludiazar, A.; Khayyati, M.S.; Pourgholi, M. Optimization of an Industrial Township Costs from an Industrial Service Company View (Case Study: A Distributed Gas-Fired CHP). In Proceedings of the 7th Iran Wind Energy Conference (IWEC2021), Shahrood, Iran, 17–18 May 2021; pp. 1–5.
35. Branchini, L.; Bignozzi, M.C.; Ferrari, B.; Mazzanti, B.; Ottaviano, S.; Salvio, M.; Toro, C.; Martini, F.; Canetti, A. Cogeneration Supporting the Energy Transition in the Italian Ceramic Tile Industry. Sustainability 2021, 13, 4006. [CrossRef]
36. Gambini, M.; Vellini, M.; Stilo, T.; Manno, M.; Bellocchi, S. High-Efficiency cogeneration systems: The case of the paper Industry in Italy. Energies 2019, 12, 335. [CrossRef]
37. Morato, M.M.; da Costa Mendes, P.R.; Cani, A.A.; Normey-Rico, J.E.; Bordons, C. Future hybrid local energy generation paradigm for the brazilian sugarcane industry scenario. Int. J. Electr. Power Energy Syst. 2018, 101, 139–150. [CrossRef]
38. Alshammari, F.; Karvountzis-Kontakiotis, A.; Pesyridis, A.; Alatawi, I. Design and study of back-swept high pressure ratio radial turbo-expander in automotive organic Rankine cycles. Appl. Therm. Eng. 2020, 164, 114549. [CrossRef]
dc.relation.citationendpage.spa.fl_str_mv 20
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 3
dc.relation.citationvolume.spa.fl_str_mv 14
dc.rights.spa.fl_str_mv © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 20 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI AG
dc.publisher.place.spa.fl_str_mv Switzerland
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.mdpi.com/2071-1050/14/3/1551
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a0a90de1-09f3-44a4-87c3-91d7e494532e/download
https://repositorio.cuc.edu.co/bitstreams/715abc1a-7c9a-4dce-814b-95ec57329013/download
https://repositorio.cuc.edu.co/bitstreams/1a8c3794-51d0-4551-b0c8-ae66a8c75f53/download
https://repositorio.cuc.edu.co/bitstreams/89741d4f-c019-45f0-b9dc-70fd85d5c505/download
bitstream.checksum.fl_str_mv 05a5073d5490a88198a962d8f7c041ff
e30e9215131d99561d40d6b0abbe9bad
da08a394da6e8a2a9db8f4e4b87c144f
9f65d3e501dc0a025b5172742c136ec1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166830868398080
spelling Morozova, Tatiana VictorovnaAlayi, RezaGrimaldo Guerrero, John WilliamSharifpur, MohsenEbazadeh, Yaser2022-04-07T20:50:55Z2022-04-07T20:50:55Z2022: Victorovna Morozova, T.; Alayi, R.; Grimaldo Guerrero, J.W.; Sharifpur, M.; Ebazadeh, Y. Investigation and Optimization of the Performance of Energy Systems in the Textile Industry by Using CHP Systems. Sustainability 2022, 14, 1551. https://doi.org/10.3390/su140315512071-1050https://hdl.handle.net/11323/9122https://doi.org/10.3390/su1403155110.3390/su14031551Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/With the general progression of small communities toward greater industrialization, energy consumption in this sector has increased. The continued growth of energy consumption seen in Iran, along with the low efficiency of production, transmission, and the distribution of energy, has led to the projection of an unfavorable future for this sector. The purpose of this study is to reduce fuel consumption and increase system efficiency by considering the optimal position of the turbine. In this regard, turbine modeling has been performed by considering different positioning scenarios. Afterward, the result from applying each scenario was compared with another scenario in terms of the parameters of electrical energy production, gas consumption, the final energy produced by the system, and the ratio of energy produced to overall gas consumption. After comparing different scenarios, considering all 4 parameters, Scenario 7 was selected as the most suitable positioning for gas turbine placement. Scenario 7 showed the highest gas consumption; of course, high power generation is the most desirable, the most reliable and, ultimately, the most profitable outcome of energy production. According to our results, the amount of electrical energy produced in the selected scenario is 4,991,160.3 kWh; the gas consumption in this case is 0.22972 kg/s.20 páginasapplication/pdfengMDPI AGSwitzerland© 2022 by the authors. Licensee MDPI, Basel, Switzerland.Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Investigation and optimization of the performance of energy systems in the textile industry by using chp systemsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.mdpi.com/2071-1050/14/3/1551Sustainability1. Chu, X.; Yang, D.; Li, J. Sustainability assessment of combined cooling, heating, and power systems under carbon emission regulations. Sustainability 2019, 11, 5917. [Google Scholar] [CrossRef]2. Alayi, R.; Kasaeian, A.; Atabi, F. Thermal analysis of parabolic trough concentration pho-tovoltaic/thermal system for using in buildings. Environ. Prog. Sustain. Energy 2019, 38, 13220. [Google Scholar] [CrossRef]3. Ghorbani, B. Development of an Integrated Structure for the Tri-Generation of Power, Liquid Carbon Dioxide, and Medium Pressure team Using a Molten Carbonate Fuel Cell, a Dual Pressure Linde-Hampson Liquefaction Plant, and a Heat Recovery Steam Generator. Sustainability 2021, 13, 8347. [CrossRef]4. Argyrou, M.C.; Christodoulides, P.; Kalogirou, S.A. Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications. Renew. Sustain. Energy Rev. 2018, 94, 804–821. [CrossRef]5. Mirzaei, M.; Ahmadi, M.H.; Mobin, M.; Nazari, M.A.; Alayi, R. Energy, exergy and eco-nomics analysis of an ORC working with several fluids and utilizes smelting furnace gases as heat source. Therm. Sci. Eng. Prog. 2018, 5, 230–237. [CrossRef]6. Zhao, Y.; Liu, G.; Li, L.; Yang, Q.; Tang, B.; Liu, Y. Expansion devices for organic Rankine cycle (ORC) using in low temperature heat recovery: A review. Energy Convers. Manag. 2019, 199, 111944. [CrossRef]7. Chen, L.; Wang, Y.; Xie, M.; Ye, K.; Mohtaram, S. Energy and exergy analysis of two modified adiabatic compressed air energy storage (A-CAES) system for cogeneration of power and cooling on the base of volatile fluid. J. Energy Storage 2021, 42, 103009. [CrossRef]8. Li, B.; Wang, S.S. Thermo-economic analysis and optimization of a novel carbon dioxide based combined cooling and power system. Energy Convers. Manag. 2019, 199, 112048. [CrossRef]9. Yuan, J.; Wu, C.; Xu, X.; Liu, C. Multi-mode analysis and comparison of four different carbon dioxide-based combined cooling and power cycles for the distributed energy system. Energy Convers. Manag. 2021, 244, 114476. [CrossRef]10. Alayi, R.; Mohkam, M.; Seyednouri, S.R.; Ahmadi, M.H.; Sharifpur, M. Energy/economic analysis and optimization of on-grid photovoltaic system using CPSO algorithm. Sustainability 2021, 13, 12420. [CrossRef]11. Anvari, S.; Desideri, U.; Taghavifar, H. Design of a combined power, heating and cooling system at sized and undersized configurations for a reference building: Technoeconomic and topological considerations in Iran and Italy. Appl. Energy 2020, 258, 114105. [CrossRef]12. Adebayo, T.S.; Rjoub, H. A new perspective into the impact of renewable and nonrenewable energy consumption on environmental degradation in Argentina: A time–frequency analysis. Environ. Sci. Pollut. Res. 2021, 1–17. [CrossRef] [PubMed]13. Wang, Z.; Zhang, C.; Li, H.; Zhao, Y. A multi agent-based optimal control method for combined cooling and power systems with thermal energy storage. In Building Simulation; Tsinghua University Press: Beijing, China, 2021; Volume 14, pp. 1709–1723.14. Mughal, N.; Arif, A.; Jain, V.; Chupradit, S.; Shabbir, M.S.; Ramos-Meza, C.S.; Zhanbayev, R. The role of technological innovation in environmental pollution, energy consumption and sustainable economic growth: Evidence from South Asian economies. Energy Strategy Rev. 2022, 39, 100745. [CrossRef]15. Chong, C.T.; Van Fan, Y.; Lee, C.T.; Klemeš, J.J. Post COVID-19 ENERGY sustainability and carbon emissions neutrality. Energy 2021, 241, 122801. [CrossRef]16. Hoang, A.T. Waste heat recovery from diesel engines based on Organic Rankine Cycle. Appl. Energy 2018, 231, 138–166. [CrossRef]17. Adebayo, T.S.; Rjoub, H. Assessment of the role of trade and renewable energy consumption on consumption-based carbon emissions: Evidence from the MINT economies. Environ. Sci. Pollut. Res. 2021, 28, 58271–58283. [CrossRef]18. Krishna, K.S.; Kumar, K.S. A review on hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2015, 52, 907–916. [CrossRef]19. Onar, O.C.; Khaligh, A. Chapter 2—Energy Sources. In Alternative Energy in Power Electronics; Rashid, M.H., Ed.; utterworthHeinemann: Boston, MA, USA, 2015; pp. 81–154.20. Adebayo, T.S.; Rjoub, H.; Akinsola, G.D.; Oladipupo, S.D. The asymmetric effects of renewable energy consumption and trade openness on carbon emissions in Sweden: New evidence from quantile-on-quantile regression approach. Environ. Sci. Pollut. Res. 2021, 29, 1875–1886. [CrossRef]21. Lu, H.; Huang, K.; Azimi, M.; Guo, L. Blockchain technology in the oil and gas industry: A review of applications, opportunities, challenges, and risks. IEEE Access 2019, 7, 41426–41444. [CrossRef]22. Fuel Shares of Total Primary Energy Supply. Available online: https://www.iea.org/publications/freepublications/publication/key-world-energy-statistics-2014.html (accessed on 20 September 2014).23. Odugbesan, J.A.; Rjoub, H. Relationship among economic growth, energy consumption, CO2 emission, and urbanization: Evidence from MINT countries. Sage Open 2020, 10, 2158244020914648. [CrossRef]24. Alayi, R.; Kumar, R.; Seydnouri, S.R.; Ahmadi, M.H.; Issakhov, A. Energy, environment and economic analyses of a parabolic trough concentrating photovoltaic/thermal system. Int. J. Low-Carbon Technol. 2021, 16, 570–576. [CrossRef]25. Wang, J.; Han, Z.; Guan, Z. Hybrid solar-assisted combined cooling, heating, and power systems: A review. Renew. Sustain. Energy Rev. 2020, 133, 110256. [CrossRef]26. Mokhatab, S.; Poe, W.A.; Mak, J.Y. Chapter 1—Natural Gas Fundamentals. In Handbook of Natural Gas Transmission and Processing, 3rd ed.; Gulf Professional Publishing: Boston, MA, USA, 2015; pp. 1–36.27. Alayi, R.; Ahmadi, M.H.; Visei, A.R.; Sharma, S.; Najafi, A. Technical and environmental analysis of photovoltaic and solar water heater cogeneration system: A case study of Saveh City. Int. J. Low-Carbon Technol. 2021, 16, 447–453. [CrossRef]28. Global Temperature. Available online: http://data.giss.nasa.gov/gistemp/graphs_v3/ (accessed on 7 April 2021).29. Han, Z.; Guo, S. Investigation of operation strategy of combined cooling, heating and power (CCHP) system based on advanced adiabatic compressed air energy storage. Energy 2018, 160, 290–308. [CrossRef]30. Farahbakhsh, M.T.; Chahartaghi, M. Performance analysis and economic assessment of a combined cooling heating and power (CCHP) system in wastewater treatment plants (WWTPs). Energy Convers. Manag. 2020, 224, 113351. [CrossRef]31. Cogeneration. Available online: https://en.wikipedia.org/wiki/Cogeneration (accessed on 19 December 2021).32. Mollenhauer, E.; Christidis, A.; Tsatsaronis, G. Increasing the flexibility of combined heat and power plants with heat pumps and thermal energy storage. J. Energy Resour. Technol. 2018, 140, 020907. [CrossRef]33. Nouri, M.; Namar, M.M.; Jahanian, O. Analysis of a developed Brayton cycled CHP system using ORC and CAES based on first and second law of thermodynamics. J. Therm. Anal. Calorim. 2019, 135, 1743–1752. [CrossRef]34. Fotouhi, R.; Movludiazar, A.; Khayyati, M.S.; Pourgholi, M. Optimization of an Industrial Township Costs from an Industrial Service Company View (Case Study: A Distributed Gas-Fired CHP). In Proceedings of the 7th Iran Wind Energy Conference (IWEC2021), Shahrood, Iran, 17–18 May 2021; pp. 1–5.35. Branchini, L.; Bignozzi, M.C.; Ferrari, B.; Mazzanti, B.; Ottaviano, S.; Salvio, M.; Toro, C.; Martini, F.; Canetti, A. Cogeneration Supporting the Energy Transition in the Italian Ceramic Tile Industry. Sustainability 2021, 13, 4006. [CrossRef]36. Gambini, M.; Vellini, M.; Stilo, T.; Manno, M.; Bellocchi, S. High-Efficiency cogeneration systems: The case of the paper Industry in Italy. Energies 2019, 12, 335. [CrossRef]37. Morato, M.M.; da Costa Mendes, P.R.; Cani, A.A.; Normey-Rico, J.E.; Bordons, C. Future hybrid local energy generation paradigm for the brazilian sugarcane industry scenario. Int. J. Electr. Power Energy Syst. 2018, 101, 139–150. [CrossRef]38. Alshammari, F.; Karvountzis-Kontakiotis, A.; Pesyridis, A.; Alatawi, I. Design and study of back-swept high pressure ratio radial turbo-expander in automotive organic Rankine cycles. Appl. Therm. Eng. 2020, 164, 114549. [CrossRef]201314CHPTextile industryGas turbineOptimizationPublicationORIGINALInvestigation and optimization of the performance of energy systems in the textile industry by using chp systems.pdfInvestigation and optimization of the performance of energy systems in the textile industry by using chp systems.pdfapplication/pdf3738320https://repositorio.cuc.edu.co/bitstreams/a0a90de1-09f3-44a4-87c3-91d7e494532e/download05a5073d5490a88198a962d8f7c041ffMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/715abc1a-7c9a-4dce-814b-95ec57329013/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTInvestigation and optimization of the performance of energy systems in the textile industry by using chp systems.pdf.txtInvestigation and optimization of the performance of energy systems in the textile industry by using chp systems.pdf.txttext/plain60838https://repositorio.cuc.edu.co/bitstreams/1a8c3794-51d0-4551-b0c8-ae66a8c75f53/downloadda08a394da6e8a2a9db8f4e4b87c144fMD53THUMBNAILInvestigation and optimization of the performance of energy systems in the textile industry by using chp systems.pdf.jpgInvestigation and optimization of the performance of energy systems in the textile industry by using chp systems.pdf.jpgimage/jpeg16357https://repositorio.cuc.edu.co/bitstreams/89741d4f-c019-45f0-b9dc-70fd85d5c505/download9f65d3e501dc0a025b5172742c136ec1MD5411323/9122oai:repositorio.cuc.edu.co:11323/91222024-09-17 14:15:14.206https://creativecommons.org/licenses/by/4.0/© 2022 by the authors. Licensee MDPI, Basel, Switzerland.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==