Advanced technologies in water treatment: chitosan and its modifications as effective agents in the adsorption of contaminants
Chitosan, derived from the abundant biopolymer chitin, has emerged as a promising option for water treatment due to its intrinsic bioavailability. This review emphasizes the notable characteristics of chitosan, which allow for various modifications, expanding its applications. The polymer's eff...
- Autores:
-
Oliveira Gonçalves, Janaína
Martins Strieder, Monique
Silva Oliveira, Luis Felipe
dos Reis, Glaydson Simões
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13310
- Acceso en línea:
- https://hdl.handle.net/11323/13310
https://repositorio.cuc.edu.co/
- Palabra clave:
- Chitosan
Adsorption
Water treatment
Contaminants
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_b482500ae1f8b29ed2f9ada47373526d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13310 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Advanced technologies in water treatment: chitosan and its modifications as effective agents in the adsorption of contaminants |
title |
Advanced technologies in water treatment: chitosan and its modifications as effective agents in the adsorption of contaminants |
spellingShingle |
Advanced technologies in water treatment: chitosan and its modifications as effective agents in the adsorption of contaminants Chitosan Adsorption Water treatment Contaminants |
title_short |
Advanced technologies in water treatment: chitosan and its modifications as effective agents in the adsorption of contaminants |
title_full |
Advanced technologies in water treatment: chitosan and its modifications as effective agents in the adsorption of contaminants |
title_fullStr |
Advanced technologies in water treatment: chitosan and its modifications as effective agents in the adsorption of contaminants |
title_full_unstemmed |
Advanced technologies in water treatment: chitosan and its modifications as effective agents in the adsorption of contaminants |
title_sort |
Advanced technologies in water treatment: chitosan and its modifications as effective agents in the adsorption of contaminants |
dc.creator.fl_str_mv |
Oliveira Gonçalves, Janaína Martins Strieder, Monique Silva Oliveira, Luis Felipe dos Reis, Glaydson Simões Dotto, Guilherme Luiz |
dc.contributor.author.none.fl_str_mv |
Oliveira Gonçalves, Janaína Martins Strieder, Monique Silva Oliveira, Luis Felipe dos Reis, Glaydson Simões Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Chitosan Adsorption Water treatment Contaminants |
topic |
Chitosan Adsorption Water treatment Contaminants |
description |
Chitosan, derived from the abundant biopolymer chitin, has emerged as a promising option for water treatment due to its intrinsic bioavailability. This review emphasizes the notable characteristics of chitosan, which allow for various modifications, expanding its applications. The polymer's effectiveness in adsorbing contaminants, particularly in advanced water treatment technologies, is highlighted. The review underscores the potential of chitosan-based hybrid materials, including nanocomposites, hydrogels, membranes, films, sponges, nanoparticles, microspheres, and flakes, as innovative alternatives to traditional chemical-based adsorbents. The advantages of using these materials in wastewater treatment, especially in removing heavy metals, dyes, and emerging compounds, are explored. The study delves into the mechanisms involved in wastewater treatment with chitosan, emphasizing the interactions between the polymer and various contaminants. Additionally, the application of chitosan as a contaminant removal agent in a post-pandemic context is addressed, considering the challenges related to waste management and environmental preservation. The analysis highlights the potential contribution of chitosan in mitigating environmental impacts post-pandemic, offering practical solutions for treating contaminated effluents and promoting sustainability. The study addresses current obstacles and prospects for chitosan-based wastewater treatment, emphasizing its promising role in sustainable water management. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-09-12T19:13:10Z |
dc.date.available.none.fl_str_mv |
2024-09-12T19:13:10Z 2025-06 |
dc.date.issued.none.fl_str_mv |
2024-06 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Janaína Oliveira Gonçalves, Monique Martins Strieder, Luis Felipe Oliveira Silva, Glaydson Simões dos Reis, Guilherme Luiz Dotto, Advanced technologies in water treatment: Chitosan and its modifications as effective agents in the adsorption of contaminants, International Journal of Biological Macromolecules, Volume 270, Part 1, 2024, 132307, ISSN 0141-8130, https://doi.org/10.1016/j.ijbiomac.2024.132307. |
dc.identifier.issn.spa.fl_str_mv |
0141-8130 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13310 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.ijbiomac.2024.132307 |
dc.identifier.eissn.spa.fl_str_mv |
1879-0003 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Janaína Oliveira Gonçalves, Monique Martins Strieder, Luis Felipe Oliveira Silva, Glaydson Simões dos Reis, Guilherme Luiz Dotto, Advanced technologies in water treatment: Chitosan and its modifications as effective agents in the adsorption of contaminants, International Journal of Biological Macromolecules, Volume 270, Part 1, 2024, 132307, ISSN 0141-8130, https://doi.org/10.1016/j.ijbiomac.2024.132307. 0141-8130 10.1016/j.ijbiomac.2024.132307 1879-0003 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13310 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
International Journal of Biological Macromolecules |
dc.relation.references.spa.fl_str_mv |
[1] X. Feng, R. Long, L. Wang, C. Liu, Z. Bai, X. Liu, A review on heavy metal ions adsorption from water by layered double hydroxide and its composites, Sep. Purif. Technol. 284 (2022) 120099, https://doi.org/10.1016/j. seppur.2021.120099. [2] R. Kumar, M.A. Barakat, B.A. Al-Mur, F.A. Alseroury, J.O. Eniola, Photocatalytic degradation of cefoxitin sodium antibiotic using novel BN/CdAl2O4 composite, J. Clean. Prod. 246 (2020) 119076, https://doi.org/10.1016/j. jclepro.2019.119076. [3] D. Papagiannaki, M.H. Belay, N.P.F. Gonçalves, E. Robotti, A. Bianco-Prevot, R. Binetti, P. Calza, From monitoring to treatment, how to improve water quality: the pharmaceuticals case, Chem. Eng. J. Adv. 10 (2022) 100245, https://doi.org/ 10.1016/j.ceja.2022.100245. [4] J.S. Algethami, M.A.M. Alhamami, A.A. Alqadami, S. Melhi, A.F. Seliem, Magnetic hydrochar grafted-chitosan for enhanced efficient adsorption of malachite green dye from aqueous solutions: modeling, adsorption behavior, and mechanism analysis, Int. J. Biol. Macromol. 254 (2024) 127767, https://doi.org/ 10.1016/j.ijbiomac.2023.127767. [5] A.H. Khan, H.A. Aziz, N.A. Khan, A. Dhingra, S. Ahmed, M. Naushad, Effect of seasonal variation on the occurrences of high-risk pharmaceutical in drain-laden surface water: a risk analysis of Yamuna River, Sci. Total Environ. 794 (2021) 148484, https://doi.org/10.1016/j.scitotenv.2021.148484. [6] A.K. Thakur, R. Singh, R. Teja Pullela, V. Pundir, Green adsorbents for the removal of heavy metals from wastewater: a review, Materials Today: Proceedings 57 (2022) 1468–1472, https://doi.org/10.1016/j. matpr.2021.11.373. [7] J.O. Gonçalves, K.A. da Silva, E.C. Rios, M.M. Crispim, G.L. Dotto, L.A. de Almeida Pinto, Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems, Int. J. Biol. Macromol. 142 (2020) 85–93, https://doi.org/10.1016/j. ijbiomac.2019.09.074. [8] S. Kim, S.-N. Nam, A. Jang, M. Jang, C.M. Park, A. Son, N. Her, J. Heo, Y. Yoon, Review of adsorption–membrane hybrid systems for water and wastewater treatment, Chemosphere 286 (2022) 131916, https://doi.org/10.1016/j. chemosphere.2021.131916. [9] S. Sithole, B. Mamba, R. Krause, S. Mapolie, Cyclodextrin dendrimers containing nanocatalysts for the removal of natural organic matter (nom) and other micropollutants from water: a short review, Water Inst SA (2014) 1–9. [10] T. Teymoorian, T. Teymourian, E. Kowsari, S. Ramakrishna, Direct and indirect effects of SARS-CoV-2 on wastewater treatment, J. Water Process Eng. 42 (2021) 102193, https://doi.org/10.1016/j.jwpe.2021.102193. [11] H. Liu, Y. Mao, Graphene oxide-based nanomaterials for uranium adsorptive uptake, ES Materials & Manufacturing 13 (2021) doi:3-22.10.30919/esmm5f453. [12] K. Mohan, D. Karthick Rajan, J. Rajarajeswaran, D. Divya, A. Ramu Ganesan, Recent trends on chitosan based hybrid materials for wastewater treatment: a review, Curr. Opin Environ. Sci. Health 33 (2023) 100473, https://doi.org/ 10.1016/j.coesh.2023.100473. [13] M. Stachowiak, M. Cegłowski, J. Kurczewska, Hybrid chitosan/molecularly imprinted polymer hydrogel beads doped with iron for selective ibuprofen adsorption, Int. J. Biol. Macromol. 251 (2023) 126356, https://doi.org/10.1016/ j.ijbiomac.2023.126356. [14] K. Valizadeh, A. Bateni, N. Sojoodi, R. Rafiei, A.H. Behroozi, A. Maleki, Preparation and characterization of chitosan-curdlan composite magnetized by zinc ferrite for efficient adsorption of tetracycline antibiotics in water, Int. J. Biol. Macromol. 235 (2023) 123826, https://doi.org/10.1016/j. ijbiomac.2023.123826. [15] L. Zhang, X. Li, S. Chen, J. Guan, Y. Guo, W. Yu, 3D chitosan/GO/ZnO hydrogel with enhanced photocorrosion-resistance and adsorption for efficient removal of typical water-soluble pollutants, Catal. Commun. 176 (2023) 106627, https:// doi.org/10.1016/j.catcom.2023.106627. [16] J. Gubitosa, V. Rizzi, P. Fini, S. Nuzzo, P. Cosma, The adsorption efficiency of regenerable chitosan-TiO2 composite films in removing 2,4-Dinitrophenol from water, Int. J. Mol. Sci. (2023), https://doi.org/10.3390/ijms24108552. [17] V. Rizzi, D. Lacalamita, J. Gubitosa, P. Fini, A. Petrella, R. Romita, A. Agostiano, J.A. Gabaldon, ´ M.I. Fortea Gorbe, T. Gomez-Morte, ´ P. Cosma, Removal of tetracycline from polluted water by chitosan-olive pomace adsorbing films, Sci. Total Environ. 