Lanthanum uptake from water using chitosan with different configurations
Chitosan-based adsorbents (chitosan powder, chitosan film, and chitosan sponge) were prepared and employed for the adsorption of La(III) ions. The materials presented significant differences in their properties, reflected in different La(III) adsorption performances. The adsorption kinetics, isother...
- Autores:
-
dos Reis, Glaydson S.
Pinto, Diana
Lima, Éder C.
Knani, Salah
Grimm, Alejandro
Silva Oliveira, Luis Felipe
Cadaval Jr, Tito R.S.
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10781
- Acceso en línea:
- https://hdl.handle.net/11323/10781
https://repositorio.cuc.edu.co/
- Palabra clave:
- Chitosan powder
Chitosan film
Chitosan sponge
Rare earth
Ion-ion interaction
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_b6ed48b44897a74ade72b5f70ad88734 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10781 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Lanthanum uptake from water using chitosan with different configurations |
title |
Lanthanum uptake from water using chitosan with different configurations |
spellingShingle |
Lanthanum uptake from water using chitosan with different configurations Chitosan powder Chitosan film Chitosan sponge Rare earth Ion-ion interaction |
title_short |
Lanthanum uptake from water using chitosan with different configurations |
title_full |
Lanthanum uptake from water using chitosan with different configurations |
title_fullStr |
Lanthanum uptake from water using chitosan with different configurations |
title_full_unstemmed |
Lanthanum uptake from water using chitosan with different configurations |
title_sort |
Lanthanum uptake from water using chitosan with different configurations |
dc.creator.fl_str_mv |
dos Reis, Glaydson S. Pinto, Diana Lima, Éder C. Knani, Salah Grimm, Alejandro Silva Oliveira, Luis Felipe Cadaval Jr, Tito R.S. Dotto, Guilherme Luiz |
dc.contributor.author.none.fl_str_mv |
dos Reis, Glaydson S. Pinto, Diana Lima, Éder C. Knani, Salah Grimm, Alejandro Silva Oliveira, Luis Felipe Cadaval Jr, Tito R.S. Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Chitosan powder Chitosan film Chitosan sponge Rare earth Ion-ion interaction |
topic |
Chitosan powder Chitosan film Chitosan sponge Rare earth Ion-ion interaction |
description |
Chitosan-based adsorbents (chitosan powder, chitosan film, and chitosan sponge) were prepared and employed for the adsorption of La(III) ions. The materials presented significant differences in their properties, reflected in different La(III) adsorption performances. The adsorption kinetics, isotherms, and thermodynamics were studied. The chitosan materials showed very effective La(III) removal due to their unique characteristics, such abundance of functional groups on their surfaces. In addition, the chitosan sponge's high surface area contributed to La(III) adsorption. The equilibrium data followed the Liu isotherm model. Based on this model, the Qmax values obtained were 85.31 and 93.50 mg g−1 (328 K) for powder and film chitosan, respectively. For chitosan sponges, the equilibrium model followed the Two-step Langmuir model attaining a maximum sorption capacity of 265.6 mg g−1 (298 K). The thermodynamics studies indicate that the adsorption process was spontaneous and endothermic. The adsorption process suggests that electrostatic interactions and coordination/chelation were the main acting mechanisms of La(III) removal. Pore filling also played an important role in the adsorption process for the chitosan sponge. In brief, the CTS materials with different configurations presented a good potential to uptake the rare earth element La(III) from water. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-11 |
dc.date.accessioned.none.fl_str_mv |
2024-02-23T15:41:31Z |
dc.date.available.none.fl_str_mv |
2024-11 2024-02-23T15:41:31Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Glaydson S. dos Reis, Diana Pinto, Éder C. Lima, Salah Knani, Alejandro Grimm, Luis F.O. Silva, Tito R.S. Cadaval, Guilherme L. Dotto, Lanthanum uptake from water using chitosan with different configurations, Reactive and Functional Polymers, Volume 180, 2022, 105395, ISSN 1381-5148, https://doi.org/10.1016/j.reactfunctpolym.2022.105395 |
dc.identifier.issn.spa.fl_str_mv |
1381-5148 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10781 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.reactfunctpolym.2022.105395 |
dc.identifier.eissn.spa.fl_str_mv |
1873-166X |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC – Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Glaydson S. dos Reis, Diana Pinto, Éder C. Lima, Salah Knani, Alejandro Grimm, Luis F.O. Silva, Tito R.S. Cadaval, Guilherme L. Dotto, Lanthanum uptake from water using chitosan with different configurations, Reactive and Functional Polymers, Volume 180, 2022, 105395, ISSN 1381-5148, https://doi.org/10.1016/j.reactfunctpolym.2022.105395 1381-5148 10.1016/j.reactfunctpolym.2022.105395 1873-166X Corporación Universidad de la Costa REDICUC – Repositorio CUC |
url |
https://hdl.handle.net/11323/10781 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Reactive and Functional Polymers |
dc.relation.references.spa.fl_str_mv |
[1] T. Kegl, A. Kosak, A. Lobnik, Z. Novak, A.K.C. Kralj, I. Ban, Adsorption of rare earth metals from wastewater by nanomaterials: a review, J. Hazard. Mater. 386 (2020), 121632, https://doi.org/10.1016/j.jhazmat.2019.121632. [2] D. Talan, Q. Huang, A review of the environmental aspect of rare earth element extraction processes and solution purification techniques, Min. Eng. 179 (2022), 107430, https://doi.org/10.1016/j.mineng.2022.107430. [3] J. Florek, F. Chalifour, F. Bilodeau, D. Lariviere, F. Kleitz, Nanostructured hybrid materials for the selective recovery and enrichment of rare earth elements, Adv. Funct. Mater. 24 (2014) 2668–2676, https://doi.org/10.1002/adfm.201303602. [4] X. Sun, K.E. Waters, Synergistic effect between bifunctional ionic liquids and a molecular extractant for lanthanide separation, ACS Sustain. Chem. Eng. 2 (2014) 2758–2764, https://doi.org/10.1021/sc500493d. [5] J. Cui, Q. Wang, J. Gao, Y. Guo, F. Cheng, The selective adsorption of rare earth elements by modified coal fly ash-based SBA-15, Chin. J. Chem. Eng. (2021), https://doi.org/10.1016/j.cjche.2021.07.033. In press. [6] Y. Gao, L. Xu, M. Zhang, Q. Zhang, Z. Yang, J. Yang, Z. Xu, Y. Lv, Y. Wang, Ultraselective ion sieve for thorium recovery from rare earth elements using oxygen-rich microporous carbon adsorption, J. Hazard. Mater. 417 (2021), 126115, https:// doi.org/10.1016/j.jhazmat.2021.126115. [7] Z. Fang, H. Suhua, Xu, l., Jian, F., Qi, L., Zhiwei, W., Chuanchang, L., Yuanlai, X., Adsorption kinetics and thermodynamics of rare earth on montmorillonite modified by sulfuric acid, Colloids Surf. A Physicochem. Eng. Asp. 627 (2021), 127063, https://doi.org/10.1016/j.colsurfa.2021.127063. [8] X.G. Guo, J. Su, W.Q. Xie, S.N. Ni, Y. Gao, X. Su, X.Q. Sun, Selective Th(IV) capture from a new metal-organic framework with O- groups, Dalton Trans. 49 (2020) 4060–4066, https://doi.org/10.1039/c9dt04912f. [9] F. Zhang, K.Q. Ma, Y. Li, Q. Ran, C.Y. Yao, C.T. Yang, H.Z. Yu, S. Hu, S.M. Peng, Selective separation of thorium from rare earth and uranium in acidic solutions by phosphorodiamidate-functionalized silica, Chem. Eng. J. 392 (2020) 123717–123728, https://doi.org/10.1016/j.cej.2019.123717. [10] X.H. Xiong, Y. Tao, Z.W. Yu, L.X. Yang, L.J. Sun, Y.L. Fan, F. Luo, Selective extraction of thorium from uranium and rare earth elements using a sulfonated covalent organic framework and its membrane derivate, Chem. Eng. J. 384 (2020) 123240–123247, https://doi.org/10.1016/j.cej.2019.123240. [11] T.A. Saleh, M. Tuzen, A. Sarı, Magnetic activated carbon loaded with tungsten oxide nanoparticles for aluminum removal from Waters, J. Environ. Chem. Eng. 5 (2017) 2853–2860, https://doi.org/10.1016/j.jece.2017.05.038. [12] T.A. Saleh, A. Sarı, M. Tuzen, Effective adsorption of antimony(III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent, Chem. Eng. J. 307 (2017) 230–238, https://doi.org/10.1016/j.cej.2016.08.070. [13] G.L. Dotto, M.L.G. Vieira, J.O. Gonçalves, L.A.A. Pinto, Removal of acid blue 9, food yellow 3, and FD&C yellow n◦ 5 dyes from aqueous solutions using activated carbon, activated earth, diatomaceous earth, chitin, and chitosan: equilibrium studies and thermodynamic, Quim Nova 34 (2011) 1193–1199, https://doi.org/ 10.1590/s0100-40422011000700017. [14] T. Ahamad, Ruksana, A.A. Chaudhary, M. Naushad, S.M. Alshehri, Fabrication of MnFe2O4 nanoparticles embedded in chitosan-diphenyl-urea-formaldehyde resin for the removal of tetracycline from aqueous solution, Int. J. Biol. Macromol. 134 (2019) 180–188, https://doi.org/10.1016/j.ijbiomac.2019.04.204. [15] D. Rahangdale, A. Kumar, Chitosan as a substrate for simultaneous surface imprinting of salicylic acid and cadmium, Carbohydr. Polym. 202 (2018) 334–344, https://doi.org/10.1016/j.carbpol.2018.08.129. [16] F.M. Valadi, S. Shahsavari, E. Akbarzadeh, M.Z. Gholami, Preparation of new MOF808/chitosan composite for Cr(VI) adsorption from aqueous solution: experimental and DFT study Carbohydr, Polym. 288 (2022), 119383, https://doi.org/10.1016/j. carbpol.2022.119383. [17] W. Shan, D. Zhang, X. Wang, D. Wang, Z. Xing, Y. Xiong, Y. Fan, Y. Yang, One-pot synthesis of mesoporous chitosan-silica composite from sodium silicate for application in rhenium (VII) adsorption, Microporous Mesoporous Mater. 278 (2019) 44–53, https://doi.org/10.1016/j.micromeso.2018.10.030. [18] Y. Lu, Z. Wang, X. Ouyang, C. Ji, Y. Liu, F. Huang, L. Yang, Fabrication of crosslinked chitosan beads grafted by polyethyleneimine for efficient adsorption of diclofenac sodium from the water, Int. J. Biol. Macromol. 145 (2020) 1180–1188, https://doi.org/10.1016/j.ijbiomac.2019.10.044. [19] G.L. Dotto, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption, Chem. Eng. J. 2014 (2013) 8–16, https://doi.org/10.1016/j.cej.2012.10.027. [20] R.F. Weska, J.M. Moura, L.M. Batista, J. Rizzi, L.A.A. Pinto, Optimization of deacetylation in the production of chitosan from shrimp wastes: use of response surface methodology, J. Food Eng. 80 (2007) 749–753, https://doi.org/10.1016/j. jfoodeng.2006.02.006. [21] G.L. Dotto, V.C. Souza, L.A.A. Pinto, Drying of chitosan in a spouted bed: the influences of temperature and equipment geometry in powder quality, LWT Food Sci. Technol. 44 (2011) 1786–1792, https://doi.org/10.1016/j.lwt.2011.03.0197. [22] G.L. Dotto, V.C. Souza, J.M. Moura, C.M. Moura, L.A.A. Pinto, Influence of drying techniques on the characteristics of chitosan and the quality of biopolymer films, Dry. Technol. 29 (2011) 1784–1791, https://doi.org/10.1080/ 07373937.2011.602812. [23] V.M. Esquerdo, T.R.S. Cadaval Jr., G.L. Dotto, L.A.A. Pinto, Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions, J. Colloid Interface Sci. 424 (2014) 7–15, https://doi.org/10.1016/j. jcis.2014.02.028. [24] S.F. Lütke, M.L.S. Oliveira, L.F.O. Silva, T.R.S. Cadaval Jr, G.L. Dotto, Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry, Chemosphere. 256 (2020), 127138, https://doi.org/10.1016/j.chemosphere.2020.127138. [25] E.C. Lima, M.H. Dehghani, A. Guleria, F. Sher, R.R. Karri, G.L. Dotto, H.N. Tran, CHAPTER 3 - adsorption: Fundamental aspects and applications of adsorption for effluent treatment, in: M. Hadi Dehghani, R. Karri, E. Lima (Eds.), Green Technol. Defluoridation Water, Elsevier, 2021, pp. 41–88, https://doi.org/10.1016/B978-0- 323-85768-0.00004-X. [26] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraj´ an, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048. [27] Y. Zhang, T. Bian, D. Xia, D. Wang, Y. Zhang, X. Zheng, Z. Li, Optimum selective separation of cu(II) using 3D ordered macroporous chitosan films with different pore sizes, RSC Adv. 9 (2019) 13065, https://doi.org/10.1039/C9RA00773C. [28] M. Wang, Y. Ma, Y. Sun, S.Y. Hong, S.K. Lee, B. Yoon, L. Chen, L. Ci, J.D. Nam, X. Chen, J. Suhr, Hierarchical porous chitosan sponges as robust and recyclable adsorbents for anionic dye adsorption, Sci. Rep. 7 (2017) 18054, https://doi.org/ 10.1038/s41598-017-18302-0. [29] T. Hajeetha, P.N. Sudha, K. Vijayalakshmi, T. Gomathi, Sorption studies on Cr (VI) removal from aqueous solution using cellulose grafted with acrylonitrile monomer, Int. J. Biol. Macromol. 66 (2014) 295–301, https://doi.org/10.1016/j. ijbiomac.2014.02.027. [30] D.L. Ramasamy, A. Wojtu´s, E. Repo, S. Kalliola, V. Srivastava, M. Sillanp¨ a¨ a, Ligand immobilized novel hybrid adsorbents for rare earth elements (REE) removal from wastewater: assessing the feasibility of using APTES functionalized silica in the hybridization process with chitosan, Chem. Eng. J. 330 (2017) 1370–1379, https://doi.org/10.1016/j.cej.2017.08.098. [31] M. Gonzalez-Hourcade, G.S. dos Reis, A. Grimm, V.M. Dinh, E.C. Lima, S. H. Larsson, F.G. Gentili, Microalgae biomass as a sustainable precursor to produce nitrogen-doped biochar for efficient removal of emerging pollutants from aqueous media, J. Clean. Prod. 348 (2022), 131280, https://doi.org/10.1016/j. jclepro.2022.131280. [32] M. Guy, M. Mathieu, I.P. Anastopoulos, M.G. Martínez, F. Rousseau, G.L. Dotto, H. P. de Oliveira, E.C. Lima, M. Thyrel, S.H. Larsson, G.S. dos Reis, Process parameters optimization, characterization, and application of KOH-activated Norway spruce bark graphitic biochars for efficient azo dye adsorption, Molecules 27 (2022) 456, https://doi.org/10.3390/molecules27020456. [33] G.S. dos Reis, S.H. Larsson, M. Thyrel, T.N. Pham, E.C. Lima, H.P. de Oliveira, G. L. Dotto, Preparation and application of efficient biobased carbon adsorbents prepared from spruce bark residues for efficient removal of reactive dyes and colors from synthetic effluents, Coatings 11 (2021) 772, https://doi.org/10.3390/ coatings11070772. [34] G.L. Dotto, R. Ocampo-P´erez, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Adsorption rate of reactive black 5 on chitosan-based materials: geometry and swelling effects, Adsorption. 22 (2016) 973–983, https://doi.org/10.1007/s10450-016-9804-y. [35] R.A. Teixeira, E.C. Lima, A.D. Benetti, P.S. Thue, M.R. Cunha, N. Cimirro, F. Sher, M.H. Dehghani, G.S. dos Reis, G.L. Dotto, Preparation of hybrids of wood sawdust with 3-aminopropyltriethoxysilane. Application as an adsorbent to remove reactive blue 4 dye from wastewater effluents, J. Taiwan Inst. Chem. Eng. 125 (2021) 141–152, https://doi.org/10.1016/j.jtice.2021.06.007. [36] P.M. Carijo, G.S. dos Reis, E.C. Lima, M.L.S. Oliveira, G.L. Dotto, Functionalization of corn Stover with 3-aminopropyl-trietoxysilane to uptake reactive red 141 from aqueous solutions, Environ. Sci. Pollut. Res. 26 (2019) 32198–32208, https://doi. org/10.1007/s11356-019- 06386-2. [37] D. Kołodynska, D. Fila, Z. Hubicki, Static and dynamic studies of lanthanum(III) ion adsorption/desorption from acidic solutions using chelating ion exchangers with different functionalities, Environ. Res. 191 (2020), 110171, https://doi.org/ 10.1016/j.envres.2020.110171. [38] H.A.A. El-saied, E.A.T. Motawea, Optimization and adsorption behavior of nanostructured NiFe2O4/Poly AMPS grafted biopolymer, J. Polym. Environ. 28 (2020) 2335–2351, https://doi.org/10.1007/s10924-020-01774-z. [39] Y. Zhang, C. Zhu, F. Liu, Y. Yuan, H. Wu, A. Li, Effects of ionic strength on the removal of toxic pollutants from aqueous media with multifarious adsorbents: a review, Sci. Total Environ. 646 (2019) 265–279, https://doi.org/10.1016/j. scitotenv.2018.07.279. [40] G. Hong, L. Shen, M. Wang, Y. Yang, X. Wang, M. Zhu, B.S. Hsiao, Nanofibrous polydopamine complex membranes for adsorption of Lanthanum (III) ions, Chem. Eng. J. 244 (2014) 307–316, https://doi.org/10.1016/j.cej.2014.01.073. [41] M.R. Lasheen, I.Y. El-Sherif, M.E. Tawfik, S.T. El-Wakeel, M.F. El-Shahat, Preparation and adsorption properties of nano magnetite chitosan films for heavy metal ions from aqueous solution, Mater. Res. Bull. 80 (2016) 344–350, https:// doi.org/10.1016/j.materresbull.2016.04.011. [42] Y.Q. Gao, S.M. Zhang, K.Y. Zhao, Z.W. Wang, S.X. Xu, Z.P. Liang, Adsorption of La and Ce by poly-g-glutamic acid crosslinked with polyvinyl alcohol, J. Rare Earths 33 (2015) 884–891, https://doi.org/10.1016/S1002-0721(14)60500-7. [43] E.M. Iannicelli-Zubiani, P.G. Stampino, C. Cristiani, G. Dotelli, Enhanced lanthanum adsorption by amine-modified activated carbon, Chem. Eng. J. 341 (2018) 75–82, https://doi.org/10.1016/j.cej.2018.01.154. [44] S. Iftekhar, V. Srivastava, M. Sillanpa¨a, ¨ Enrichment of lanthanides in the aqueous system by cellulose-based silica nanocomposite, Chem. Eng. J. 320 (2017) 151–159, https://doi.org/10.1016/j.cej.2017.03.051. [45] C. Ni, Q. Liu, Z. Ren, H. Hu, B. Sun, C. Liu, P. Shao, L. Yang, S.G. Pavlostathis, X. Luo, Selective removal and recovery of La(III) using a phosphonic-based ionimprinted polymer: adsorption performance, regeneration, and mechanism, J. Environ. Chem. Eng. 9 (2021), 106701, https://doi.org/10.1016/j. jece.2021.106701. [46] H.M. Marwani, H.M. Albishri, T.A. Jalal, E.M. Soliman, Study of isotherm and kinetic models of lanthanum adsorption on activated carbon loaded with recently synthesized Schiff’s base, Arab. J. Chem. 10 (2017) S1032–S1040, https://doi.org/ 10.1016/j.arabjc.2013.01.008. [47] M.M. Rahman, S.B. Khan, H.M. Marwani, A.M. Asiri, SnO2–TiO2 nanocomposites as a new adsorbent for efficient removal of La(III) ions from aqueous solutions, J. Taiwan Inst. Chem. Eng. 45 (2014) 1964–1974, https://doi.org/10.1016/j. jtice.2014.03.018. [48] D. Wu, Y. Sun, Q. Wang, Adsorption of lanthanum (III) from aqueous solution using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester-grafted magnetic silica nanocomposites, J. Hazard. Mater. 260 (2013) 409–419, https://doi.org/10.1016/ j.jhazmat.2013.05.042. [49] D. Wu, J. Zhao, L. Zhang, Q. Wu, Y. Yang, Lanthanum adsorption using iron oxideloaded calcium alginate beads, Hydrometallurgy 101 (2010) 76–83, https://doi. org/10.1016/j.hydromet.2009.12.002. [50] X. Zheng, D. Wu, T. Su, S. Bao, C. Liao, Q. Wang, Magnetic nanocomposite hydrogel prepared by ZnO-initiated photopolymerization for La (III) adsorption, ACS Appl. Mater. Interfaces 6 (2014) 19840–19849, https://doi.org/10.1021/ am505177c.25347800. |
dc.relation.citationvolume.spa.fl_str_mv |
180 |
dc.rights.eng.fl_str_mv |
© 2022 Elsevier B.V. All rights reserved. |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2022 Elsevier B.V. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
8 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1381514822002401 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/8aa09313-83d5-4712-ac61-a46f90b95d8b/download https://repositorio.cuc.edu.co/bitstreams/7feafdd9-1deb-4a99-a547-2b39611ba8eb/download https://repositorio.cuc.edu.co/bitstreams/56c94745-513f-46d1-a294-e58cddea44be/download https://repositorio.cuc.edu.co/bitstreams/d2ad835b-f786-48f6-a596-fc1f6cb19b6e/download |
bitstream.checksum.fl_str_mv |
9a5b24b4a9869464c48955c96815077e 2f9959eaf5b71fae44bbf9ec84150c7a b1060e6b58b04f74c5a2ac0e4a70dd9d 200a19072e3d6d513ed3d213be104343 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760758208331776 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 Elsevier B.V. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfdos Reis, Glaydson S.Pinto, DianaLima, Éder C.Knani, SalahGrimm, AlejandroSilva Oliveira, Luis FelipeCadaval Jr, Tito R.S.Dotto, Guilherme Luiz2024-02-23T15:41:31Z2024-112024-02-23T15:41:31Z2022-11Glaydson S. dos Reis, Diana Pinto, Éder C. Lima, Salah Knani, Alejandro Grimm, Luis F.O. Silva, Tito R.S. Cadaval, Guilherme L. Dotto, Lanthanum uptake from water using chitosan with different configurations, Reactive and Functional Polymers, Volume 180, 2022, 105395, ISSN 1381-5148, https://doi.org/10.1016/j.reactfunctpolym.2022.1053951381-5148https://hdl.handle.net/11323/1078110.1016/j.reactfunctpolym.2022.1053951873-166XCorporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/Chitosan-based adsorbents (chitosan powder, chitosan film, and chitosan sponge) were prepared and employed for the adsorption of La(III) ions. The materials presented significant differences in their properties, reflected in different La(III) adsorption performances. The adsorption kinetics, isotherms, and thermodynamics were studied. The chitosan materials showed very effective La(III) removal due to their unique characteristics, such abundance of functional groups on their surfaces. In addition, the chitosan sponge's high surface area contributed to La(III) adsorption. The equilibrium data followed the Liu isotherm model. Based on this model, the Qmax values obtained were 85.31 and 93.50 mg g−1 (328 K) for powder and film chitosan, respectively. For chitosan sponges, the equilibrium model followed the Two-step Langmuir model attaining a maximum sorption capacity of 265.6 mg g−1 (298 K). The thermodynamics studies indicate that the adsorption process was spontaneous and endothermic. The adsorption process suggests that electrostatic interactions and coordination/chelation were the main acting mechanisms of La(III) removal. Pore filling also played an important role in the adsorption process for the chitosan sponge. In brief, the CTS materials with different configurations presented a good potential to uptake the rare earth element La(III) from water.8 páginasapplication/pdfengElsevierNetherlandshttps://www.sciencedirect.com/science/article/pii/S1381514822002401Lanthanum uptake from water using chitosan with different configurationsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Reactive and Functional Polymers[1] T. Kegl, A. Kosak, A. Lobnik, Z. Novak, A.K.C. Kralj, I. Ban, Adsorption of rare earth metals from wastewater by nanomaterials: a review, J. Hazard. Mater. 386 (2020), 121632, https://doi.org/10.1016/j.jhazmat.2019.121632.[2] D. Talan, Q. Huang, A review of the environmental aspect of rare earth element extraction processes and solution purification techniques, Min. Eng. 179 (2022), 107430, https://doi.org/10.1016/j.mineng.2022.107430.[3] J. Florek, F. Chalifour, F. Bilodeau, D. Lariviere, F. Kleitz, Nanostructured hybrid materials for the selective recovery and enrichment of rare earth elements, Adv. Funct. Mater. 24 (2014) 2668–2676, https://doi.org/10.1002/adfm.201303602.[4] X. Sun, K.E. Waters, Synergistic effect between bifunctional ionic liquids and a molecular extractant for lanthanide separation, ACS Sustain. Chem. Eng. 2 (2014) 2758–2764, https://doi.org/10.1021/sc500493d.[5] J. Cui, Q. Wang, J. Gao, Y. Guo, F. Cheng, The selective adsorption of rare earth elements by modified coal fly ash-based SBA-15, Chin. J. Chem. Eng. (2021), https://doi.org/10.1016/j.cjche.2021.07.033. In press.[6] Y. Gao, L. Xu, M. Zhang, Q. Zhang, Z. Yang, J. Yang, Z. Xu, Y. Lv, Y. Wang, Ultraselective ion sieve for thorium recovery from rare earth elements using oxygen-rich microporous carbon adsorption, J. Hazard. Mater. 417 (2021), 126115, https:// doi.org/10.1016/j.jhazmat.2021.126115.[7] Z. Fang, H. Suhua, Xu, l., Jian, F., Qi, L., Zhiwei, W., Chuanchang, L., Yuanlai, X., Adsorption kinetics and thermodynamics of rare earth on montmorillonite modified by sulfuric acid, Colloids Surf. A Physicochem. Eng. Asp. 627 (2021), 127063, https://doi.org/10.1016/j.colsurfa.2021.127063.[8] X.G. Guo, J. Su, W.Q. Xie, S.N. Ni, Y. Gao, X. Su, X.Q. Sun, Selective Th(IV) capture from a new metal-organic framework with O- groups, Dalton Trans. 49 (2020) 4060–4066, https://doi.org/10.1039/c9dt04912f.[9] F. Zhang, K.Q. Ma, Y. Li, Q. Ran, C.Y. Yao, C.T. Yang, H.Z. Yu, S. Hu, S.M. Peng, Selective separation of thorium from rare earth and uranium in acidic solutions by phosphorodiamidate-functionalized silica, Chem. Eng. J. 392 (2020) 123717–123728, https://doi.org/10.1016/j.cej.2019.123717.[10] X.H. Xiong, Y. Tao, Z.W. Yu, L.X. Yang, L.J. Sun, Y.L. Fan, F. Luo, Selective extraction of thorium from uranium and rare earth elements using a sulfonated covalent organic framework and its membrane derivate, Chem. Eng. J. 384 (2020) 123240–123247, https://doi.org/10.1016/j.cej.2019.123240.[11] T.A. Saleh, M. Tuzen, A. Sarı, Magnetic activated carbon loaded with tungsten oxide nanoparticles for aluminum removal from Waters, J. Environ. Chem. Eng. 5 (2017) 2853–2860, https://doi.org/10.1016/j.jece.2017.05.038.[12] T.A. Saleh, A. Sarı, M. Tuzen, Effective adsorption of antimony(III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent, Chem. Eng. J. 307 (2017) 230–238, https://doi.org/10.1016/j.cej.2016.08.070.[13] G.L. Dotto, M.L.G. Vieira, J.O. Gonçalves, L.A.A. Pinto, Removal of acid blue 9, food yellow 3, and FD&C yellow n◦ 5 dyes from aqueous solutions using activated carbon, activated earth, diatomaceous earth, chitin, and chitosan: equilibrium studies and thermodynamic, Quim Nova 34 (2011) 1193–1199, https://doi.org/ 10.1590/s0100-40422011000700017.[14] T. Ahamad, Ruksana, A.A. Chaudhary, M. Naushad, S.M. Alshehri, Fabrication of MnFe2O4 nanoparticles embedded in chitosan-diphenyl-urea-formaldehyde resin for the removal of tetracycline from aqueous solution, Int. J. Biol. Macromol. 134 (2019) 180–188, https://doi.org/10.1016/j.ijbiomac.2019.04.204.[15] D. Rahangdale, A. Kumar, Chitosan as a substrate for simultaneous surface imprinting of salicylic acid and cadmium, Carbohydr. Polym. 202 (2018) 334–344, https://doi.org/10.1016/j.carbpol.2018.08.129.[16] F.M. Valadi, S. Shahsavari, E. Akbarzadeh, M.Z. Gholami, Preparation of new MOF808/chitosan composite for Cr(VI) adsorption from aqueous solution: experimental and DFT study Carbohydr, Polym. 288 (2022), 119383, https://doi.org/10.1016/j. carbpol.2022.119383.[17] W. Shan, D. Zhang, X. Wang, D. Wang, Z. Xing, Y. Xiong, Y. Fan, Y. Yang, One-pot synthesis of mesoporous chitosan-silica composite from sodium silicate for application in rhenium (VII) adsorption, Microporous Mesoporous Mater. 278 (2019) 44–53, https://doi.org/10.1016/j.micromeso.2018.10.030.[18] Y. Lu, Z. Wang, X. Ouyang, C. Ji, Y. Liu, F. Huang, L. Yang, Fabrication of crosslinked chitosan beads grafted by polyethyleneimine for efficient adsorption of diclofenac sodium from the water, Int. J. Biol. Macromol. 145 (2020) 1180–1188, https://doi.org/10.1016/j.ijbiomac.2019.10.044.[19] G.L. Dotto, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption, Chem. Eng. J. 2014 (2013) 8–16, https://doi.org/10.1016/j.cej.2012.10.027.[20] R.F. Weska, J.M. Moura, L.M. Batista, J. Rizzi, L.A.A. Pinto, Optimization of deacetylation in the production of chitosan from shrimp wastes: use of response surface methodology, J. Food Eng. 80 (2007) 749–753, https://doi.org/10.1016/j. jfoodeng.2006.02.006.[21] G.L. Dotto, V.C. Souza, L.A.A. Pinto, Drying of chitosan in a spouted bed: the influences of temperature and equipment geometry in powder quality, LWT Food Sci. Technol. 44 (2011) 1786–1792, https://doi.org/10.1016/j.lwt.2011.03.0197.[22] G.L. Dotto, V.C. Souza, J.M. Moura, C.M. Moura, L.A.A. Pinto, Influence of drying techniques on the characteristics of chitosan and the quality of biopolymer films, Dry. Technol. 29 (2011) 1784–1791, https://doi.org/10.1080/ 07373937.2011.602812.[23] V.M. Esquerdo, T.R.S. Cadaval Jr., G.L. Dotto, L.A.A. Pinto, Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions, J. Colloid Interface Sci. 424 (2014) 7–15, https://doi.org/10.1016/j. jcis.2014.02.028.[24] S.F. Lütke, M.L.S. Oliveira, L.F.O. Silva, T.R.S. Cadaval Jr, G.L. Dotto, Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry, Chemosphere. 256 (2020), 127138, https://doi.org/10.1016/j.chemosphere.2020.127138.[25] E.C. Lima, M.H. Dehghani, A. Guleria, F. Sher, R.R. Karri, G.L. Dotto, H.N. Tran, CHAPTER 3 - adsorption: Fundamental aspects and applications of adsorption for effluent treatment, in: M. Hadi Dehghani, R. Karri, E. Lima (Eds.), Green Technol. Defluoridation Water, Elsevier, 2021, pp. 41–88, https://doi.org/10.1016/B978-0- 323-85768-0.00004-X.[26] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraj´ an, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.[27] Y. Zhang, T. Bian, D. Xia, D. Wang, Y. Zhang, X. Zheng, Z. Li, Optimum selective separation of cu(II) using 3D ordered macroporous chitosan films with different pore sizes, RSC Adv. 9 (2019) 13065, https://doi.org/10.1039/C9RA00773C.[28] M. Wang, Y. Ma, Y. Sun, S.Y. Hong, S.K. Lee, B. Yoon, L. Chen, L. Ci, J.D. Nam, X. Chen, J. Suhr, Hierarchical porous chitosan sponges as robust and recyclable adsorbents for anionic dye adsorption, Sci. Rep. 7 (2017) 18054, https://doi.org/ 10.1038/s41598-017-18302-0.[29] T. Hajeetha, P.N. Sudha, K. Vijayalakshmi, T. Gomathi, Sorption studies on Cr (VI) removal from aqueous solution using cellulose grafted with acrylonitrile monomer, Int. J. Biol. Macromol. 66 (2014) 295–301, https://doi.org/10.1016/j. ijbiomac.2014.02.027.[30] D.L. Ramasamy, A. Wojtu´s, E. Repo, S. Kalliola, V. Srivastava, M. Sillanp¨ a¨ a, Ligand immobilized novel hybrid adsorbents for rare earth elements (REE) removal from wastewater: assessing the feasibility of using APTES functionalized silica in the hybridization process with chitosan, Chem. Eng. J. 330 (2017) 1370–1379, https://doi.org/10.1016/j.cej.2017.08.098.[31] M. Gonzalez-Hourcade, G.S. dos Reis, A. Grimm, V.M. Dinh, E.C. Lima, S. H. Larsson, F.G. Gentili, Microalgae biomass as a sustainable precursor to produce nitrogen-doped biochar for efficient removal of emerging pollutants from aqueous media, J. Clean. Prod. 348 (2022), 131280, https://doi.org/10.1016/j. jclepro.2022.131280.[32] M. Guy, M. Mathieu, I.P. Anastopoulos, M.G. Martínez, F. Rousseau, G.L. Dotto, H. P. de Oliveira, E.C. Lima, M. Thyrel, S.H. Larsson, G.S. dos Reis, Process parameters optimization, characterization, and application of KOH-activated Norway spruce bark graphitic biochars for efficient azo dye adsorption, Molecules 27 (2022) 456, https://doi.org/10.3390/molecules27020456.[33] G.S. dos Reis, S.H. Larsson, M. Thyrel, T.N. Pham, E.C. Lima, H.P. de Oliveira, G. L. Dotto, Preparation and application of efficient biobased carbon adsorbents prepared from spruce bark residues for efficient removal of reactive dyes and colors from synthetic effluents, Coatings 11 (2021) 772, https://doi.org/10.3390/ coatings11070772.[34] G.L. Dotto, R. Ocampo-P´erez, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Adsorption rate of reactive black 5 on chitosan-based materials: geometry and swelling effects, Adsorption. 22 (2016) 973–983, https://doi.org/10.1007/s10450-016-9804-y.[35] R.A. Teixeira, E.C. Lima, A.D. Benetti, P.S. Thue, M.R. Cunha, N. Cimirro, F. Sher, M.H. Dehghani, G.S. dos Reis, G.L. Dotto, Preparation of hybrids of wood sawdust with 3-aminopropyltriethoxysilane. Application as an adsorbent to remove reactive blue 4 dye from wastewater effluents, J. Taiwan Inst. Chem. Eng. 125 (2021) 141–152, https://doi.org/10.1016/j.jtice.2021.06.007.[36] P.M. Carijo, G.S. dos Reis, E.C. Lima, M.L.S. Oliveira, G.L. Dotto, Functionalization of corn Stover with 3-aminopropyl-trietoxysilane to uptake reactive red 141 from aqueous solutions, Environ. Sci. Pollut. Res. 26 (2019) 32198–32208, https://doi. org/10.1007/s11356-019- 06386-2.[37] D. Kołodynska, D. Fila, Z. Hubicki, Static and dynamic studies of lanthanum(III) ion adsorption/desorption from acidic solutions using chelating ion exchangers with different functionalities, Environ. Res. 191 (2020), 110171, https://doi.org/ 10.1016/j.envres.2020.110171.[38] H.A.A. El-saied, E.A.T. Motawea, Optimization and adsorption behavior of nanostructured NiFe2O4/Poly AMPS grafted biopolymer, J. Polym. Environ. 28 (2020) 2335–2351, https://doi.org/10.1007/s10924-020-01774-z.[39] Y. Zhang, C. Zhu, F. Liu, Y. Yuan, H. Wu, A. Li, Effects of ionic strength on the removal of toxic pollutants from aqueous media with multifarious adsorbents: a review, Sci. Total Environ. 646 (2019) 265–279, https://doi.org/10.1016/j. scitotenv.2018.07.279.[40] G. Hong, L. Shen, M. Wang, Y. Yang, X. Wang, M. Zhu, B.S. Hsiao, Nanofibrous polydopamine complex membranes for adsorption of Lanthanum (III) ions, Chem. Eng. J. 244 (2014) 307–316, https://doi.org/10.1016/j.cej.2014.01.073.[41] M.R. Lasheen, I.Y. El-Sherif, M.E. Tawfik, S.T. El-Wakeel, M.F. El-Shahat, Preparation and adsorption properties of nano magnetite chitosan films for heavy metal ions from aqueous solution, Mater. Res. Bull. 80 (2016) 344–350, https:// doi.org/10.1016/j.materresbull.2016.04.011.[42] Y.Q. Gao, S.M. Zhang, K.Y. Zhao, Z.W. Wang, S.X. Xu, Z.P. Liang, Adsorption of La and Ce by poly-g-glutamic acid crosslinked with polyvinyl alcohol, J. Rare Earths 33 (2015) 884–891, https://doi.org/10.1016/S1002-0721(14)60500-7.[43] E.M. Iannicelli-Zubiani, P.G. Stampino, C. Cristiani, G. Dotelli, Enhanced lanthanum adsorption by amine-modified activated carbon, Chem. Eng. J. 341 (2018) 75–82, https://doi.org/10.1016/j.cej.2018.01.154.[44] S. Iftekhar, V. Srivastava, M. Sillanpa¨a, ¨ Enrichment of lanthanides in the aqueous system by cellulose-based silica nanocomposite, Chem. Eng. J. 320 (2017) 151–159, https://doi.org/10.1016/j.cej.2017.03.051.[45] C. Ni, Q. Liu, Z. Ren, H. Hu, B. Sun, C. Liu, P. Shao, L. Yang, S.G. Pavlostathis, X. Luo, Selective removal and recovery of La(III) using a phosphonic-based ionimprinted polymer: adsorption performance, regeneration, and mechanism, J. Environ. Chem. Eng. 9 (2021), 106701, https://doi.org/10.1016/j. jece.2021.106701.[46] H.M. Marwani, H.M. Albishri, T.A. Jalal, E.M. Soliman, Study of isotherm and kinetic models of lanthanum adsorption on activated carbon loaded with recently synthesized Schiff’s base, Arab. J. Chem. 10 (2017) S1032–S1040, https://doi.org/ 10.1016/j.arabjc.2013.01.008.[47] M.M. Rahman, S.B. Khan, H.M. Marwani, A.M. Asiri, SnO2–TiO2 nanocomposites as a new adsorbent for efficient removal of La(III) ions from aqueous solutions, J. Taiwan Inst. Chem. Eng. 45 (2014) 1964–1974, https://doi.org/10.1016/j. jtice.2014.03.018.[48] D. Wu, Y. Sun, Q. Wang, Adsorption of lanthanum (III) from aqueous solution using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester-grafted magnetic silica nanocomposites, J. Hazard. Mater. 260 (2013) 409–419, https://doi.org/10.1016/ j.jhazmat.2013.05.042.[49] D. Wu, J. Zhao, L. Zhang, Q. Wu, Y. Yang, Lanthanum adsorption using iron oxideloaded calcium alginate beads, Hydrometallurgy 101 (2010) 76–83, https://doi. org/10.1016/j.hydromet.2009.12.002.[50] X. Zheng, D. Wu, T. Su, S. Bao, C. Liao, Q. Wang, Magnetic nanocomposite hydrogel prepared by ZnO-initiated photopolymerization for La (III) adsorption, ACS Appl. Mater. Interfaces 6 (2014) 19840–19849, https://doi.org/10.1021/ am505177c.25347800.180Chitosan powderChitosan filmChitosan spongeRare earthIon-ion interactionPublicationORIGINALanthanum uptake from water using chitosan with different configurations.pdfanthanum uptake from water using chitosan with different configurations.pdfArtículoapplication/pdf1525258https://repositorio.cuc.edu.co/bitstreams/8aa09313-83d5-4712-ac61-a46f90b95d8b/download9a5b24b4a9869464c48955c96815077eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/7feafdd9-1deb-4a99-a547-2b39611ba8eb/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTanthanum uptake from water using chitosan with different configurations.pdf.txtanthanum uptake from water using chitosan with different configurations.pdf.txtExtracted texttext/plain49928https://repositorio.cuc.edu.co/bitstreams/56c94745-513f-46d1-a294-e58cddea44be/downloadb1060e6b58b04f74c5a2ac0e4a70dd9dMD53THUMBNAILanthanum uptake from water using chitosan with different configurations.pdf.jpganthanum uptake from water using chitosan with different configurations.pdf.jpgGenerated Thumbnailimage/jpeg14812https://repositorio.cuc.edu.co/bitstreams/d2ad835b-f786-48f6-a596-fc1f6cb19b6e/download200a19072e3d6d513ed3d213be104343MD5411323/10781oai:repositorio.cuc.edu.co:11323/107812024-09-17 11:00:23.436https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 Elsevier B.V. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |