The available waste-to-energy potential from agricultural wastes in the department of Córdoba, Colombia

There is a large potential for biomass-based renewable energy production Colombia which mostly remains untapped, accounting for a marginal 0.8% of the electricity production. Moreover, Córdoba is a department with important developments in agriculture and agroindustry, where significant amounts of b...

Full description

Autores:
Sagastume, Alexis
Morales Mendoza, Jorge
Cabello Eras, Juan José
Rhenal, Jesús D.
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8343
Acceso en línea:
https://hdl.handle.net/11323/8343
https://doi.org/10.32479/ijeep.10705
https://repositorio.cuc.edu.co/
Palabra clave:
Renewable energy
Biomass waste
Waste-to-energy technologies
Bioelectricity
Energía renovable
Residuos de biomasa
Tecnologías de conversión de residuos en energía
Bioelectricidad
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_b6661d65d942b3bfa3bd2a03d6ec0a25
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8343
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv The available waste-to-energy potential from agricultural wastes in the department of Córdoba, Colombia
dc.title.translated.spa.fl_str_mv El potencial de conversión de residuos en energía disponible a partir de residuos agrícolas en el departamento de Córdoba, Colombia
title The available waste-to-energy potential from agricultural wastes in the department of Córdoba, Colombia
spellingShingle The available waste-to-energy potential from agricultural wastes in the department of Córdoba, Colombia
Renewable energy
Biomass waste
Waste-to-energy technologies
Bioelectricity
Energía renovable
Residuos de biomasa
Tecnologías de conversión de residuos en energía
Bioelectricidad
title_short The available waste-to-energy potential from agricultural wastes in the department of Córdoba, Colombia
title_full The available waste-to-energy potential from agricultural wastes in the department of Córdoba, Colombia
title_fullStr The available waste-to-energy potential from agricultural wastes in the department of Córdoba, Colombia
title_full_unstemmed The available waste-to-energy potential from agricultural wastes in the department of Córdoba, Colombia
title_sort The available waste-to-energy potential from agricultural wastes in the department of Córdoba, Colombia
dc.creator.fl_str_mv Sagastume, Alexis
Morales Mendoza, Jorge
Cabello Eras, Juan José
Rhenal, Jesús D.
dc.contributor.author.spa.fl_str_mv Sagastume, Alexis
Morales Mendoza, Jorge
Cabello Eras, Juan José
Rhenal, Jesús D.
dc.subject.eng.fl_str_mv Renewable energy
Biomass waste
Waste-to-energy technologies
topic Renewable energy
Biomass waste
Waste-to-energy technologies
Bioelectricity
Energía renovable
Residuos de biomasa
Tecnologías de conversión de residuos en energía
Bioelectricidad
dc.subject.spa.fl_str_mv Bioelectricity
Energía renovable
Residuos de biomasa
Tecnologías de conversión de residuos en energía
Bioelectricidad
description There is a large potential for biomass-based renewable energy production Colombia which mostly remains untapped, accounting for a marginal 0.8% of the electricity production. Moreover, Córdoba is a department with important developments in agriculture and agroindustry, where significant amounts of biomass wastes are generated. In total, these wastes have a yearly energy potential of 548 for the use of anaerobic digestion, and 1159 GWh per year using direct combustion. These energy potentials can yield 126 GWh/year of electricity using anaerobic digestion, or 260 GWh/year using direct combustion (i.e. 9 to 18% of the current electricity demand). However, power generation systems based on direct combustion for biomass wastes are economically feasible only for the lower investment costs available in the market, while anaerobic digestion is feasible for the low and average investment costs available in the market. Moreover, the biogas potential is equivalent to 1.4 times the energy demand required to replace firewood for cooking in 32% of the department homes that use firewood. More investigation is needed to more accurately define the potentialities of biomass wastes for energy applications in the department, for more effective promotion of its implementation
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-02T22:33:00Z
dc.date.available.none.fl_str_mv 2021-06-02T22:33:00Z
dc.date.issued.none.fl_str_mv 2021-01-24
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 21464553
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8343
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.32479/ijeep.10705
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 21464553
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8343
https://doi.org/10.32479/ijeep.10705
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Astudillo, P., Isabel, C., Barrero, R., Carlos, A., Puello, B., Luis, M. (2015), Diagnostic of the main agricultural residues produced in the bolivar region. Sciences Agroalimentary, 2, 39-50.
Avcıoğlu, A.O., Dayıoğlu, M.A., Türker, U. (2019), Assessment of the energy potential of agricultural biomass residues in Turkey. Renewable Energy, 138, 610-619.
Bhatnagar, A., Vilar, V.J.P., Botelho, C.M.S., Boaventura, R.A.R. (2010), Coconut-based biosorbents for water treatment a review of the recent literature. Advances in Colloid and Interface Science, 160(1-2), 1-15.
Boundy, B., Diegel, S.W., Wright, L., Davis, S.C. (2011), Biomas Energy Data Book. 4th ed. Tenesse: US Department of Energy
Cabello, J.J., Balbis, M., Sagastume, A., Pardo, A., Cabello, M., Rey, F.J., Rueda-Bayona, J.G.J.G., Eras, J.J.C., Morejón, M.B., Gutiérrez, A.S., García, A.P., Ulloa, M.C., Martínez, F.J.R., Rueda-Bayona, J.G.J. (2019), A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9, 15-25.
Carranza, J.Q., Gutiérrez, C.C. (2012), El fogón abierto de tres piedras en la península de Yucatán: Tradición y transferencia tecnológica. Revista Pueblos y Fronteras Digital, 7, 270-301.
Chen, W.H., Kuo, P.C. (2010), A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35, 2580-2586.
Consorcio Estrategia Rural Sostenible. (2019), Plan de Sustitución Progresiva de Leña. Bogotá, Colombia: Consorcio Estrategia Rural Sostenible
DANE. (2018), Resultados del Censo Nacional de Población y Vivienda; 2018. Available from: https://www.dane.gov.co/index.php/ estadisticas-por-tema/demografia-y-poblacion/censo-nacional-depoblacion-y-vivenda-2018. [Last accessed on 2020 Nov 09].
Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M. (2018), Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants. Science of the Total Environment, 626, 744-753.
Fondo Emprender. (2018), Informe Final de Evaluación Convocatori Nacional No. 62. Available from: http://www.fondoemprender.com/ docsconvocatoriasnacionales/informefinaldeevaluacionconv621c.xlsx.
Garfí, M., Castro, L., Montero, N., Escalante, H., Ferrer, I. (2019), Bioresource technology evaluating environmental benefits of lowcost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresource Technology, 274, 541-548.
Gómez-Navarro, T., Ribó-Pérez, D. (2018), Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90, 131-141.
Ibeto, C., Anisha, M., Anyanwu, C. (2016), Evaluation of the fuel properties and pollution potentials of lignite coal and pellets of its blends with different biowastes. American Chemical Science Journal, 14, 1-12.
International Energy Agency. (2020), Energy Technology Perspectives 2020. Paris, France: International Energy Agency
International Finance Corporation. (2017), Converting Biomass to Energy: A Guide for Developers and Investors. Washington, DC: International Finance Corpotation
Jekayinfa, S.O., Omisakin, O.S. (2005), The energy potentials of some agricultural wastes as local fuel materials in Nigeria. Agricultural Engineering International: CIGR Journal, 7, 1-10.
Kurchania, A.K., Panwar, N.L., Pagar, S.D. (2010), Design and performance evaluation of biogas stove for community cooking application. International Journal of Sustainable Energy, 29, 116-123.
Leal, M.R.L., Galdos, M.V., Scarpare, F.V., Seabra, J.E.A., Walter, A., Oliveira, C.O.F. (2013), Sugarcane straw availability, quality, recovery and energy use: A literature review. Biomass and Bioenergy, 53, 11-19.
Ltodo, I.N., Agyo, G.E., Yusuf, P. (2007), Performance evaluation of a biogas stove for cooking in Nigeria. Journal of Energy in Southern Africa, 18, 14-18.
Mayer, F., Bhandari, R., Gäth, S. (2019), Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Science of the Total Environment, 672, 708-721.
Ministerio de Agricultura y Desarrollo Rural. (2016), Anuario Estadístico del Sector Agropecuario 2014. Bogotá, Colombia: Ministerio de Agricultura y Desarrollo Rural.
Ministerio de Agricultura y Desarrollo Rural. (2017), Anuario Esatdístico del Sector Agropecuario 2016. Bogotá, Colombia: Ministerio de Agricultura y Desarrollo Rural
Ministerio de Agricultura y Desarrollo Rural. (2018a), Boletín Estadístico Trimestre II de 2018 Abril a Junio. Bogota, Colombia: Ministerio de Agricultura y Desarrollo Rural
Ministerio de Agricultura y Desarrollo Rural. (2018b), Boletín Estadístico Trimestre I de 2018. Bogota, Colombia: Ministerio de Agricultura y Desarrollo Rural.
Pérez, J.F., Pelaez-Samaniego, M.R., Garcia-Perez, M. (2019), Torrefaction of fast-growing Colombian wood species. Waste and Biomass Valorization, 10, 1655-1667.
Pöschl, M., Ward, S., Owende, P. (2010), Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy, 87, 3305-3321.
Ramírez, R., Arce, J.C., Jeréz, C., Puertas, Y., Gómez, L., Riaño, J., Diaz, O. (2018), Boletín Estadístico de Minas y Energía 2016-2018. Boletin Estadístico de Minas y Energía.
Robles, C., Polo, A., Ospino, A. (2017), An analytic hierarchy process based approach for evaluating renewable energy sources. International Journal of Energy Economics and Policy, 7, 38-47.
Robles, C., Polo, A., Ospino, A. (2017), An analytic hierarchy process based approach for evaluating renewable energy sources. International Journal of Energy Economics and Policy, 7, 38-47.
Sagastume, A., Cabello Eras, J.J., Hens, L., Vandecasteele, C. (2020), The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. Journal of Cleaner Production, 2020, 122317.
Sanchez, C.P., Galvis, J.P. (2016), Implementación y Evaluación de Cocinas Ecológicas en la Vereda Quebrada del Medio, Corregimiento de Pueblo Bujo, Zona Rural Del Municipio de Montería. Cordoba: Universidad de Cordoba.
Sarki, J., Hassan, S.B., Aigbodion, V.S., Oghenevweta, J.E. (2011), Potential of using coconut shell particle fillers in eco-composite materials. Journal of Alloys and Compounds, 509, 2381-2385
Shah, S.A.Y., Zeeshan, M., Farooq, M.Z., Ahmed, N., Iqbal, N. (2019), Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality. Renewable Energy, 130, 238-244
Shen, G., Hays, M.D., Smith, K.R., Williams, C., Faircloth, J.W., Jetter,J.J. (2018), Evaluating the performance of household liquefied petroleum gas cookstoves. Environmental Science and Technology, 52, 904-915.
Thomsen, S.T., Spliid, H., Østergård, H. (2014), Statistical prediction of biomethane potentials based on the composition of lignocellulosic biomass. Bioresource Technology, 154, 80-86.
Ullah, K., Sharma, V.K., Dhingra, S., Braccio, G., Ahmad, M., Sofia, S. (2015), Assessing the lignocellulosic biomass resources potential in developing countries: A critical review. Renewable and Sustainable Energy Reviews, 51, 682-698.
UNDP. (2019), Córdoba. Retos y Desafíos para el Desarrollo Sostenible. New York: UNDP.
Wang, Q., Sarkar, J. (2018), Pyrolysis behaviors of waste coconut shell and husk biomasses. The International Journal of Energy Production and Management, 3, 34-43.
Wang, S., Jena, U., Das, K.C. (2018), Biomethane production potential of slaughterhouse waste in the United States. Energy Conversion and Management, 173, 143-157
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv International Journal of Energy Economics and Policy
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://econjournals.com/index.php/ijeep/article/view/10705/5783
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/8343/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/8343/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/8343/1/The%20Available%20Waste-to-energy%20Potential%20from%20Agricultural.pdf
https://repositorio.cuc.edu.co/bitstream/11323/8343/4/The%20Available%20Waste-to-energy%20Potential%20from%20Agricultural.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/8343/5/The%20Available%20Waste-to-energy%20Potential%20from%20Agricultural.pdf.txt
bitstream.checksum.fl_str_mv 42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
936be13795a788428651cd5419b8ec02
856aca71c2c2cf33bb32f3a973dfff96
e696400d89d4efa10a2e5bb29d0fda5e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400129225392128
spelling Sagastume, Alexisd8d0c8c545fa27717350f1c4e758aaa8Morales Mendoza, Jorge3879c17808f4b12b95f3426ccd79ae77300Cabello Eras, Juan José81f5e66b53262a1970b611e2ba2f12beRhenal, Jesús D.982523b20e6725968f6e675cfc25399d3002021-06-02T22:33:00Z2021-06-02T22:33:00Z2021-01-2421464553https://hdl.handle.net/11323/8343https://doi.org/10.32479/ijeep.10705Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/There is a large potential for biomass-based renewable energy production Colombia which mostly remains untapped, accounting for a marginal 0.8% of the electricity production. Moreover, Córdoba is a department with important developments in agriculture and agroindustry, where significant amounts of biomass wastes are generated. In total, these wastes have a yearly energy potential of 548 for the use of anaerobic digestion, and 1159 GWh per year using direct combustion. These energy potentials can yield 126 GWh/year of electricity using anaerobic digestion, or 260 GWh/year using direct combustion (i.e. 9 to 18% of the current electricity demand). However, power generation systems based on direct combustion for biomass wastes are economically feasible only for the lower investment costs available in the market, while anaerobic digestion is feasible for the low and average investment costs available in the market. Moreover, the biogas potential is equivalent to 1.4 times the energy demand required to replace firewood for cooking in 32% of the department homes that use firewood. More investigation is needed to more accurately define the potentialities of biomass wastes for energy applications in the department, for more effective promotion of its implementationExiste un gran potencial para la producción de energía renovable a base de biomasa en Colombia, que en su mayoría permanece sin explotar, lo que representa un 0,8% marginal de la producción de electricidad. Además, Córdoba es un departamento con importantes desarrollos en agricultura y agroindustria, donde importantes cantidades de residuos de biomasa se generan. En total, estos desechos tienen un potencial energético anual de 548 para el uso de digestión anaeróbica y 1159 GWh por año utilizando combustión directa. Estos potenciales energéticos pueden producir 126 GWh / año de electricidad usando digestión anaeróbica, o 260 GWh / año usando directa combustión (es decir, del 9 al 18% de la demanda actual de electricidad). Sin embargo, los sistemas de generación de energía basados ​​en la combustión directa de residuos de biomasa son económicamente viables solo para los costos de inversión más bajos disponibles en el mercado, mientras que la digestión anaeróbica es factible para los bajos y medios costos de inversión disponibles en el mercado. Además, el potencial de biogás equivale a 1,4 veces la demanda energética necesaria para sustituir la leña. para cocinar en el 32% de las viviendas departamentales que utilizan leña. Se necesita más investigación para definir con mayor precisión las potencialidades de la biomasa Residuos para aplicaciones energéticas en el departamento, para una promoción más efectiva de su implementación.application/pdfengInternational Journal of Energy Economics and PolicyCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Renewable energyBiomass wasteWaste-to-energy technologiesBioelectricityEnergía renovableResiduos de biomasaTecnologías de conversión de residuos en energíaBioelectricidadThe available waste-to-energy potential from agricultural wastes in the department of Córdoba, ColombiaEl potencial de conversión de residuos en energía disponible a partir de residuos agrícolas en el departamento de Córdoba, ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://econjournals.com/index.php/ijeep/article/view/10705/5783Astudillo, P., Isabel, C., Barrero, R., Carlos, A., Puello, B., Luis, M. (2015), Diagnostic of the main agricultural residues produced in the bolivar region. Sciences Agroalimentary, 2, 39-50.Avcıoğlu, A.O., Dayıoğlu, M.A., Türker, U. (2019), Assessment of the energy potential of agricultural biomass residues in Turkey. Renewable Energy, 138, 610-619.Bhatnagar, A., Vilar, V.J.P., Botelho, C.M.S., Boaventura, R.A.R. (2010), Coconut-based biosorbents for water treatment a review of the recent literature. Advances in Colloid and Interface Science, 160(1-2), 1-15.Boundy, B., Diegel, S.W., Wright, L., Davis, S.C. (2011), Biomas Energy Data Book. 4th ed. Tenesse: US Department of EnergyCabello, J.J., Balbis, M., Sagastume, A., Pardo, A., Cabello, M., Rey, F.J., Rueda-Bayona, J.G.J.G., Eras, J.J.C., Morejón, M.B., Gutiérrez, A.S., García, A.P., Ulloa, M.C., Martínez, F.J.R., Rueda-Bayona, J.G.J. (2019), A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9, 15-25.Carranza, J.Q., Gutiérrez, C.C. (2012), El fogón abierto de tres piedras en la península de Yucatán: Tradición y transferencia tecnológica. Revista Pueblos y Fronteras Digital, 7, 270-301.Chen, W.H., Kuo, P.C. (2010), A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35, 2580-2586.Consorcio Estrategia Rural Sostenible. (2019), Plan de Sustitución Progresiva de Leña. Bogotá, Colombia: Consorcio Estrategia Rural SostenibleDANE. (2018), Resultados del Censo Nacional de Población y Vivienda; 2018. Available from: https://www.dane.gov.co/index.php/ estadisticas-por-tema/demografia-y-poblacion/censo-nacional-depoblacion-y-vivenda-2018. [Last accessed on 2020 Nov 09].Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M. (2018), Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants. Science of the Total Environment, 626, 744-753.Fondo Emprender. (2018), Informe Final de Evaluación Convocatori Nacional No. 62. Available from: http://www.fondoemprender.com/ docsconvocatoriasnacionales/informefinaldeevaluacionconv621c.xlsx.Garfí, M., Castro, L., Montero, N., Escalante, H., Ferrer, I. (2019), Bioresource technology evaluating environmental benefits of lowcost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresource Technology, 274, 541-548.Gómez-Navarro, T., Ribó-Pérez, D. (2018), Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90, 131-141.Ibeto, C., Anisha, M., Anyanwu, C. (2016), Evaluation of the fuel properties and pollution potentials of lignite coal and pellets of its blends with different biowastes. American Chemical Science Journal, 14, 1-12.International Energy Agency. (2020), Energy Technology Perspectives 2020. Paris, France: International Energy AgencyInternational Finance Corporation. (2017), Converting Biomass to Energy: A Guide for Developers and Investors. Washington, DC: International Finance CorpotationJekayinfa, S.O., Omisakin, O.S. (2005), The energy potentials of some agricultural wastes as local fuel materials in Nigeria. Agricultural Engineering International: CIGR Journal, 7, 1-10.Kurchania, A.K., Panwar, N.L., Pagar, S.D. (2010), Design and performance evaluation of biogas stove for community cooking application. International Journal of Sustainable Energy, 29, 116-123.Leal, M.R.L., Galdos, M.V., Scarpare, F.V., Seabra, J.E.A., Walter, A., Oliveira, C.O.F. (2013), Sugarcane straw availability, quality, recovery and energy use: A literature review. Biomass and Bioenergy, 53, 11-19.Ltodo, I.N., Agyo, G.E., Yusuf, P. (2007), Performance evaluation of a biogas stove for cooking in Nigeria. Journal of Energy in Southern Africa, 18, 14-18.Mayer, F., Bhandari, R., Gäth, S. (2019), Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Science of the Total Environment, 672, 708-721.Ministerio de Agricultura y Desarrollo Rural. (2016), Anuario Estadístico del Sector Agropecuario 2014. Bogotá, Colombia: Ministerio de Agricultura y Desarrollo Rural.Ministerio de Agricultura y Desarrollo Rural. (2017), Anuario Esatdístico del Sector Agropecuario 2016. Bogotá, Colombia: Ministerio de Agricultura y Desarrollo RuralMinisterio de Agricultura y Desarrollo Rural. (2018a), Boletín Estadístico Trimestre II de 2018 Abril a Junio. Bogota, Colombia: Ministerio de Agricultura y Desarrollo RuralMinisterio de Agricultura y Desarrollo Rural. (2018b), Boletín Estadístico Trimestre I de 2018. Bogota, Colombia: Ministerio de Agricultura y Desarrollo Rural.Pérez, J.F., Pelaez-Samaniego, M.R., Garcia-Perez, M. (2019), Torrefaction of fast-growing Colombian wood species. Waste and Biomass Valorization, 10, 1655-1667.Pöschl, M., Ward, S., Owende, P. (2010), Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy, 87, 3305-3321.Ramírez, R., Arce, J.C., Jeréz, C., Puertas, Y., Gómez, L., Riaño, J., Diaz, O. (2018), Boletín Estadístico de Minas y Energía 2016-2018. Boletin Estadístico de Minas y Energía.Robles, C., Polo, A., Ospino, A. (2017), An analytic hierarchy process based approach for evaluating renewable energy sources. International Journal of Energy Economics and Policy, 7, 38-47.Robles, C., Polo, A., Ospino, A. (2017), An analytic hierarchy process based approach for evaluating renewable energy sources. International Journal of Energy Economics and Policy, 7, 38-47.Sagastume, A., Cabello Eras, J.J., Hens, L., Vandecasteele, C. (2020), The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. Journal of Cleaner Production, 2020, 122317.Sanchez, C.P., Galvis, J.P. (2016), Implementación y Evaluación de Cocinas Ecológicas en la Vereda Quebrada del Medio, Corregimiento de Pueblo Bujo, Zona Rural Del Municipio de Montería. Cordoba: Universidad de Cordoba.Sarki, J., Hassan, S.B., Aigbodion, V.S., Oghenevweta, J.E. (2011), Potential of using coconut shell particle fillers in eco-composite materials. Journal of Alloys and Compounds, 509, 2381-2385Shah, S.A.Y., Zeeshan, M., Farooq, M.Z., Ahmed, N., Iqbal, N. (2019), Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality. Renewable Energy, 130, 238-244Shen, G., Hays, M.D., Smith, K.R., Williams, C., Faircloth, J.W., Jetter,J.J. (2018), Evaluating the performance of household liquefied petroleum gas cookstoves. Environmental Science and Technology, 52, 904-915.Thomsen, S.T., Spliid, H., Østergård, H. (2014), Statistical prediction of biomethane potentials based on the composition of lignocellulosic biomass. Bioresource Technology, 154, 80-86.Ullah, K., Sharma, V.K., Dhingra, S., Braccio, G., Ahmad, M., Sofia, S. (2015), Assessing the lignocellulosic biomass resources potential in developing countries: A critical review. Renewable and Sustainable Energy Reviews, 51, 682-698.UNDP. (2019), Córdoba. Retos y Desafíos para el Desarrollo Sostenible. New York: UNDP.Wang, Q., Sarkar, J. (2018), Pyrolysis behaviors of waste coconut shell and husk biomasses. The International Journal of Energy Production and Management, 3, 34-43.Wang, S., Jena, U., Das, K.C. (2018), Biomethane production potential of slaughterhouse waste in the United States. Energy Conversion and Management, 173, 143-157CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/8343/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/8343/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessORIGINALThe Available Waste-to-energy Potential from Agricultural.pdfThe Available Waste-to-energy Potential from Agricultural.pdfapplication/pdf980043https://repositorio.cuc.edu.co/bitstream/11323/8343/1/The%20Available%20Waste-to-energy%20Potential%20from%20Agricultural.pdf936be13795a788428651cd5419b8ec02MD51open accessTHUMBNAILThe Available Waste-to-energy Potential from Agricultural.pdf.jpgThe Available Waste-to-energy Potential from Agricultural.pdf.jpgimage/jpeg73547https://repositorio.cuc.edu.co/bitstream/11323/8343/4/The%20Available%20Waste-to-energy%20Potential%20from%20Agricultural.pdf.jpg856aca71c2c2cf33bb32f3a973dfff96MD54open accessTEXTThe Available Waste-to-energy Potential from Agricultural.pdf.txtThe Available Waste-to-energy Potential from Agricultural.pdf.txttext/plain32499https://repositorio.cuc.edu.co/bitstream/11323/8343/5/The%20Available%20Waste-to-energy%20Potential%20from%20Agricultural.pdf.txte696400d89d4efa10a2e5bb29d0fda5eMD55open access11323/8343oai:repositorio.cuc.edu.co:11323/83432023-12-14 14:55:03.626CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==