693 (2019) 133620, https://doi.org/10.1016/j. scitotenv.2019.133620. [18] A. Ekanayake, A.U. Rajapaksha, C. Hewawasam, U. Anand, E. Bontempi, S. Kurwadkar, J.K. Biswas, M. Vithanage, Environmental challenges of COVID-19 pandemic: resilience and sustainability – a review, Environ. Res. 216 (2023) 114496, https://doi.org/10.1016/j.envres.2022.114496. [19] R.F. Weska, J.M. Moura, L.M. Batista, J. Rizzi, L.A.A. Pinto, Optimization of deacetylation in the production of chitosan from shrimp wastes: use of response surface methodology, J. Food Eng. 80 (3) (2007) 749–753, https://doi.org/ 10.1016/j.jfoodeng.2006.02.006. [20] V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal – a review, J. Environ. Manage. 90 (8) (2009) 2313–2342, https://doi.org/10.1016/j. jenvman.2008.11.017. [21] E. Guibal, Interactions of metal ions with chitosan-based sorbents: a review, Sep. Purif. Technol. 38 (1) (2004) 43–74, https://doi.org/10.1016/j. seppur.2003.10.004. [22] U. Habiba, T.A. Siddique, S. Talebian, J.J.L. Lee, A. Salleh, B.C. Ang, A.M. Afifi, Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe(III) and Cr(VI) ions, Carbohydr. Polym. 177 (2017) 32–39, https://doi.org/10.1016/j.carbpol.2017.08.115. [23] I. Aranaz, A.R. Alcantara, ´ M.C. Civera, C. Arias, B. Elorza, A. Heras Caballero, N. Acosta, Chitosan: an overview of its properties and applications, Polymers (2021), https://doi.org/10.3390/polym13193256. [24] A. Zakmout, F. Sadi, C.A.M. Portugal, J.G. Crespo, S. Velizarov, Tannery effluent treatment by nanofiltration, reverse osmosis and chitosan modified membranes, Membranes (2020), https://doi.org/10.3390/membranes10120378. [25] Y. Zhang, T. Bian, D. Xia, D. Wang, Y. Zhang, X. Zheng, Z. Li, Optimum selective separation of Cu (ii) using 3D ordered macroporous chitosan films with different pore sizes, RSC Adv. 9 (23) (2019) 13065–13076, https://doi.org/10.1039/ C9RA00773C. [26] N. Wang, Z. Xu, W. Xu, J. Xu, Y. Chen, M. Zhang, Comparison of coagulation and magnetic chitosan nanoparticle adsorption on the removals of organic compound and coexisting humic acid: a case study with salicylic acid, Chem. Eng. J. 347 (2018) 514–524, https://doi.org/10.1016/j.cej.2018.04.131. [27] C. Ding, M. Xue, Y. Zhang, J. Su, H. Wang, Novel chitosan/GO@Fe3O4 porous microspheres with magnetic separation function for the removal of Congo red from aqueous solutions, J. Taiwan Inst. Chem. Eng. 149 (2023) 105008, https:// doi.org/10.1016/j.jtice.2023.105008. [28] R.A. Solano, L.D. De Leon, ´ G. De Avila, ´ A.P. Herrera, Polycyclic aromatic hydrocarbons (PAHs) adsorption from aqueous solution using chitosan beads modified with thiourea, TiO2 and Fe3O4 nanoparticles, Environ. Technol. Innov. 21 (2021) 101378, https://doi.org/10.1016/j.eti.2021.101378. [29] M. Verma, A. Kumar, I. Lee, V. Kumar, J.-H. Park, H. Kim, Simultaneous capturing of mixed contaminants from wastewater using novel one-pot chitosan functionalized with EDTA and graphene oxide adsorbent, Environ. Pollut. 304 (2022) 119130, https://doi.org/10.1016/j.envpol.2022.119130. [30] T. Suksompong, S. Thongmee, W. Sudprasert, Efficacy of a graphene oxide/ chitosan sponge for removal of radioactive iodine-131 from aqueous solutions, Life (2021), https://doi.org/10.3390/life11070721. [31] L. Pietrelli, S. Ferro, A.P. Reverberi, M. Vocciante, Removal and recovery of heavy metals from tannery sludge subjected to plasma pyro-gasification process, J. Clean. Prod. 273 (2020) 123166, https://doi.org/10.1016/j. jclepro.2020.123166. [32] J. Kumirska, M.X. Weinhold, J. Thoming, ¨ P. Stepnowski, Biomedical activity of chitin/chitosan based materials—influence of physicochemical properties apart from molecular weight and degree of N-acetylation, Polymers (2011) 1875–1901, https://doi.org/10.3390/polym3041875. [33] A. Harugade, A.P. Sherje, A. Pethe, Chitosan: a review on properties, biological activities and recent progress in biomedical applications, React. Funct. Polym. 191 (2023) 105634, https://doi.org/10.1016/j.reactfunctpolym.2023.105634. [34] M.S. Sivakami, T. Gomathi, J. Venkatesan, H.-S. Jeong, S.-K. Kim, P.N. Sudha, Preparation and characterization of nano chitosan for treatment wastewaters, Int. J. Biol. Macromol. 57 (2013) 204–212, https://doi.org/10.1016/j. ijbiomac.2013.03.005. [35] G. Crini, P.-M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci. 33 (4) (2008) 399–447, https:// doi.org/10.1016/j.progpolymsci.2007.11.001. [36] Z.-F. Liu, G.-M. Zeng, H. Zhong, X.-Z. Yuan, L.-L. Jiang, H.-Y. Fu, X.-L. Ma, J.- C. Zhang, Effect of saponins on cell surface properties of Penicillium simplicissimum: performance on adsorption of cadmium(II), Colloids Surf. B Biointerfaces 86 (2) (2011) 364–369, https://doi.org/10.1016/j. colsurfb.2011.04.021. [37] M. Vakili, M. Rafatullah, B. Salamatinia, A.Z. Abdullah, M.H. Ibrahim, K.B. Tan, Z. Gholami, P. Amouzgar, Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review, Carbohydr. Polym. 113 (2014) 115–130, https://doi.org/10.1016/j.carbpol.2014.07.007. [38] K. Azlan, W.N. Wan Saime, L. Lai Ken, Chitosan and chemically modified chitosan beads for acid dyes sorption, J. Environ. Sci. 21 (3) (2009) 296–302, https://doi. org/10.1016/S1001-0742(08)62267-6. [39] T. Kuroiwa, H. Takada, A. Shogen, K. Saito, I. Kobayashi, K. Uemura, A. Kanazawa, Cross-linkable chitosan-based hydrogel microbeads with pHresponsive adsorption properties for organic dyes prepared using size-tunable microchannel emulsification technique, Colloids Surf. A Physicochem. Eng. Asp. 514 (2017) 69–78, https://doi.org/10.1016/j.colsurfa.2016.11.046. [40] J.O. Gonçalves, K.A. da Silva, E.C. Rios, M.M. Crispim, G.L. Dotto, L.A. de Almeida Pinto, Single and binary adsorption of food dyes on chitosan/activated carbon hydrogels, Chem. Eng. Technol. 42 (2) (2019) 454–464, https://doi.org/ 10.1002/ceat.201800367. [41] M.F. Hamza, D.M. Hamad, N.A. Hamad, A.A.H. Abdel-Rahman, A. Fouda, Y. Wei, E. Guibal, A.-A.S. El-Etrawy, Functionalization of magnetic chitosan microparticles for high-performance removal of chromate from aqueous solutions and tannery effluent, Chem. Eng. J. 428 (2022) 131775, https://doi.org/ 10.1016/j.cej.2021.131775. [42] P. Sun, W. Zhang, B. Zou, L. Zhou, Z. Ye, Q. Zhao, Preparation of EDTA-modified magnetic attapulgite chitosan gel bead adsorbent for the removal of Cu(II), Pb(II), and Ni(II), Int. J. Biol. Macromol. 182 (2021) 1138–1149, https://doi.org/ 10.1016/j.ijbiomac.2021.04.132. [43] X. Qin, L. Bai, Y. Tan, L. Li, F. Song, Y. Wang, β-Cyclodextrin-crosslinked polymeric adsorbent for simultaneous removal and stepwise recovery of organic dyes and heavy metal ions: fabrication, performance and mechanisms, Chem. Eng. J. 372 (2019) 1007–1018, https://doi.org/10.1016/j.cej.2019.05.006. [44] F. Zhao, E. Repo, D. Yin, L. Chen, S. Kalliola, J. Tang, E. Iakovleva, K.C. Tam, M. Sillanp¨ aa, ¨ One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants, Sci. Rep. 7 (1) (2017) 15811, https://doi.org/10.1038/s41598-017-16222-7. [45] T. Song, W. Luo, J. Mu, Y. Cai, J. Wei, H. Li, Preparation of polyacrylic-acid/ palygorskite composite particles via inverse-suspension polymerization for efficient separation of Ce3+ from aqueous solution, J. Colloid Interface Sci. 535 (2019) 371–379, https://doi.org/10.1016/j.jcis.2018.09.103. [46] D. Hu, Z. Lian, H. Xian, R. Jiang, N. Wang, Y. Weng, X. Peng, S. Wang, X. K. Ouyang, Adsorption of Pb(II) from aqueous solution by polyacrylic acid grafted magnetic chitosan nanocomposite, Int. J. Biol. Macromol. 154 (2020) 1537–1547, https://doi.org/10.1016/j.ijbiomac.2019.11.038. [47] X. Wan, Z. Rong, K. Zhu, Y. Wu, Chitosan-based dual network composite hydrogel for efficient adsorption of methylene blue dye, Int. J. Biol. Macromol. 222 (2022) 725–735, https://doi.org/10.1016/j.ijbiomac.2022.09.213. [48] P.B. Vilela, C.A. Matias, A. Dalalibera, V.A. Becegato, A.T. Paulino, Polyacrylic acid-based and chitosan-based hydrogels for adsorption of cadmium: equilibrium isotherm, kinetic and thermodynamic studies, J. Environ. Chem. Eng. 7 (5) (2019) 103327, https://doi.org/10.1016/j.jece.2019.103327. [49] X. Lin, Z. Liu, R. Chen, Y. Hou, R. Lu, S. Li, S. Ren, Z. Gao, A multifunctional polyacrylamide/chitosan hydrogel for dyes adsorption and metal ions detection in water, Int. J. Biol. Macromol. 246 (2023) 125613, https://doi.org/10.1016/j. ijbiomac.2023.125613. [50] W. Song, J. Xu, L. Gao, Q. Zhang, J. Tong, L. Ren, Preparation of freeze-dried porous chitosan microspheres for the removal of hexavalent chromium, Appl. Sci. (2021), https://doi.org/10.3390/app11094217. [51] F.-N. Allouche, E. Guibal, N. Mameri, Preparation of a new chitosan-based material and its application for mercury sorption, Colloids Surf. A Physicochem. Eng. Asp. 446 (2014) 224–232, https://doi.org/10.1016/j.colsurfa.2014.01.025. [52] M. Kloster, M.A. Mosiewicki, N.E. Marcovich, Removal of dyes from aqueous media using environmentally friendly aerogels based on chitosan, Colloids Surf. A Physicochem. Eng. Asp. 687 (2024) 133597, https://doi.org/10.1016/j. colsurfa.2024.133597. [53] V. Rizzi, J. Gubitosa, P. Fini, R. Romita, S. Nuzzo, J.A. Gabaldon, ´ M.I.F. Gorbe, T. Gomez-Morte, ´ P. Cosma, Chitosan film as recyclable adsorbent membrane to remove/recover hazardous pharmaceutical pollutants from water: the case of the emerging pollutant furosemide, J. Environ. Sci. Health A 56 (2) (2020) 145–156, https://doi.org/10.1080/10934529.2020.1853985. [54] R. Rahmi, L. Lelifajri, J. Julinawati, S. Shabrina, Preparation of chitosan composite film reinforced with cellulose isolated from oil palm empty fruit bunch and application in cadmium ions removal from aqueous solutions, 2017, https:// doi.org/10.1016/j.carbpol.2017.04.084. [55] J. Liu, F. Song, R. Chen, G. Deng, Y. Chao, Z. Yang, H. Wu, M. Bai, P. Zhang, Y. Hu, Effect of cellulose nanocrystal-stabilized cinnamon essential oil Pickering emulsions on structure and properties of chitosan composite films, Carbohydr. Polym. 275 (2022) 118704, https://doi.org/10.1016/j.carbpol.2021.118704. [56] G.A. Kloster, M. Valiente, N.E. Marcovich, M.A. Mosiewicki, Adsorption of arsenic onto films based on chitosan and chitosan/nano-iron oxide, Int. J. Biol. Macromol. 165 (2020) 1286–1295, https://doi.org/10.1016/j. ijbiomac.2020.09.244. [57] L. Sellaoui, R. Gerhardt, F. Dhaoudi, S. Chebaane, L. Manai, A. Azhary, H. Saedoon, B.S. de Farias, G.L. Dotto, T.R.S.A. Cadaval, L.A. de Almeida Pinto, A. Bonilla-Petriciolet, Novel films prepared from spirulina and chitosan for textile pollutant removal: experiments and theoretical study of adsorption equilibrium via an advanced theoretical approach, Sep. Purif. Technol. 329 (2024) 125158, https://doi.org/10.1016/j.seppur.2023.125158. [58] M.R. Lasheen, I.Y. El-Sherif, M.E. Tawfik, S.T. El-Wakeel, M.F. El-Shahat, Preparation and adsorption properties of nano magnetite chitosan films for heavy metal ions from aqueous solution, Mater. Res. Bull. 80 (2016) 344–350, https:// doi.org/10.1016/j.materresbull.2016.04.011. [59] Q. Manzoor, M.A. Farrukh, A. Sajid, Optimization of lead (II) and chromium (VI) adsorption using graphene oxide/ZnO/chitosan nanocomposite by response surface methodology, Appl. Surf. Sci. 655 (2024) 159544, https://doi.org/ 10.1016/j.apsusc.2024.159544. [60] R. Nithya, T. Gomathi, P.N. Sudha, J. Venkatesan, S. Anil, S.-K. Kim, Removal of Cr(VI) from aqueous solution using chitosan-g-poly(butyl acrylate)/silica gel nanocomposite, Int. J. Biol. Macromol. 87 (2016) 545–554, https://doi.org/ 10.1016/j.ijbiomac.2016.02.076. [61] R. Ahmad, I. Hasan, A. Mittal, Adsorption of Cr (VI) and Cd (II) on chitosan grafted polyaniline-OMMT nanocomposite: isotherms, kinetics and thermodynamics studies, Desalin. Water Treat 58 (2017) 144–153, https://doi. org/10.5004/dwt.2017.0414. [62] D.C. da Silva Alves, B. Healy, L.A.D.A. Pinto, T.R.S.A. Cadaval, C.B. Breslin, Recent developments in chitosan-based adsorbents for the removal of pollutants from aqueous environments, Molecules (2021), https://doi.org/10.3390/ molecules26030594. [63] I.V. Pylypchuk, D. Kołodynska, ´ P.P. Gorbyk, Gd(III) adsorption on the DTPAfunctionalized chitosan/magnetite nanocomposites, Sep. Sci. Technol. 53 (7) (2018) 1006–1016, https://doi.org/10.1080/01496395.2017.1330830. [64] Y. Cheng, A. Li, W. Shi, L. Zhao, Magnetic chitosan-functionalized waste carton biochar composites for efficient adsorption of anionic and cationic dyes, Chem. Eng. J. 481 (2024) 148535, https://doi.org/10.1016/j.cej.2024.148535. [65] L. Weerasundara, Y.S. Ok, P. Kumarathilaka, A. Marchuk, J. Bundschuh, Assessment and optimization of As(V) adsorption on hydrogel composite integrating chitosan-polyvinyl alcohol and Fe3O4 nanoparticles and evaluation of their regeneration and reusable capabilities in aqueous media, Sci. Total Environ. 855 (2023) 158877, https://doi.org/10.1016/j.scitotenv.2022.158877. [66] E. Worch, Adsorption Technology in Water Treatment, de Gruyter Berlin 2012, 2012. [67] A.S. Foust, L. Wenzel, C. Clump, L. Maus, L. Andersen, Princípios das Operaçoes ˜ Unit´ arias, 2ª Ediçao, ˜ LTC-Livros T´ecnicos e Científicos, Editora AS, RJ, 1982. [68] N.N. Rudi, M.S. Muhamad, L. Te Chuan, J. Alipal, S. Omar, N. Hamidon, N.H. A. Hamid, N.M. Sunar, R. Ali, H. Harun, Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents, Heliyon 6 (9) (2020), https://doi.org/10.1016/j.heliyon.2020.e05049. [69] L.W. Lai, L.P. Teh, S.N. Timmiati, N.H.N. Kamarudin, H.D. Setiabudi, A sustainable solution for diclofenac adsorption: chitosan-modified fibrous silica KCC-1 adsorbent, J. Environ. Chem. Eng. 11 (6) (2023) 111295, https://doi.org/ 10.1016/j.jece.2023.111295. [70] M. Vakili, M. Rafatullah, M.H. Ibrahim, A.Z. Abdullah, B. Salamatinia, Z. Gholami, Chitosan hydrogel beads impregnated with hexadecylamine for improved reactive blue 4 adsorption, Carbohydr. Polym. 137 (2016) 139–146, https://doi.org/10.1016/j.carbpol.2015.09.017. [71] X.-Q. Liu, X.-X. Zhao, Y. Liu, T.-A. Zhang, Review on preparation and adsorption properties of chitosan and chitosan composites, Polym. Bull. 79 (4) (2022) 2633–2665, https://doi.org/10.1007/s00289-021-03626-9. [72] C. Shen, Y. Shen, Y. Wen, H. Wang, W. Liu, Fast and highly efficient removal of dyes under alkaline conditions using magnetic chitosan-Fe(III) hydrogel, Water Res. 45 (16) (2011) 5200–5210, https://doi.org/10.1016/j.watres.2011.07.018. [73] K.Z. Elwakeel, Removal of Reactive Black 5 from aqueous solutions using magnetic chitosan resins, J. Hazard. Mater. 167 (1) (2009) 383–392, https://doi. org/10.1016/j.jhazmat.2009.01.051. [74] C.S.D. Rodrigues, L.M. Madeira, R.A.R. Boaventura, Synthetic textile dyeing wastewater treatment by integration of advanced oxidation and biological processes – performance analysis with costs reduction, J. Environ. Chem. Eng. 2 (2) (2014) 1027–1039, https://doi.org/10.1016/j.jece.2014.03.019. [75] A.-H. Chen, S.-M. Chen, Biosorption of azo dyes from aqueous solution by glutaraldehyde-crosslinked chitosans, J. Hazard. Mater. 172 (2) (2009) 1111–1121, https://doi.org/10.1016/j.jhazmat.2009.07.104. [76] J.O. Gonçalves, D.A. Duarte, G.L. Dotto, L.A.A. Pinto, Use of chitosan with different deacetylation degrees for the adsorption of food dyes in a binary system, CLEAN–Soil, Air, Water 42 (6) (2014) 767–774, https://doi.org/10.1002/ clen.201200665. [77] G.L. Dotto, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption, Chem. Eng. J. 214 (2013) 8–16, https://doi.org/10.1016/j.cej.2012.10.027. [78] J.S. Piccin, M.L.G. Vieira, J.O. Gonçalves, G.L. Dotto, L.A.A. Pinto, Adsorption of FD&C Red No. 40 by chitosan: isotherms analysis, J. Food Eng. 95 (1) (2009) 16–20, https://doi.org/10.1016/j.jfoodeng.2009.03.017. [79] S. Chatterjee, D.S. Lee, M.W. Lee, S.H. Woo, Enhanced adsorption of Congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide, Bioresour. Technol. 100 (11) (2009) 2803–2809, https://doi.org/10.1016/j.biortech.2008.12.035. [80] X.-Y. Huang, X.-Y. Mao, H.-T. Bu, X.-Y. Yu, G.-B. Jiang, M.-H. Zeng, Chemical modification of chitosan by tetraethylenepentamine and adsorption study for anionic dye removal, Carbohydr. Res. 346 (10) (2011) 1232–1240, https://doi. org/10.1016/j.carres.2011.04.012. [81] J.S. Piccin, G.L. Dotto, M.L.G. Vieira, L.A.A. Pinto, Kinetics and mechanism of the food dye FD&C Red 40 adsorption onto chitosan, J. Chem. Eng. Data 56 (10) (2011) 3759–3765, https://doi.org/10.1021/je200388s. [82] A.R. Nesic, S.J. Velickovic, D.G. Antonovic, Characterization of chitosan/ montmorillonite membranes as adsorbents for Bezactiv Orange V-3R dye, J. Hazard. Mater. 209-210 (2012) 256–263, https://doi.org/10.1016/j. jhazmat.2012.01.020. [83] L. Zheng, C. Wang, Y. Shu, X. Yan, L. Li, Utilization of diatomite/chitosan–Fe (III) composite for the removal of anionic azo dyes from wastewater: equilibrium, kinetics and thermodynamics, Colloids Surf. A Physicochem. Eng. Asp. 468 (2015) 129–139, https://doi.org/10.1016/j.colsurfa.2014.12.015. [84] B. Tanhaei, A. Ayati, E. Iakovleva, M. Sillanp¨ a¨ a, Efficient carbon interlayed magnetic chitosan adsorbent for anionic dye removal: synthesis, characterization and adsorption study, Int. J. Biol. Macromol. 164 (2020) 3621–3631, https://doi. org/10.1016/j.ijbiomac.2020.08.207. [85] F.-C. Wu, R.-L. Tseng, R.-S. Juang, Comparative adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes, J. Hazard. Mater. 73 (1) (2000) 63–75, https://doi.org/10.1016/S0304-3894(99)00168-5. [86] B. Chen, H. Zhao, S. Chen, F. Long, B. Huang, B. Yang, X. Pan, A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater, Chem. Eng. J. 356 (2019) 69–80, https://doi.org/10.1016/j.cej.2018.08.222. [87] C.A. Akinremi, A.I. Adeogun, M. Poupin, K. Huddersman, Chitosan–Terephthalic Acid–Magnetic Composite Beads for Effective Removal of the Acid Blue Dye from Aqueous Solutions: Kinetics, Isotherm, and Statistical Modeling, ACS Omega 6 (45) (2021) 30499–30514, https://doi.org/10.1021/acsomega.1c03964. [88] H.Y. Zhu, Y.Q. Fu, R. Jiang, J. Yao, L. Xiao, G.M. Zeng, Novel magnetic chitosan/ poly(vinyl alcohol) hydrogel beads: preparation, characterization and application for adsorption of dye from aqueous solution, Bioresour. Technol. 105 (2012) 24–30, https://doi.org/10.1016/j.biortech.2011.11.057. [89] WHO, WHO director-general’s opening remarks at the media briefing on COVID19. https://www.who.int/dg/speeches/detail/who-director-genera l-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020, 2020. [90] L.L. Albornoz, V.D. Soroka, M.C.A. Silva, Photo-mediated and advanced oxidative processes applied for the treatment of effluents with drugs used for the treatment of early COVID-19: review, Environmental Advances 6 (2021) 100140, https:// doi.org/10.1016/j.envadv.2021.100140. [91] Y. Pico, ´ D. Barcelo, ´ Microplastics and other emerging contaminants in the environment after COVID-19 pandemic: the need of global reconnaissance studies, Curr. Opin. Environ. Sci. Health 33 (2023) 100468, https://doi.org/ 10.1016/j.coesh.2023.100468. [92] M. Nassef, S.G. Kim, M. Seki, I.J. Kang, T. Hano, Y. Shimasaki, Y. Oshima, In ovo nanoinjection of triclosan, diclofenac and carbamazepine affects embryonic development of medaka fish (Oryzias latipes), Chemosphere 79 (9) (2010) 966–973, https://doi.org/10.1016/j.chemosphere.2010.02.002. [93] M.K. Shahid, A. Kashif, A. Fuwad, Y. Choi, Current advances in treatment technologies for removal of emerging contaminants from water – a critical review, Coord. Chem. Rev. 442 (2021) 213993, https://doi.org/10.1016/j. ccr.2021.213993. [94] H. Zheng, Q. Zhang, G. Liu, X. Luo, F. Li, Y. Zhang, Z. Wang, Characteristics and mechanisms of chlorpyrifos and chlorpyrifos-methyl adsorption onto biochars: influence of deashing and low molecular weight organic acid (LMWOA) aging and co-existence, Sci. Total Environ. 657 (2019) 953–962, https://doi.org/10.1016/j. scitotenv.2018.12.018. [95] Z. Wei, X. Ma, Y. Zhang, Y. Guo, W. Wang, Z.-Y. Jiang, High-efficiency adsorption of phenanthrene by Fe3O4-SiO2-dimethoxydiphenylsilane nanocomposite: experimental and theoretical study, J. Hazard. Mater. 422 (2022) 126948, https://doi.org/10.1016/j.jhazmat.2021.126948. [96] Z. Li, J. Li, Z. Guo, L.C. Campos, Investigation of metaldehyde removal by powdered activated carbon from different water samples, Environ. Sci.: Water Res. Technol. 6 (5) (2020) 1432–1444, https://doi.org/10.1039/c9ew00962k. [97] Z. Li, Y. Yang, U. J´ auregui-Haza, Z. Guo, L.C. Campos, The impact of humic acid on metaldehyde adsorption onto powdered activated carbon in aqueous solution, RSC Adv. 9 (1) (2019) 11–22, https://doi.org/10.1039/C8RA06802J. [98] S. Xiong, Y. Deng, R. Tang, C. Zhang, J. Zheng, Y. Zhang, L. Su, L. Yang, C. Liao, D. Gong, Factors study for the removal of epoxiconazole in water by common biochars, Biochem. Eng. J. 161 (2020) 107690, https://doi.org/10.1016/j. bej.2020.107690. [99] M. Vakili, A. Mojiri, T. Kindaichi, G. Cagnetta, J. Yuan, B. Wang, A.S. Giwa, Crosslinked chitosan/zeolite as a fixed-bed column for organic micropollutants removal from aqueous solution, optimization with RSM and artificial neural network, J. Environ. Manage. 250 (2019) 109434, https://doi.org/10.1016/j. jenvman.2019.109434. [100] D. Anjali Devi, B. Smitha, S. Sridhar, T.M. Aminabhavi, Dehydration of 1,4- dioxane through blend membranes of poly(vinyl alcohol) and chitosan by pervaporation, J. Membr. Sci. 280 (1) (2006) 138–147, https://doi.org/10.1016/ j.memsci.2006.01.006. [101] K.A. Alkhamis, M.S. Salem, M.S. Khanfar, Determination of the mechanism of uptake of organic vapors by Chitosan, Pharm. Dev. T [102] S. Mirizadeh, C. Solisio, A. Converti, A.A. Casazza, Efficient removal of tetracycline, ciprofloxacin, and amoxicillin by novel magnetic chitosan/ microalgae biocomposites, Sep. Purif. Technol. 329 (2024) 125115, https://doi. org/10.1016/j.seppur.2023.125115. [103] K. Sharma, M. Kaur, P. Tewatia, V. Kumar, C. Paulik, H. Yoshitake, M. Sharma, G. Rattan, S. Singhal, A. Kaushik, Ultra-sensitive detection and scavenging of arsenic ions and ciprofloxacin using 3D multipurpose hemicellulose based aerogel: adsorption mechanism and RSM optimization, Bioresour. Technol. 389 (2023) 129825, https://doi.org/10.1016/j.biortech.2023.129825. [104] K.N. Mahadevaprasad, D.S. Aditya, K.N. Santhosh, G. D’Souza, A. Kumar, S. K. Nataraj, Design and preparation of zirconium-induced bio-foam for the removal of fluoride, chromate, and other emerging pollutants: a scale-up approach, Chem. Eng. J. 475 (2023) 146112, https://doi.org/10.1016/j. cej.2023.146112. [105] A. Bukhari, I. Ijaz, E. Gilani, A. Nazir, H. Zain, S. Muhammad, A. Bukhari, A. Shaheen, S. Hussain, Simultaneous removal of Norfloxacin, ciprofloxacin, and copper from aqueous solution by chitosan and MXene functionalized graphene oxide ternary composite based on anion-synergistic interaction, Chem. Eng. J. 474 (2023) 145890, https://doi.org/10.1016/j.cej.2023.145890. [106] Q.M. Bui, T.Q. Vu, X.T. Vuong, V.D. Nguyen, L.T.N. Nguyen, H.T. Le, H.T. H. Nguyen, V.P. Nguyen, Removal of fluoroquinolone antibiotics by chitosan–magnetite from aqueous: single and binary adsorption, Processes (2023), https://doi.org/10.3390/pr11082396. [107] M. S¸ ahin, Y. Arslan, F. Tomul, Removal of naproxen and diclofenac using magnetic nanoparticles/nanocomposites, Res. Chem. Intermed. 48 (12) (2022) 5209–5226, https://doi.org/10.1007/s11164-022-04862-y. [108] A. Kumar, C. Patra, H.K. Rajendran, S. Narayanasamy, Activated carbon-chitosan based adsorbent for the efficient removal of the emerging contaminant diclofenac: synthesis, characterization and phytotoxicity studies, Chemosphere 307 (2022) 135806, https://doi.org/10.1016/j.chemosphere.2022.135806. [109] M. Sun, Q. Sun, C. Zhao, Y. Huang, J. Jiang, W. Ding, H. Zheng, Degradation of diclofenac sodium with low concentration from aqueous milieu through polydopamine-chitosan modified magnetic adsorbent-assisted photo-Fenton process, Sep. Purif. Technol. 289 (2022) 120771, https://doi.org/10.1016/j. seppur.2022.120771. [110] R. Wang, Y. Cui, F. Hu, W. Liu, Q. Du, Y. Zhang, J. Zha, T. Huang, M. Fizir, H. He, Selective recognition and enrichment of carbamazepine in biological samples by magnetic imprinted polymer based on reversible addition-fragmentation chain transfer polymerization, J. Chromatogr. A 1591 (2019) 62–70, https://doi.org/ 10.1016/j.chroma.2019.01.057. [111] K. Delhiraja, K. Vellingiri, D.W. Boukhvalov, L. Philip, Development of highly water stable graphene oxide-based composites for the removal of pharmaceuticals and personal care products, Ind. Eng. Chem. Res. 58 (8) (2019) 2899–2913, https://doi.org/10.1021/acs.iecr.8b02668. [112] B.R. Riegger, B. B¨ aurer, A. Mirzayeva, G.E.M. Tovar, M. Bach, A systematic approach of chitosan nanoparticle preparation via emulsion crosslinking as potential adsorbent in wastewater treatment, Carbohydr. Polym. 180 (2018) 46–54, https://doi.org/10.1016/j.carbpol.2017.10.002. [113] Y. Zhang, Z. Shen, C. Dai, X. Zhou, Removal of selected pharmaceuticals from aqueous solution using magnetic chitosan: sorption behavior and mechanism, Environ. Sci. Pollut. Res. 21 (22) (2014) 12780–12789, https://doi.org/10.1007/ s11356-014-3212-1. [114] Y.-L. Zhang, J. Zhang, C.-M. Dai, X.-F. Zhou, S.-G. Liu, Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosanFe3O4, Carbohydr. Polym. 97 (2) (2013) 809–816, https://doi.org/10.1016/j. carbpol.2013.05.072. [115] C. dos Santos Cardoso, L. Vitali, Chitosan versus chitosan-vanillin modified: an evaluation of the competitive adsorption of five emerging contaminants, Water Air Soil Pollut. 232 (5) (2021), https://doi.org/10.1007/s11270-021-05118-y. [116] Y. Gong, J. Su, M. Li, A. Zhu, G. Liu, P. Liu, Fabrication and adsorption optimization of novel magnetic core-shell chitosan/graphene oxide/ β-cyclodextrin composite materials for bisphenols in aqueous solutions, Materials (2020), https://doi.org/10.3390/ma13235408. [117] R. Kaur, D. Goyal, S. Agnihotri, Chitosan/PVA silver nanocomposite for butachlor removal: fabrication, characterization, adsorption mechanism and isotherms, Carbohydr. Polym. 262 (2021) 117906, https://doi.org/10.1016/j. carbpol.2021.117906. [118] W. Liu, T. Lin, X. Zhang, F. Jiang, X. Yan, H. Chen, Adsorption of perfluoroalkyl acids on granular activated carbon supported chitosan: role of nanobubbles, Chemosphere 309 (2022) 136733, https://doi.org/10.1016/j. chemosphere.2022.136733. [119] C. He, Y. Yang, Y.-J. Hou, T. Luan, J. Deng, Chitosan-coated fluoro-functionalized covalent organic framework as adsorbent for efficient removal of per- and polyfluoroalkyl substances from water, Sep. Purif. Technol. 294 (2022) 121195, https://doi.org/10.1016/j.seppur.2022.121195. [120] L. Long, X. Hu, J. Yan, Y. Zeng, J. Zhang, Y. Xue, Novel chitosan–ethylene glycol hydrogel for the removal of aqueous perfluorooctanoic acid, J. Environ. Sci. 84 (2019) 21–28, https://doi.org/10.1016/j.jes.2019.04.007. [121] X. Zhang, H. Niu, Y. Pan, Y. Shi, Y. Cai, Chitosan-coated octadecyl-functionalized magnetite nanoparticles: preparation and application in extraction of trace pollutants from environmental water samples, Anal. Chem. 82 (6) (2010) 2363–2371, https://doi.org/10.1021/ac902589t. [122] F.O. Ehiguese, M.d.C.C. Fernandez, P.A. Lara-Martín, M.L. Martín-Díaz, C.V. M. Araújo, Avoidance behaviour of the shrimp Palaemon varians regarding a contaminant gradient of galaxolide and tonalide in seawater, Chemosphere 232 (2019) 113–120, https://doi.org/10.1016/j.chemosphere.2019.05.196. [123] K.J. Godri Pollitt, J.-H. Kim, J. Peccia, M. Elimelech, Y. Zhang, G. Charkoftaki, B. Hodges, I. Zucker, H. Huang, N.C. Deziel, K. Murphy, M. Ishii, C.H. Johnson, A. Boissevain, E. O’Keefe, P.T. Anastas, D. Orlicky, D.C. Thompson, V. Vasiliou, 1,4-Dioxane as an emerging water contaminant: state of the science and evaluation of research needs, Sci. Total Environ. 690 (2019) 853–866, https:// doi.org/10.1016/j.scitotenv.2019.06.443. [124] L. Zhang, Y. Li, Y. Wang, S. Ma, J. Ou, Y. Shen, M. Ye, H. Uyama, Integration of covalent organic frameworks into hydrophilic membrane with hierarchical porous structure for fast adsorption of metal ions, J. Hazard. Mater. 407 (2021) 124390, https://doi.org/10.1016/j.jhazmat.2020.124390. [125] I. Kavianinia, P.G. Plieger, N.G. Kandile, D.R.K. Harding, New hydrogels based on symmetrical aromatic anhydrides: synthesis, characterization and metal ion adsorption evaluation, Carbohydr. Polym. 87 (1) (2012) 881–893, https://doi. org/10.1016/j.carbpol.2011.08.076. [126] A.C. Singer, J.D. Jarhult, ¨ R. Grabic, G.A. Khan, R.H. Lindberg, G. Fedorova, J. Fick, M.J. Bowes, B. Olsen, H. Soderstr ¨ om, ¨ Intra-and inter-pandemic variations of antiviral, antibiotics and decongestants in wastewater treatment plants and receiving rivers, PloS One 9 (9) (2014) e108621, https://doi.org/10.1371/ journal.pone.0108621. [127] A. ˆ Almeida, A.M.V.M. Soares, V.I. Esteves, R. Freitas, Occurrence of the antiepileptic carbamazepine in water and bivalves from marine environments: a review, Environ. Toxicol. Pharmacol. 86 (2021) 103661, https://doi.org/ 10.1016/j.etap.2021.103661. [128] N. Hadoudi, H. Amhamdi, M. Ahari, Sorption of bisphenol A from aqueous solutions using natural adsorbents: isotherm, kinetic and effect of temperature, E3S Web of Conferences (2021), https://doi.org/10.1051/e3sconf/ 202131407003. [129] P. Nasehi, M.S. Moghaddam, N. Rezaei-savadkouhi, M. Alizadeh, M.N. Yazdani, H. Agheli, Monitoring of Bisphenol A in water and soft drink products using electrochemical sensor amplified with TiO2-SWCNTs and ionic liquid, J. Food Meas. Charact. 16 (3) (2022) 2440–2445, https://doi.org/10.1007/s11694-022- 01321-5. [130] Z.U. Zango, K.S. Khoo, A. Garba, H.A. Kadir, F. Usman, M.U. Zango, W. Da Oh, J. W. Lim, A review on superior advanced oxidation and photocatalytic degradation techniques for perfluorooctanoic acid (PFOA) elimination from wastewater, Environ. Res. 221 (2023) 115326, https://doi.org/10.1016/j. envres.2023.115326. [131] D.J. Muensterman, L. Cahuas, I.A. Titaley, C. Schmokel, F.B. De la Cruz, M. A. Barlaz, C.C. Carignan, G.F. Peaslee, J.A. Field, Per- and polyfluoroalkyl substances (PFAS) in facemasks: potential source of human exposure to PFAS with implications for disposal to landfills, Environ. Sci. Technol. Lett. 9 (4) (2022) 320–326, https://doi.org/10.1021/acs.estlett.2c00019. |
dc.relation.citationendpage.spa.fl_str_mv |
15 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
270 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
15 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier B.V. |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S014181302403112X?pes=vor |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/365cf789-0f04-4e07-b8fa-89e0fe313c42/download https://repositorio.cuc.edu.co/bitstreams/78484419-2afd-47d5-8975-be1fdae96303/download https://repositorio.cuc.edu.co/bitstreams/2f71b891-0228-4b18-9c79-22e735fadf91/download https://repositorio.cuc.edu.co/bitstreams/19aa1edd-7c02-499a-bac2-026bf5aa233e/download |
bitstream.checksum.fl_str_mv |
c37045298dc40c12d52334d11504c270 2f9959eaf5b71fae44bbf9ec84150c7a 447d2d5816291e8234fa92431c3dc065 ea89ac23595e9f3f25beb4e6339ff616 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166886600212480 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfOliveira Gonçalves, JanaínaMartins Strieder, MoniqueSilva Oliveira, Luis Felipedos Reis, Glaydson SimõesDotto, Guilherme Luiz2024-09-12T19:13:10Z2025-062024-09-12T19:13:10Z2024-06Janaína Oliveira Gonçalves, Monique Martins Strieder, Luis Felipe Oliveira Silva, Glaydson Simões dos Reis, Guilherme Luiz Dotto, Advanced technologies in water treatment: Chitosan and its modifications as effective agents in the adsorption of contaminants, International Journal of Biological Macromolecules, Volume 270, Part 1, 2024, 132307, ISSN 0141-8130, https://doi.org/10.1016/j.ijbiomac.2024.132307.0141-8130https://hdl.handle.net/11323/1331010.1016/j.ijbiomac.2024.1323071879-0003Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Chitosan, derived from the abundant biopolymer chitin, has emerged as a promising option for water treatment due to its intrinsic bioavailability. This review emphasizes the notable characteristics of chitosan, which allow for various modifications, expanding its applications. The polymer's effectiveness in adsorbing contaminants, particularly in advanced water treatment technologies, is highlighted. The review underscores the potential of chitosan-based hybrid materials, including nanocomposites, hydrogels, membranes, films, sponges, nanoparticles, microspheres, and flakes, as innovative alternatives to traditional chemical-based adsorbents. The advantages of using these materials in wastewater treatment, especially in removing heavy metals, dyes, and emerging compounds, are explored. The study delves into the mechanisms involved in wastewater treatment with chitosan, emphasizing the interactions between the polymer and various contaminants. Additionally, the application of chitosan as a contaminant removal agent in a post-pandemic context is addressed, considering the challenges related to waste management and environmental preservation. The analysis highlights the potential contribution of chitosan in mitigating environmental impacts post-pandemic, offering practical solutions for treating contaminated effluents and promoting sustainability. The study addresses current obstacles and prospects for chitosan-based wastewater treatment, emphasizing its promising role in sustainable water management.15 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www.sciencedirect.com/science/article/pii/S014181302403112X?pes=vorAdvanced technologies in water treatment: chitosan and its modifications as effective agents in the adsorption of contaminantsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85International Journal of Biological Macromolecules[1] X. Feng, R. Long, L. Wang, C. Liu, Z. Bai, X. Liu, A review on heavy metal ions adsorption from water by layered double hydroxide and its composites, Sep. Purif. Technol. 284 (2022) 120099, https://doi.org/10.1016/j. seppur.2021.120099.[2] R. Kumar, M.A. Barakat, B.A. Al-Mur, F.A. Alseroury, J.O. Eniola, Photocatalytic degradation of cefoxitin sodium antibiotic using novel BN/CdAl2O4 composite, J. Clean. Prod. 246 (2020) 119076, https://doi.org/10.1016/j. jclepro.2019.119076.[3] D. Papagiannaki, M.H. Belay, N.P.F. Gonçalves, E. Robotti, A. Bianco-Prevot, R. Binetti, P. Calza, From monitoring to treatment, how to improve water quality: the pharmaceuticals case, Chem. Eng. J. Adv. 10 (2022) 100245, https://doi.org/ 10.1016/j.ceja.2022.100245.[4] J.S. Algethami, M.A.M. Alhamami, A.A. Alqadami, S. Melhi, A.F. Seliem, Magnetic hydrochar grafted-chitosan for enhanced efficient adsorption of malachite green dye from aqueous solutions: modeling, adsorption behavior, and mechanism analysis, Int. J. Biol. Macromol. 254 (2024) 127767, https://doi.org/ 10.1016/j.ijbiomac.2023.127767.[5] A.H. Khan, H.A. Aziz, N.A. Khan, A. Dhingra, S. Ahmed, M. Naushad, Effect of seasonal variation on the occurrences of high-risk pharmaceutical in drain-laden surface water: a risk analysis of Yamuna River, Sci. Total Environ. 794 (2021) 148484, https://doi.org/10.1016/j.scitotenv.2021.148484.[6] A.K. Thakur, R. Singh, R. Teja Pullela, V. Pundir, Green adsorbents for the removal of heavy metals from wastewater: a review, Materials Today: Proceedings 57 (2022) 1468–1472, https://doi.org/10.1016/j. matpr.2021.11.373.[7] J.O. Gonçalves, K.A. da Silva, E.C. Rios, M.M. Crispim, G.L. Dotto, L.A. de Almeida Pinto, Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems, Int. J. Biol. Macromol. 142 (2020) 85–93, https://doi.org/10.1016/j. ijbiomac.2019.09.074.[8] S. Kim, S.-N. Nam, A. Jang, M. Jang, C.M. Park, A. Son, N. Her, J. Heo, Y. Yoon, Review of adsorption–membrane hybrid systems for water and wastewater treatment, Chemosphere 286 (2022) 131916, https://doi.org/10.1016/j. chemosphere.2021.131916.[9] S. Sithole, B. Mamba, R. Krause, S. Mapolie, Cyclodextrin dendrimers containing nanocatalysts for the removal of natural organic matter (nom) and other micropollutants from water: a short review, Water Inst SA (2014) 1–9.[10] T. Teymoorian, T. Teymourian, E. Kowsari, S. Ramakrishna, Direct and indirect effects of SARS-CoV-2 on wastewater treatment, J. Water Process Eng. 42 (2021) 102193, https://doi.org/10.1016/j.jwpe.2021.102193.[11] H. Liu, Y. Mao, Graphene oxide-based nanomaterials for uranium adsorptive uptake, ES Materials & Manufacturing 13 (2021) doi:3-22.10.30919/esmm5f453.[12] K. Mohan, D. Karthick Rajan, J. Rajarajeswaran, D. Divya, A. Ramu Ganesan, Recent trends on chitosan based hybrid materials for wastewater treatment: a review, Curr. Opin Environ. Sci. Health 33 (2023) 100473, https://doi.org/ 10.1016/j.coesh.2023.100473.[13] M. Stachowiak, M. Cegłowski, J. Kurczewska, Hybrid chitosan/molecularly imprinted polymer hydrogel beads doped with iron for selective ibuprofen adsorption, Int. J. Biol. Macromol. 251 (2023) 126356, https://doi.org/10.1016/ j.ijbiomac.2023.126356.[14] K. Valizadeh, A. Bateni, N. Sojoodi, R. Rafiei, A.H. Behroozi, A. Maleki, Preparation and characterization of chitosan-curdlan composite magnetized by zinc ferrite for efficient adsorption of tetracycline antibiotics in water, Int. J. Biol. Macromol. 235 (2023) 123826, https://doi.org/10.1016/j. ijbiomac.2023.123826.[15] L. Zhang, X. Li, S. Chen, J. Guan, Y. Guo, W. Yu, 3D chitosan/GO/ZnO hydrogel with enhanced photocorrosion-resistance and adsorption for efficient removal of typical water-soluble pollutants, Catal. Commun. 176 (2023) 106627, https:// doi.org/10.1016/j.catcom.2023.106627.[16] J. Gubitosa, V. Rizzi, P. Fini, S. Nuzzo, P. Cosma, The adsorption efficiency of regenerable chitosan-TiO2 composite films in removing 2,4-Dinitrophenol from water, Int. J. Mol. Sci. (2023), https://doi.org/10.3390/ijms24108552.[17] V. Rizzi, D. Lacalamita, J. Gubitosa, P. Fini, A. Petrella, R. Romita, A. Agostiano, J.A. Gabaldon, ´ M.I. Fortea Gorbe, T. Gomez-Morte, ´ P. Cosma, Removal of tetracycline from polluted water by chitosan-olive pomace adsorbing films, Sci. Total Environ. 693 (2019) 133620, https://doi.org/10.1016/j. scitotenv.2019.133620.[18] A. Ekanayake, A.U. Rajapaksha, C. Hewawasam, U. Anand, E. Bontempi, S. Kurwadkar, J.K. Biswas, M. Vithanage, Environmental challenges of COVID-19 pandemic: resilience and sustainability – a review, Environ. Res. 216 (2023) 114496, https://doi.org/10.1016/j.envres.2022.114496.[19] R.F. Weska, J.M. Moura, L.M. Batista, J. Rizzi, L.A.A. Pinto, Optimization of deacetylation in the production of chitosan from shrimp wastes: use of response surface methodology, J. Food Eng. 80 (3) (2007) 749–753, https://doi.org/ 10.1016/j.jfoodeng.2006.02.006.[20] V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal – a review, J. Environ. Manage. 90 (8) (2009) 2313–2342, https://doi.org/10.1016/j. jenvman.2008.11.017.[21] E. Guibal, Interactions of metal ions with chitosan-based sorbents: a review, Sep. Purif. Technol. 38 (1) (2004) 43–74, https://doi.org/10.1016/j. seppur.2003.10.004.[22] U. Habiba, T.A. Siddique, S. Talebian, J.J.L. Lee, A. Salleh, B.C. Ang, A.M. Afifi, Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe(III) and Cr(VI) ions, Carbohydr. Polym. 177 (2017) 32–39, https://doi.org/10.1016/j.carbpol.2017.08.115.[23] I. Aranaz, A.R. Alcantara, ´ M.C. Civera, C. Arias, B. Elorza, A. Heras Caballero, N. Acosta, Chitosan: an overview of its properties and applications, Polymers (2021), https://doi.org/10.3390/polym13193256.[24] A. Zakmout, F. Sadi, C.A.M. Portugal, J.G. Crespo, S. Velizarov, Tannery effluent treatment by nanofiltration, reverse osmosis and chitosan modified membranes, Membranes (2020), https://doi.org/10.3390/membranes10120378.[25] Y. Zhang, T. Bian, D. Xia, D. Wang, Y. Zhang, X. Zheng, Z. Li, Optimum selective separation of Cu (ii) using 3D ordered macroporous chitosan films with different pore sizes, RSC Adv. 9 (23) (2019) 13065–13076, https://doi.org/10.1039/ C9RA00773C.[26] N. Wang, Z. Xu, W. Xu, J. Xu, Y. Chen, M. Zhang, Comparison of coagulation and magnetic chitosan nanoparticle adsorption on the removals of organic compound and coexisting humic acid: a case study with salicylic acid, Chem. Eng. J. 347 (2018) 514–524, https://doi.org/10.1016/j.cej.2018.04.131.[27] C. Ding, M. Xue, Y. Zhang, J. Su, H. Wang, Novel chitosan/GO@Fe3O4 porous microspheres with magnetic separation function for the removal of Congo red from aqueous solutions, J. Taiwan Inst. Chem. Eng. 149 (2023) 105008, https:// doi.org/10.1016/j.jtice.2023.105008.[28] R.A. Solano, L.D. De Leon, ´ G. De Avila, ´ A.P. Herrera, Polycyclic aromatic hydrocarbons (PAHs) adsorption from aqueous solution using chitosan beads modified with thiourea, TiO2 and Fe3O4 nanoparticles, Environ. Technol. Innov. 21 (2021) 101378, https://doi.org/10.1016/j.eti.2021.101378.[29] M. Verma, A. Kumar, I. Lee, V. Kumar, J.-H. Park, H. Kim, Simultaneous capturing of mixed contaminants from wastewater using novel one-pot chitosan functionalized with EDTA and graphene oxide adsorbent, Environ. Pollut. 304 (2022) 119130, https://doi.org/10.1016/j.envpol.2022.119130.[30] T. Suksompong, S. Thongmee, W. Sudprasert, Efficacy of a graphene oxide/ chitosan sponge for removal of radioactive iodine-131 from aqueous solutions, Life (2021), https://doi.org/10.3390/life11070721.[31] L. Pietrelli, S. Ferro, A.P. Reverberi, M. Vocciante, Removal and recovery of heavy metals from tannery sludge subjected to plasma pyro-gasification process, J. Clean. Prod. 273 (2020) 123166, https://doi.org/10.1016/j. jclepro.2020.123166.[32] J. Kumirska, M.X. Weinhold, J. Thoming, ¨ P. Stepnowski, Biomedical activity of chitin/chitosan based materials—influence of physicochemical properties apart from molecular weight and degree of N-acetylation, Polymers (2011) 1875–1901, https://doi.org/10.3390/polym3041875.[33] A. Harugade, A.P. Sherje, A. Pethe, Chitosan: a review on properties, biological activities and recent progress in biomedical applications, React. Funct. Polym. 191 (2023) 105634, https://doi.org/10.1016/j.reactfunctpolym.2023.105634.[34] M.S. Sivakami, T. Gomathi, J. Venkatesan, H.-S. Jeong, S.-K. Kim, P.N. Sudha, Preparation and characterization of nano chitosan for treatment wastewaters, Int. J. Biol. Macromol. 57 (2013) 204–212, https://doi.org/10.1016/j. ijbiomac.2013.03.005.[35] G. Crini, P.-M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci. 33 (4) (2008) 399–447, https:// doi.org/10.1016/j.progpolymsci.2007.11.001.[36] Z.-F. Liu, G.-M. Zeng, H. Zhong, X.-Z. Yuan, L.-L. Jiang, H.-Y. Fu, X.-L. Ma, J.- C. Zhang, Effect of saponins on cell surface properties of Penicillium simplicissimum: performance on adsorption of cadmium(II), Colloids Surf. B Biointerfaces 86 (2) (2011) 364–369, https://doi.org/10.1016/j. colsurfb.2011.04.021.[37] M. Vakili, M. Rafatullah, B. Salamatinia, A.Z. Abdullah, M.H. Ibrahim, K.B. Tan, Z. Gholami, P. Amouzgar, Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review, Carbohydr. Polym. 113 (2014) 115–130, https://doi.org/10.1016/j.carbpol.2014.07.007.[38] K. Azlan, W.N. Wan Saime, L. Lai Ken, Chitosan and chemically modified chitosan beads for acid dyes sorption, J. Environ. Sci. 21 (3) (2009) 296–302, https://doi. org/10.1016/S1001-0742(08)62267-6.[39] T. Kuroiwa, H. Takada, A. Shogen, K. Saito, I. Kobayashi, K. Uemura, A. Kanazawa, Cross-linkable chitosan-based hydrogel microbeads with pHresponsive adsorption properties for organic dyes prepared using size-tunable microchannel emulsification technique, Colloids Surf. A Physicochem. Eng. Asp. 514 (2017) 69–78, https://doi.org/10.1016/j.colsurfa.2016.11.046.[40] J.O. Gonçalves, K.A. da Silva, E.C. Rios, M.M. Crispim, G.L. Dotto, L.A. de Almeida Pinto, Single and binary adsorption of food dyes on chitosan/activated carbon hydrogels, Chem. Eng. Technol. 42 (2) (2019) 454–464, https://doi.org/ 10.1002/ceat.201800367.[41] M.F. Hamza, D.M. Hamad, N.A. Hamad, A.A.H. Abdel-Rahman, A. Fouda, Y. Wei, E. Guibal, A.-A.S. El-Etrawy, Functionalization of magnetic chitosan microparticles for high-performance removal of chromate from aqueous solutions and tannery effluent, Chem. Eng. J. 428 (2022) 131775, https://doi.org/ 10.1016/j.cej.2021.131775.[42] P. Sun, W. Zhang, B. Zou, L. Zhou, Z. Ye, Q. Zhao, Preparation of EDTA-modified magnetic attapulgite chitosan gel bead adsorbent for the removal of Cu(II), Pb(II), and Ni(II), Int. J. Biol. Macromol. 182 (2021) 1138–1149, https://doi.org/ 10.1016/j.ijbiomac.2021.04.132.[43] X. Qin, L. Bai, Y. Tan, L. Li, F. Song, Y. Wang, β-Cyclodextrin-crosslinked polymeric adsorbent for simultaneous removal and stepwise recovery of organic dyes and heavy metal ions: fabrication, performance and mechanisms, Chem. Eng. J. 372 (2019) 1007–1018, https://doi.org/10.1016/j.cej.2019.05.006.[44] F. Zhao, E. Repo, D. Yin, L. Chen, S. Kalliola, J. Tang, E. Iakovleva, K.C. Tam, M. Sillanp¨ aa, ¨ One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants, Sci. Rep. 7 (1) (2017) 15811, https://doi.org/10.1038/s41598-017-16222-7.[45] T. Song, W. Luo, J. Mu, Y. Cai, J. Wei, H. Li, Preparation of polyacrylic-acid/ palygorskite composite particles via inverse-suspension polymerization for efficient separation of Ce3+ from aqueous solution, J. Colloid Interface Sci. 535 (2019) 371–379, https://doi.org/10.1016/j.jcis.2018.09.103.[46] D. Hu, Z. Lian, H. Xian, R. Jiang, N. Wang, Y. Weng, X. Peng, S. Wang, X. K. Ouyang, Adsorption of Pb(II) from aqueous solution by polyacrylic acid grafted magnetic chitosan nanocomposite, Int. J. Biol. Macromol. 154 (2020) 1537–1547, https://doi.org/10.1016/j.ijbiomac.2019.11.038.[47] X. Wan, Z. Rong, K. Zhu, Y. Wu, Chitosan-based dual network composite hydrogel for efficient adsorption of methylene blue dye, Int. J. Biol. Macromol. 222 (2022) 725–735, https://doi.org/10.1016/j.ijbiomac.2022.09.213.[48] P.B. Vilela, C.A. Matias, A. Dalalibera, V.A. Becegato, A.T. Paulino, Polyacrylic acid-based and chitosan-based hydrogels for adsorption of cadmium: equilibrium isotherm, kinetic and thermodynamic studies, J. Environ. Chem. Eng. 7 (5) (2019) 103327, https://doi.org/10.1016/j.jece.2019.103327.[49] X. Lin, Z. Liu, R. Chen, Y. Hou, R. Lu, S. Li, S. Ren, Z. Gao, A multifunctional polyacrylamide/chitosan hydrogel for dyes adsorption and metal ions detection in water, Int. J. Biol. Macromol. 246 (2023) 125613, https://doi.org/10.1016/j. ijbiomac.2023.125613.[50] W. Song, J. Xu, L. Gao, Q. Zhang, J. Tong, L. Ren, Preparation of freeze-dried porous chitosan microspheres for the removal of hexavalent chromium, Appl. Sci. (2021), https://doi.org/10.3390/app11094217.[51] F.-N. Allouche, E. Guibal, N. Mameri, Preparation of a new chitosan-based material and its application for mercury sorption, Colloids Surf. A Physicochem. Eng. Asp. 446 (2014) 224–232, https://doi.org/10.1016/j.colsurfa.2014.01.025.[52] M. Kloster, M.A. Mosiewicki, N.E. Marcovich, Removal of dyes from aqueous media using environmentally friendly aerogels based on chitosan, Colloids Surf. A Physicochem. Eng. Asp. 687 (2024) 133597, https://doi.org/10.1016/j. colsurfa.2024.133597.[53] V. Rizzi, J. Gubitosa, P. Fini, R. Romita, S. Nuzzo, J.A. Gabaldon, ´ M.I.F. Gorbe, T. Gomez-Morte, ´ P. Cosma, Chitosan film as recyclable adsorbent membrane to remove/recover hazardous pharmaceutical pollutants from water: the case of the emerging pollutant furosemide, J. Environ. Sci. Health A 56 (2) (2020) 145–156, https://doi.org/10.1080/10934529.2020.1853985.[54] R. Rahmi, L. Lelifajri, J. Julinawati, S. Shabrina, Preparation of chitosan composite film reinforced with cellulose isolated from oil palm empty fruit bunch and application in cadmium ions removal from aqueous solutions, 2017, https:// doi.org/10.1016/j.carbpol.2017.04.084.[55] J. Liu, F. Song, R. Chen, G. Deng, Y. Chao, Z. Yang, H. Wu, M. Bai, P. Zhang, Y. Hu, Effect of cellulose nanocrystal-stabilized cinnamon essential oil Pickering emulsions on structure and properties of chitosan composite films, Carbohydr. Polym. 275 (2022) 118704, https://doi.org/10.1016/j.carbpol.2021.118704.[56] G.A. Kloster, M. Valiente, N.E. Marcovich, M.A. Mosiewicki, Adsorption of arsenic onto films based on chitosan and chitosan/nano-iron oxide, Int. J. Biol. Macromol. 165 (2020) 1286–1295, https://doi.org/10.1016/j. ijbiomac.2020.09.244.[57] L. Sellaoui, R. Gerhardt, F. Dhaoudi, S. Chebaane, L. Manai, A. Azhary, H. Saedoon, B.S. de Farias, G.L. Dotto, T.R.S.A. Cadaval, L.A. de Almeida Pinto, A. Bonilla-Petriciolet, Novel films prepared from spirulina and chitosan for textile pollutant removal: experiments and theoretical study of adsorption equilibrium via an advanced theoretical approach, Sep. Purif. Technol. 329 (2024) 125158, https://doi.org/10.1016/j.seppur.2023.125158.[58] M.R. Lasheen, I.Y. El-Sherif, M.E. Tawfik, S.T. El-Wakeel, M.F. El-Shahat, Preparation and adsorption properties of nano magnetite chitosan films for heavy metal ions from aqueous solution, Mater. Res. Bull. 80 (2016) 344–350, https:// doi.org/10.1016/j.materresbull.2016.04.011.[59] Q. Manzoor, M.A. Farrukh, A. Sajid, Optimization of lead (II) and chromium (VI) adsorption using graphene oxide/ZnO/chitosan nanocomposite by response surface methodology, Appl. Surf. Sci. 655 (2024) 159544, https://doi.org/ 10.1016/j.apsusc.2024.159544.[60] R. Nithya, T. Gomathi, P.N. Sudha, J. Venkatesan, S. Anil, S.-K. Kim, Removal of Cr(VI) from aqueous solution using chitosan-g-poly(butyl acrylate)/silica gel nanocomposite, Int. J. Biol. Macromol. 87 (2016) 545–554, https://doi.org/ 10.1016/j.ijbiomac.2016.02.076.[61] R. Ahmad, I. Hasan, A. Mittal, Adsorption of Cr (VI) and Cd (II) on chitosan grafted polyaniline-OMMT nanocomposite: isotherms, kinetics and thermodynamics studies, Desalin. Water Treat 58 (2017) 144–153, https://doi. org/10.5004/dwt.2017.0414.[62] D.C. da Silva Alves, B. Healy, L.A.D.A. Pinto, T.R.S.A. Cadaval, C.B. Breslin, Recent developments in chitosan-based adsorbents for the removal of pollutants from aqueous environments, Molecules (2021), https://doi.org/10.3390/ molecules26030594.[63] I.V. Pylypchuk, D. Kołodynska, ´ P.P. Gorbyk, Gd(III) adsorption on the DTPAfunctionalized chitosan/magnetite nanocomposites, Sep. Sci. Technol. 53 (7) (2018) 1006–1016, https://doi.org/10.1080/01496395.2017.1330830.[64] Y. Cheng, A. Li, W. Shi, L. Zhao, Magnetic chitosan-functionalized waste carton biochar composites for efficient adsorption of anionic and cationic dyes, Chem. Eng. J. 481 (2024) 148535, https://doi.org/10.1016/j.cej.2024.148535.[65] L. Weerasundara, Y.S. Ok, P. Kumarathilaka, A. Marchuk, J. Bundschuh, Assessment and optimization of As(V) adsorption on hydrogel composite integrating chitosan-polyvinyl alcohol and Fe3O4 nanoparticles and evaluation of their regeneration and reusable capabilities in aqueous media, Sci. Total Environ. 855 (2023) 158877, https://doi.org/10.1016/j.scitotenv.2022.158877.[66] E. Worch, Adsorption Technology in Water Treatment, de Gruyter Berlin 2012, 2012.[67] A.S. Foust, L. Wenzel, C. Clump, L. Maus, L. Andersen, Princípios das Operaçoes ˜ Unit´ arias, 2ª Ediçao, ˜ LTC-Livros T´ecnicos e Científicos, Editora AS, RJ, 1982.[68] N.N. Rudi, M.S. Muhamad, L. Te Chuan, J. Alipal, S. Omar, N. Hamidon, N.H. A. Hamid, N.M. Sunar, R. Ali, H. Harun, Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents, Heliyon 6 (9) (2020), https://doi.org/10.1016/j.heliyon.2020.e05049.[69] L.W. Lai, L.P. Teh, S.N. Timmiati, N.H.N. Kamarudin, H.D. Setiabudi, A sustainable solution for diclofenac adsorption: chitosan-modified fibrous silica KCC-1 adsorbent, J. Environ. Chem. Eng. 11 (6) (2023) 111295, https://doi.org/ 10.1016/j.jece.2023.111295.[70] M. Vakili, M. Rafatullah, M.H. Ibrahim, A.Z. Abdullah, B. Salamatinia, Z. Gholami, Chitosan hydrogel beads impregnated with hexadecylamine for improved reactive blue 4 adsorption, Carbohydr. Polym. 137 (2016) 139–146, https://doi.org/10.1016/j.carbpol.2015.09.017.[71] X.-Q. Liu, X.-X. Zhao, Y. Liu, T.-A. Zhang, Review on preparation and adsorption properties of chitosan and chitosan composites, Polym. Bull. 79 (4) (2022) 2633–2665, https://doi.org/10.1007/s00289-021-03626-9.[72] C. Shen, Y. Shen, Y. Wen, H. Wang, W. Liu, Fast and highly efficient removal of dyes under alkaline conditions using magnetic chitosan-Fe(III) hydrogel, Water Res. 45 (16) (2011) 5200–5210, https://doi.org/10.1016/j.watres.2011.07.018.[73] K.Z. Elwakeel, Removal of Reactive Black 5 from aqueous solutions using magnetic chitosan resins, J. Hazard. Mater. 167 (1) (2009) 383–392, https://doi. org/10.1016/j.jhazmat.2009.01.051.[74] C.S.D. Rodrigues, L.M. Madeira, R.A.R. Boaventura, Synthetic textile dyeing wastewater treatment by integration of advanced oxidation and biological processes – performance analysis with costs reduction, J. Environ. Chem. Eng. 2 (2) (2014) 1027–1039, https://doi.org/10.1016/j.jece.2014.03.019.[75] A.-H. Chen, S.-M. Chen, Biosorption of azo dyes from aqueous solution by glutaraldehyde-crosslinked chitosans, J. Hazard. Mater. 172 (2) (2009) 1111–1121, https://doi.org/10.1016/j.jhazmat.2009.07.104.[76] J.O. Gonçalves, D.A. Duarte, G.L. Dotto, L.A.A. Pinto, Use of chitosan with different deacetylation degrees for the adsorption of food dyes in a binary system, CLEAN–Soil, Air, Water 42 (6) (2014) 767–774, https://doi.org/10.1002/ clen.201200665.[77] G.L. Dotto, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto, Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption, Chem. Eng. J. 214 (2013) 8–16, https://doi.org/10.1016/j.cej.2012.10.027.[78] J.S. Piccin, M.L.G. Vieira, J.O. Gonçalves, G.L. Dotto, L.A.A. Pinto, Adsorption of FD&C Red No. 40 by chitosan: isotherms analysis, J. Food Eng. 95 (1) (2009) 16–20, https://doi.org/10.1016/j.jfoodeng.2009.03.017.[79] S. Chatterjee, D.S. Lee, M.W. Lee, S.H. Woo, Enhanced adsorption of Congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide, Bioresour. Technol. 100 (11) (2009) 2803–2809, https://doi.org/10.1016/j.biortech.2008.12.035.[80] X.-Y. Huang, X.-Y. Mao, H.-T. Bu, X.-Y. Yu, G.-B. Jiang, M.-H. Zeng, Chemical modification of chitosan by tetraethylenepentamine and adsorption study for anionic dye removal, Carbohydr. Res. 346 (10) (2011) 1232–1240, https://doi. org/10.1016/j.carres.2011.04.012.[81] J.S. Piccin, G.L. Dotto, M.L.G. Vieira, L.A.A. Pinto, Kinetics and mechanism of the food dye FD&C Red 40 adsorption onto chitosan, J. Chem. Eng. Data 56 (10) (2011) 3759–3765, https://doi.org/10.1021/je200388s.[82] A.R. Nesic, S.J. Velickovic, D.G. Antonovic, Characterization of chitosan/ montmorillonite membranes as adsorbents for Bezactiv Orange V-3R dye, J. Hazard. Mater. 209-210 (2012) 256–263, https://doi.org/10.1016/j. jhazmat.2012.01.020.[83] L. Zheng, C. Wang, Y. Shu, X. Yan, L. Li, Utilization of diatomite/chitosan–Fe (III) composite for the removal of anionic azo dyes from wastewater: equilibrium, kinetics and thermodynamics, Colloids Surf. A Physicochem. Eng. Asp. 468 (2015) 129–139, https://doi.org/10.1016/j.colsurfa.2014.12.015.[84] B. Tanhaei, A. Ayati, E. Iakovleva, M. Sillanp¨ a¨ a, Efficient carbon interlayed magnetic chitosan adsorbent for anionic dye removal: synthesis, characterization and adsorption study, Int. J. Biol. Macromol. 164 (2020) 3621–3631, https://doi. org/10.1016/j.ijbiomac.2020.08.207.[85] F.-C. Wu, R.-L. Tseng, R.-S. Juang, Comparative adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes, J. Hazard. Mater. 73 (1) (2000) 63–75, https://doi.org/10.1016/S0304-3894(99)00168-5.[86] B. Chen, H. Zhao, S. Chen, F. Long, B. Huang, B. Yang, X. Pan, A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater, Chem. Eng. J. 356 (2019) 69–80, https://doi.org/10.1016/j.cej.2018.08.222.[87] C.A. Akinremi, A.I. Adeogun, M. Poupin, K. Huddersman, Chitosan–Terephthalic Acid–Magnetic Composite Beads for Effective Removal of the Acid Blue Dye from Aqueous Solutions: Kinetics, Isotherm, and Statistical Modeling, ACS Omega 6 (45) (2021) 30499–30514, https://doi.org/10.1021/acsomega.1c03964.[88] H.Y. Zhu, Y.Q. Fu, R. Jiang, J. Yao, L. Xiao, G.M. Zeng, Novel magnetic chitosan/ poly(vinyl alcohol) hydrogel beads: preparation, characterization and application for adsorption of dye from aqueous solution, Bioresour. Technol. 105 (2012) 24–30, https://doi.org/10.1016/j.biortech.2011.11.057.[89] WHO, WHO director-general’s opening remarks at the media briefing on COVID19. https://www.who.int/dg/speeches/detail/who-director-genera l-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020, 2020.[90] L.L. Albornoz, V.D. Soroka, M.C.A. Silva, Photo-mediated and advanced oxidative processes applied for the treatment of effluents with drugs used for the treatment of early COVID-19: review, Environmental Advances 6 (2021) 100140, https:// doi.org/10.1016/j.envadv.2021.100140.[91] Y. Pico, ´ D. Barcelo, ´ Microplastics and other emerging contaminants in the environment after COVID-19 pandemic: the need of global reconnaissance studies, Curr. Opin. Environ. Sci. Health 33 (2023) 100468, https://doi.org/ 10.1016/j.coesh.2023.100468.[92] M. Nassef, S.G. Kim, M. Seki, I.J. Kang, T. Hano, Y. Shimasaki, Y. Oshima, In ovo nanoinjection of triclosan, diclofenac and carbamazepine affects embryonic development of medaka fish (Oryzias latipes), Chemosphere 79 (9) (2010) 966–973, https://doi.org/10.1016/j.chemosphere.2010.02.002.[93] M.K. Shahid, A. Kashif, A. Fuwad, Y. Choi, Current advances in treatment technologies for removal of emerging contaminants from water – a critical review, Coord. Chem. Rev. 442 (2021) 213993, https://doi.org/10.1016/j. ccr.2021.213993.[94] H. Zheng, Q. Zhang, G. Liu, X. Luo, F. Li, Y. Zhang, Z. Wang, Characteristics and mechanisms of chlorpyrifos and chlorpyrifos-methyl adsorption onto biochars: influence of deashing and low molecular weight organic acid (LMWOA) aging and co-existence, Sci. Total Environ. 657 (2019) 953–962, https://doi.org/10.1016/j. scitotenv.2018.12.018.[95] Z. Wei, X. Ma, Y. Zhang, Y. Guo, W. Wang, Z.-Y. Jiang, High-efficiency adsorption of phenanthrene by Fe3O4-SiO2-dimethoxydiphenylsilane nanocomposite: experimental and theoretical study, J. Hazard. Mater. 422 (2022) 126948, https://doi.org/10.1016/j.jhazmat.2021.126948.[96] Z. Li, J. Li, Z. Guo, L.C. Campos, Investigation of metaldehyde removal by powdered activated carbon from different water samples, Environ. Sci.: Water Res. Technol. 6 (5) (2020) 1432–1444, https://doi.org/10.1039/c9ew00962k.[97] Z. Li, Y. Yang, U. J´ auregui-Haza, Z. Guo, L.C. Campos, The impact of humic acid on metaldehyde adsorption onto powdered activated carbon in aqueous solution, RSC Adv. 9 (1) (2019) 11–22, https://doi.org/10.1039/C8RA06802J.[98] S. Xiong, Y. Deng, R. Tang, C. Zhang, J. Zheng, Y. Zhang, L. Su, L. Yang, C. Liao, D. Gong, Factors study for the removal of epoxiconazole in water by common biochars, Biochem. Eng. J. 161 (2020) 107690, https://doi.org/10.1016/j. bej.2020.107690.[99] M. Vakili, A. Mojiri, T. Kindaichi, G. Cagnetta, J. Yuan, B. Wang, A.S. Giwa, Crosslinked chitosan/zeolite as a fixed-bed column for organic micropollutants removal from aqueous solution, optimization with RSM and artificial neural network, J. Environ. Manage. 250 (2019) 109434, https://doi.org/10.1016/j. jenvman.2019.109434.[100] D. Anjali Devi, B. Smitha, S. Sridhar, T.M. Aminabhavi, Dehydration of 1,4- dioxane through blend membranes of poly(vinyl alcohol) and chitosan by pervaporation, J. Membr. Sci. 280 (1) (2006) 138–147, https://doi.org/10.1016/ j.memsci.2006.01.006.[101] K.A. Alkhamis, M.S. Salem, M.S. Khanfar, Determination of the mechanism of uptake of organic vapors by Chitosan, Pharm. Dev. T[102] S. Mirizadeh, C. Solisio, A. Converti, A.A. Casazza, Efficient removal of tetracycline, ciprofloxacin, and amoxicillin by novel magnetic chitosan/ microalgae biocomposites, Sep. Purif. Technol. 329 (2024) 125115, https://doi. org/10.1016/j.seppur.2023.125115.[103] K. Sharma, M. Kaur, P. Tewatia, V. Kumar, C. Paulik, H. Yoshitake, M. Sharma, G. Rattan, S. Singhal, A. Kaushik, Ultra-sensitive detection and scavenging of arsenic ions and ciprofloxacin using 3D multipurpose hemicellulose based aerogel: adsorption mechanism and RSM optimization, Bioresour. Technol. 389 (2023) 129825, https://doi.org/10.1016/j.biortech.2023.129825.[104] K.N. Mahadevaprasad, D.S. Aditya, K.N. Santhosh, G. D’Souza, A. Kumar, S. K. Nataraj, Design and preparation of zirconium-induced bio-foam for the removal of fluoride, chromate, and other emerging pollutants: a scale-up approach, Chem. Eng. J. 475 (2023) 146112, https://doi.org/10.1016/j. cej.2023.146112.[105] A. Bukhari, I. Ijaz, E. Gilani, A. Nazir, H. Zain, S. Muhammad, A. Bukhari, A. Shaheen, S. Hussain, Simultaneous removal of Norfloxacin, ciprofloxacin, and copper from aqueous solution by chitosan and MXene functionalized graphene oxide ternary composite based on anion-synergistic interaction, Chem. Eng. J. 474 (2023) 145890, https://doi.org/10.1016/j.cej.2023.145890.[106] Q.M. Bui, T.Q. Vu, X.T. Vuong, V.D. Nguyen, L.T.N. Nguyen, H.T. Le, H.T. H. Nguyen, V.P. Nguyen, Removal of fluoroquinolone antibiotics by chitosan–magnetite from aqueous: single and binary adsorption, Processes (2023), https://doi.org/10.3390/pr11082396.[107] M. S¸ ahin, Y. Arslan, F. Tomul, Removal of naproxen and diclofenac using magnetic nanoparticles/nanocomposites, Res. Chem. Intermed. 48 (12) (2022) 5209–5226, https://doi.org/10.1007/s11164-022-04862-y.[108] A. Kumar, C. Patra, H.K. Rajendran, S. Narayanasamy, Activated carbon-chitosan based adsorbent for the efficient removal of the emerging contaminant diclofenac: synthesis, characterization and phytotoxicity studies, Chemosphere 307 (2022) 135806, https://doi.org/10.1016/j.chemosphere.2022.135806.[109] M. Sun, Q. Sun, C. Zhao, Y. Huang, J. Jiang, W. Ding, H. Zheng, Degradation of diclofenac sodium with low concentration from aqueous milieu through polydopamine-chitosan modified magnetic adsorbent-assisted photo-Fenton process, Sep. Purif. Technol. 289 (2022) 120771, https://doi.org/10.1016/j. seppur.2022.120771.[110] R. Wang, Y. Cui, F. Hu, W. Liu, Q. Du, Y. Zhang, J. Zha, T. Huang, M. Fizir, H. He, Selective recognition and enrichment of carbamazepine in biological samples by magnetic imprinted polymer based on reversible addition-fragmentation chain transfer polymerization, J. Chromatogr. A 1591 (2019) 62–70, https://doi.org/ 10.1016/j.chroma.2019.01.057.[111] K. Delhiraja, K. Vellingiri, D.W. Boukhvalov, L. Philip, Development of highly water stable graphene oxide-based composites for the removal of pharmaceuticals and personal care products, Ind. Eng. Chem. Res. 58 (8) (2019) 2899–2913, https://doi.org/10.1021/acs.iecr.8b02668.[112] B.R. Riegger, B. B¨ aurer, A. Mirzayeva, G.E.M. Tovar, M. Bach, A systematic approach of chitosan nanoparticle preparation via emulsion crosslinking as potential adsorbent in wastewater treatment, Carbohydr. Polym. 180 (2018) 46–54, https://doi.org/10.1016/j.carbpol.2017.10.002.[113] Y. Zhang, Z. Shen, C. Dai, X. Zhou, Removal of selected pharmaceuticals from aqueous solution using magnetic chitosan: sorption behavior and mechanism, Environ. Sci. Pollut. Res. 21 (22) (2014) 12780–12789, https://doi.org/10.1007/ s11356-014-3212-1.[114] Y.-L. Zhang, J. Zhang, C.-M. Dai, X.-F. Zhou, S.-G. Liu, Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosanFe3O4, Carbohydr. Polym. 97 (2) (2013) 809–816, https://doi.org/10.1016/j. carbpol.2013.05.072.[115] C. dos Santos Cardoso, L. Vitali, Chitosan versus chitosan-vanillin modified: an evaluation of the competitive adsorption of five emerging contaminants, Water Air Soil Pollut. 232 (5) (2021), https://doi.org/10.1007/s11270-021-05118-y.[116] Y. Gong, J. Su, M. Li, A. Zhu, G. Liu, P. Liu, Fabrication and adsorption optimization of novel magnetic core-shell chitosan/graphene oxide/ β-cyclodextrin composite materials for bisphenols in aqueous solutions, Materials (2020), https://doi.org/10.3390/ma13235408.[117] R. Kaur, D. Goyal, S. Agnihotri, Chitosan/PVA silver nanocomposite for butachlor removal: fabrication, characterization, adsorption mechanism and isotherms, Carbohydr. Polym. 262 (2021) 117906, https://doi.org/10.1016/j. carbpol.2021.117906.[118] W. Liu, T. Lin, X. Zhang, F. Jiang, X. Yan, H. Chen, Adsorption of perfluoroalkyl acids on granular activated carbon supported chitosan: role of nanobubbles, Chemosphere 309 (2022) 136733, https://doi.org/10.1016/j. chemosphere.2022.136733.[119] C. He, Y. Yang, Y.-J. Hou, T. Luan, J. Deng, Chitosan-coated fluoro-functionalized covalent organic framework as adsorbent for efficient removal of per- and polyfluoroalkyl substances from water, Sep. Purif. Technol. 294 (2022) 121195, https://doi.org/10.1016/j.seppur.2022.121195.[120] L. Long, X. Hu, J. Yan, Y. Zeng, J. Zhang, Y. Xue, Novel chitosan–ethylene glycol hydrogel for the removal of aqueous perfluorooctanoic acid, J. Environ. Sci. 84 (2019) 21–28, https://doi.org/10.1016/j.jes.2019.04.007.[121] X. Zhang, H. Niu, Y. Pan, Y. Shi, Y. Cai, Chitosan-coated octadecyl-functionalized magnetite nanoparticles: preparation and application in extraction of trace pollutants from environmental water samples, Anal. Chem. 82 (6) (2010) 2363–2371, https://doi.org/10.1021/ac902589t.[122] F.O. Ehiguese, M.d.C.C. Fernandez, P.A. Lara-Martín, M.L. Martín-Díaz, C.V. M. Araújo, Avoidance behaviour of the shrimp Palaemon varians regarding a contaminant gradient of galaxolide and tonalide in seawater, Chemosphere 232 (2019) 113–120, https://doi.org/10.1016/j.chemosphere.2019.05.196.[123] K.J. Godri Pollitt, J.-H. Kim, J. Peccia, M. Elimelech, Y. Zhang, G. Charkoftaki, B. Hodges, I. Zucker, H. Huang, N.C. Deziel, K. Murphy, M. Ishii, C.H. Johnson, A. Boissevain, E. O’Keefe, P.T. Anastas, D. Orlicky, D.C. Thompson, V. Vasiliou, 1,4-Dioxane as an emerging water contaminant: state of the science and evaluation of research needs, Sci. Total Environ. 690 (2019) 853–866, https:// doi.org/10.1016/j.scitotenv.2019.06.443.[124] L. Zhang, Y. Li, Y. Wang, S. Ma, J. Ou, Y. Shen, M. Ye, H. Uyama, Integration of covalent organic frameworks into hydrophilic membrane with hierarchical porous structure for fast adsorption of metal ions, J. Hazard. Mater. 407 (2021) 124390, https://doi.org/10.1016/j.jhazmat.2020.124390.[125] I. Kavianinia, P.G. Plieger, N.G. Kandile, D.R.K. Harding, New hydrogels based on symmetrical aromatic anhydrides: synthesis, characterization and metal ion adsorption evaluation, Carbohydr. Polym. 87 (1) (2012) 881–893, https://doi. org/10.1016/j.carbpol.2011.08.076.[126] A.C. Singer, J.D. Jarhult, ¨ R. Grabic, G.A. Khan, R.H. Lindberg, G. Fedorova, J. Fick, M.J. Bowes, B. Olsen, H. Soderstr ¨ om, ¨ Intra-and inter-pandemic variations of antiviral, antibiotics and decongestants in wastewater treatment plants and receiving rivers, PloS One 9 (9) (2014) e108621, https://doi.org/10.1371/ journal.pone.0108621.[127] A. ˆ Almeida, A.M.V.M. Soares, V.I. Esteves, R. Freitas, Occurrence of the antiepileptic carbamazepine in water and bivalves from marine environments: a review, Environ. Toxicol. Pharmacol. 86 (2021) 103661, https://doi.org/ 10.1016/j.etap.2021.103661.[128] N. Hadoudi, H. Amhamdi, M. Ahari, Sorption of bisphenol A from aqueous solutions using natural adsorbents: isotherm, kinetic and effect of temperature, E3S Web of Conferences (2021), https://doi.org/10.1051/e3sconf/ 202131407003.[129] P. Nasehi, M.S. Moghaddam, N. Rezaei-savadkouhi, M. Alizadeh, M.N. Yazdani, H. Agheli, Monitoring of Bisphenol A in water and soft drink products using electrochemical sensor amplified with TiO2-SWCNTs and ionic liquid, J. Food Meas. Charact. 16 (3) (2022) 2440–2445, https://doi.org/10.1007/s11694-022- 01321-5.[130] Z.U. Zango, K.S. Khoo, A. Garba, H.A. Kadir, F. Usman, M.U. Zango, W. Da Oh, J. W. Lim, A review on superior advanced oxidation and photocatalytic degradation techniques for perfluorooctanoic acid (PFOA) elimination from wastewater, Environ. Res. 221 (2023) 115326, https://doi.org/10.1016/j. envres.2023.115326.[131] D.J. Muensterman, L. Cahuas, I.A. Titaley, C. Schmokel, F.B. De la Cruz, M. A. Barlaz, C.C. Carignan, G.F. Peaslee, J.A. Field, Per- and polyfluoroalkyl substances (PFAS) in facemasks: potential source of human exposure to PFAS with implications for disposal to landfills, Environ. Sci. Technol. Lett. 9 (4) (2022) 320–326, https://doi.org/10.1021/acs.estlett.2c00019.151270ChitosanAdsorptionWater treatmentContaminantsPublicationORIGINALAdvanced technologies in water treatment.pdfAdvanced technologies in water treatment.pdfArtículoapplication/pdf2660055https://repositorio.cuc.edu.co/bitstreams/365cf789-0f04-4e07-b8fa-89e0fe313c42/downloadc37045298dc40c12d52334d11504c270MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/78484419-2afd-47d5-8975-be1fdae96303/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTAdvanced technologies in water treatment.pdf.txtAdvanced technologies in water treatment.pdf.txtExtracted texttext/plain111868https://repositorio.cuc.edu.co/bitstreams/2f71b891-0228-4b18-9c79-22e735fadf91/download447d2d5816291e8234fa92431c3dc065MD53THUMBNAILAdvanced technologies in water treatment.pdf.jpgAdvanced technologies in water treatment.pdf.jpgGenerated Thumbnailimage/jpeg14770https://repositorio.cuc.edu.co/bitstreams/19aa1edd-7c02-499a-bac2-026bf5aa233e/downloadea89ac23595e9f3f25beb4e6339ff616MD5411323/13310oai:repositorio.cuc.edu.co:11323/133102024-09-17 14:22:09.977https://creativecommons.org/licenses/by-nc-nd/4.0/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |