Sources, characteristics, toxicity, and control of ultrafine particles: an overview
Air pollution by particulate matter (PM) is one of the main threats to human health, particularly in large cities where pollution levels are continually exceeded. According to their source of emission, geography, and local meteorology, the pollutant particles vary in size and composition. These part...
- Autores:
-
Moreno-Ríos, Andrea L.
Tejeda-Benitez, Lesly
Bustillo Lecompte, Ciro Fernando
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9086
- Acceso en línea:
- https://hdl.handle.net/11323/9086
https://doi.org/10.1016/j.gsf.2021.101147
https://repositorio.cuc.edu.co/
- Palabra clave:
- Particulate matter
Ultrafine particles
Air pollution
Toxicity
Measurement methodologies
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_b4406421aa39e783f428af40de9603e2 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9086 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Sources, characteristics, toxicity, and control of ultrafine particles: an overview |
title |
Sources, characteristics, toxicity, and control of ultrafine particles: an overview |
spellingShingle |
Sources, characteristics, toxicity, and control of ultrafine particles: an overview Particulate matter Ultrafine particles Air pollution Toxicity Measurement methodologies |
title_short |
Sources, characteristics, toxicity, and control of ultrafine particles: an overview |
title_full |
Sources, characteristics, toxicity, and control of ultrafine particles: an overview |
title_fullStr |
Sources, characteristics, toxicity, and control of ultrafine particles: an overview |
title_full_unstemmed |
Sources, characteristics, toxicity, and control of ultrafine particles: an overview |
title_sort |
Sources, characteristics, toxicity, and control of ultrafine particles: an overview |
dc.creator.fl_str_mv |
Moreno-Ríos, Andrea L. Tejeda-Benitez, Lesly Bustillo Lecompte, Ciro Fernando |
dc.contributor.author.spa.fl_str_mv |
Moreno-Ríos, Andrea L. Tejeda-Benitez, Lesly Bustillo Lecompte, Ciro Fernando |
dc.subject.proposal.eng.fl_str_mv |
Particulate matter Ultrafine particles Air pollution Toxicity Measurement methodologies |
topic |
Particulate matter Ultrafine particles Air pollution Toxicity Measurement methodologies |
description |
Air pollution by particulate matter (PM) is one of the main threats to human health, particularly in large cities where pollution levels are continually exceeded. According to their source of emission, geography, and local meteorology, the pollutant particles vary in size and composition. These particles are conditioned to the aerodynamic diameter and thus classified as coarse (2.5–10 μm), fine (0.1–2.5 μm), and ultrafine (<0.1 μm), where the degree of toxicity becomes greater for smaller particles. These particles can get into the lungs and translocate into vital organs due to their size, causing significant human health consequences. Besides, PM pollutants have been linked to respiratory conditions, genotoxic, mutagenic, and carcinogenic activity in human beings. This paper presents an overview of emission sources, physicochemical characteristics, collection and measurement methodologies, toxicity, and existing control mechanisms for ultrafine particles (UFPs) in the last fifteen years. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-03-24T14:09:11Z |
dc.date.available.none.fl_str_mv |
2022-03-24T14:09:11Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9086 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.gsf.2021.101147 |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.gsf.2021.101147 |
dc.identifier.eissn.spa.fl_str_mv |
2588-9192 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.pissn.spa.fl_str_mv |
1674-9871 |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/9086 https://doi.org/10.1016/j.gsf.2021.101147 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
10.1016/j.gsf.2021.101147 2588-9192 Corporación Universidad de la Costa 1674-9871 REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Geoscience Frontiers |
dc.relation.references.spa.fl_str_mv |
Abbas, I., Badran, G., Verdin, A., Ledoux, F., Roumié, M., Courcot, D., Garçon, G., 2018. Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: sources, analysis and toxicity. Environ. Chem. Lett. 16, 439–475. https://doi.org/10.1007/s10311-017-0697-0. Abdel-Shafy, H.I., Mansour, M.S.M., 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25 (1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011. Abramesko, V., Tartakovsky, L., 2017. Ultrafine particle air pollution inside dieselpropelled passenger trains. Environ. Pollut. 226, 288–296. https://doi.org/10.1016/j.envpol.2017.03.072. Agudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I., Lara, S.R., Silva, L.F.O., 2017. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158–170. https://doi.org/10.1016/j.envpol.2017.01.075. Agudelo-Castañeda, D.M., Teixeira, E.C., Braga, M., Rolim, S.B.A., Silva, L.F.O., Beddows, D.C.S., Harrison, R.M., Querol, X., 2019. Cluster analysis of urban ultrafine particles size distributions. Atmos. Pollut. Res. 10 (1), 45–52. https://doi.org/10.1016/j.apr.2018.06.006. Allen, J.L., Oberdörster, G., Morris-Schaffer, K., Wong, C., Klocke, C., Sobolewski, M., Conrad, K., Mayer-Proschel, M., Cory-Slechta, D.A., 2017. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology 59, 140–154. https://doi.org/10.1016/j.neuro.2015.12.014. Azarmi, F., Kumar, P., 2016. Ambient exposure to coarse and fine particle emissions from building demolition. Atmos. Environ. 137, 62–79. https://doi.org/10.1016/j.atmosenv.2016.04.029. Azarmi, F., Kumar, P., Mulheron, M., 2014. The exposure to coarse, fine and ultrafine particle emissions from concrete mixing, drilling and cutting activities. J. Hazard. Mater. 279, 268–279. https://doi.org/10.1016/j.jhazmat.2014.07.003. Azarmi, F., Kumar, P., Marsh, D., Fuller, G., 2016. Assessment of the long-term impacts of PM10 and PM2.5 particles from construction works on surrounding areas. Environ. Sci.: Process. Impacts 18 (2), 208–221. https://doi.org/10.1039/c5em00549c. Badran, G., Ledoux, F., Verdin, A., Abbas, I., Roumie, M., Genevray, P., Landkocz, Y., Guidice, J.M.L., Garçon, G., Courcot, D., 2020. Toxicity of fine and quasi-ultrafine particles: Focus on the effects of organic extractable and non-extractable matter fractions. Chemosphere 243, 125440. https://doi.org/10.1016/j.chemosphere.2019.125440. Bhargava, A., Tamrakar, S., Aglawe, A., Lad, H., Kumar, R.S., Kumar, D., Tiwari, R., Chaudhury, K., Yu, I., Kumar, P., 2018. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage. Environ. Pollut. 234, 406–419. https://doi.org/10.1016/j.envpol.2017.11.093. Bhargava, A., Shukla, A., Bunkar, N., Shandilya, R., Lodhi, L., Kumari, R., Gupta, P.K., Rahman, A., Chaudhury, K., Tiwari, R., Goryacheva, I.Y., Mishra, P.K., 2019. Exposureto ultrafine particulate matter induces NF-κβ mediated epigenetic modifications. Environ. Pollut. 252, 39–50. https://doi.org/10.1016/j.envpol.2019.05.065. Billet, S., Landkocz, Y., Martin, P.J., Verdin, A., Ledoux, F., Lepers, C., André, V., Cazier, F., Sichel, F., Shirali, P., Gosset, P., Courcot, D., 2018. Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells. J. Environ. Sci. 71, 168–178. https://doi.org/10.1016/j.jes.2018.04.022. Bliss, B., Tran, K.I., Sioutas, C., Campbell, A., 2018. Ambient ultrafine particles actívate human monocytes: Effect of dose, differentiation state and age of donors. Environ.Res. 161, 314–320. https://doi.org/10.1016/j.envres.2017.11.019. Bourdrel, T., Bind, M.A., Béjot, Y., Morel, O., Argacha, J.F., 2017. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 110 (11), 634–642. https://doi.org/10.1016/j.acvd.2017.05.003. Briffa, J., Sinagra, E., Blundell, R., 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6 (9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691. Buiarelli, F., Di Filippo, P., Massimi, L., Pomata, D., Riccardi, C., Simonetti, G., Sonego, E., 2019. Ultrafine, fine and coarse airborne particle mass concentration in workplaces. Atmos. Pollut. Res. 10 (5), 1685–1690. https://doi.org/10.1016/j.apr.2019.06.009. Buonanno, G., Stabile, L., Avino, P., Belluso, E., 2011. Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant. Waste Manage. 31 (11), 2253–2262. https://doi.org/10.1016/j.wasman.2011.06.017. Burtscher, H., Schüepp, K., 2012. The occurrence of ultrafine particles in the specific environment of children. Paediatr. Respir. Rev. 13 (2), 89–94. https://doi.org/10.1016/j.prrv.2011.07.004. Buzea, C., Pacheco, I., 2019. 28 - Toxicity of nanoparticles. In: Pacheco-Torgal, F., Diamanti, M.V., Nazari, A., Granqvist, C.G., Pruna, A., Amirkhanian, S. (Eds.), Nanotechnology in Eco-efficient Construction. Woodhead Publishing Series in Civil and Structural Engineering, Cambridge, pp. 705–754 https://doi.org/10.1016/b978-0-08-102641-0.00028-1. Buzea, C., Pacheco, I.I., Robbie, K., 2007. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2, MR17–MR71. https://doi.org/10.1116/1.2815690. Bzdek, B.R., Pennington, M.R., Johnston, M.V., 2012. Single particle chemical analysis of ambient ultrafine aerosol: A review. J. Aerosol Sci. 52, 109–120. https://doi.org/10.1016/j.jaerosci.2012.05.001. Castro-Rodriguez, J.A., Forno, E., Rodriguez-Martinez, C.E., Celedón, J.C., 2016. Risk and Protective Factors for Childhood Asthma: What Is the Evidence? J. Allergy Clin. Immunol. In Practice 4 (6), 1111–1122. https://doi.org/10.1016/j.jaip.2016.05.003. Cervellati, F., Benedusi, M., Manarini, F., Woodby, B., Russo, M., Valacchi, G., Pietrogrande, M.C., 2020. Proinflammatory properties and oxidative effects of atmospheric particle components in human keratinocytes. Chemosphere 240, 124746. https://doi.org/10.1016/j.chemosphere.2019.124746. Chen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., Chen, C., 2016. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim. Biophys. Acta (BBA), General Subjects 1860 (12), 2844–2855. https://doi.org/10.1016/j.bbagen.2016.03.019. Chen, C., Zhao, Y., Zhang, Y., Zhao, B., 2017. Source strength of ultrafine and fine particle due to Chinese cooking. Procedia Eng. 205, 2231–2237. https://doi.org/10.1016/j.proeng.2017.10.062. Chen, Q.Y., DesMarais, T., Costa, M., 2019. Metals and mechanisms of carcinogénesis. Annu. Rev. Pharmacol. Toxicol. 59, 537–554. https://10.1146/annurev-pharmtox010818-021031. Chen, X.C., Cao, J.J., Ward, T.J., Tian, L.W., Ning, Z., Kumar, N.G., Aquilina, N.J., Lam, S.H.Y., Qu, L., Ho, K.F., 2020. Characteristics and toxicological effects of commuter exposure to black carbon and metal components of fine particles (PM2.5) in Hong Kong. Sci.Total Environ 742, 140501. https://doi.org/10.1016/j.scitotenv.2020.140501. Cheng, Z., Liang, X., Liang, S., Yin, N., Faiola, F., 2020. A human embryonic stem cell-based in vitro model revealed that ultrafine carbon particles may cause skin inflammation and psoriasis. J. Environ. Sci 87, 194–204. https://doi.org/10.1016/j.jes.2019.06.016. Chu, B., Matti Kerminen, V., Bianchi, F., Yan, C., Petäjä, T., Kulmala, M., 2019. Atmospheric new particle formation in China. Atmos. Chem. Phys. 19 (1), 115–138. https://doi.org/10.5194/acp-19-115-2019. Chung, M.C., Tsai, M.H., Que, D.E., Bongo, S.J., Hsu, W.L., Tayo, L.L., Lin, Y.H., Lin, S.L., Gou, Y.Y., Hsu, Y.C., Hou, W.C., Huang, K.L., Chao, H.R., 2019. Fine particulate matterinduced toxic effects in an animal model of caenorhabditis elegans. Aerosol Air Qual. Res. 19 (5), 1068–1078. https://doi.org/10.4209/aaqr.2019.03.0127. Civeira, M., Pinheiro, R., Gredilla, A., De Vallejuelo, S., Oliveira, M., Ramos, C., Taffarel, S., Kautzmann, R., Madariaga, J., Silva, L.F., 2016. The properties of the nano-minerals and hazardous elements: potential environmental impacts of brazilian coal waste fire. Sci. Total Environ. 544, 892–900. https://doi.org/10.1016/j.scitotenv.2015.12.026. Clifford, S., Mazaheri, M., Salimi, F., Ezz, W.N., Yeganeh, B., Low-Choy, S., Walker, K., Mengersen, K., Marks, G., Morawska, L., 2018. Effects of exposure to ambient ultrafine particles on respiratory health and systemic inflammation in children. Environ. Int. 114, 167–180. https://doi.org/10.1016/j.envint.2018.02.019. Cory-Slechta, D.A., Allen, J.L., Conrad, K., Marvin, E., Sobolewski, M., 2018. Developmental exposure to low level ambient ultrafine particle air pollution and cognitive dysfunction. NeuroToxicology 69, 217–231. https://doi.org/10.1016/j.neuro.2017.12.003. Crobeddu, B., Aragao-Santiago, L., Bui, L.C., Boland, S., Baeza, A.S., 2017. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular. Environ. Pollut. 230, 125–133. https://doi.org/10.1016/j.envpol.2017.06.051. Cui, J., Halbrook, R.S., Zang, S., Han, S., Li, X., 2018. Metal concentrations in homing pigeon lung tissue as a biomonitor of atmospheric pollution. Ecotoxicology 27 (2), 169–174. https://doi.org/10.1007/s10646-017-1882-4. Cutruneo, C.M.N.L., Oliveira, M.L.S., Ward, C.R., Hower, J.C., de Brum, I.A.S., Sampaio, C.H., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F.O., 2014. A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of electron beam applications. Int. J. Coal Geol. 130, 33–52. https://doi.org/10.1016/j.coal.2014.05.009. Da, Costa Oliveira, J.R., Base, L.H., de Abreu, L.C., Filho, C.F., Ferreira, C., Morawska, L., 2019. Ultrafine particles and children’s health: Literature review. Paediatr. Respir. Rev. 32, 73–81. https://doi.org/10.1016/j.prrv.2019.06.003. Dall’Osto, M., Thorpe, A., Beddows, D.C.S., Harrison, R.M., Barlow, J.F., Dunbar, T., Williams, P.I., Coe, H., 2011. Remarkable dynamics of nanoparticles in the urban atmosphere. Atmos. Chem. Phys. 11 (13), 6623–6637. https://doi.org/10.5194/acp-11-6623-2011. Dalmora, A.C., Ramos, C.G., Querol, X., Kautzmann, R.M., Oliveira, M.L.S., Taffarel, S.R., Moreno, T., Silva, L.F.O., 2016. Nanoparticulate mineral matter from basalt dust wastes. Chemosphere (Oxford) 144, 2013–2017. https://doi.org/10.1016/j.hemosphere.2015.10.047. De Kok, T.M.C.M., Driece, H.A.L., Hogervorst, J.G.F., Briedé, J.J., 2006. Toxicological assessment of ambient and traffic-related particulate matter: a review of recent studies. Mutat. Res. Rev. Mutat. Res. 613 (2-3), 103–122. https://doi.org/10.1016/j.mrrev.2006.07.001. AQEG, 2017. Ultrafine Particles (UFP) in the UK. Air Quality Expert Group (AQEG). Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland. https://uk-air.defra. gov.uk/assets/documents/reports/cat09/1807261113_180703_UFP_Report_FINAL_for_publication.pdf (accessed 30 December 2020). De Oliveira Galvão, M.F., de Oliveira Alves, N., Ferreira, P.A., Caumo, S., de Castro Vasconcellos, P., Artaxo, P., de Souza Hacon, S., Roubicek, D.A., Batistuzzo de Medeiros, S.R., 2018. Biomass burning particles in the Brazilian Amazon region: Mutagenic effects of nitro and oxy-PAHs and assessment of health risks. Environ. Pollut. 233, 960970. doi:https://doi.org/10.1016/j.envpol.2017.09.068 De Roma, A., Neola, B., Serpe, F.P., Sansone, D., Picazio, G., Cerino, P., Esposito, M., 2017. Land Snails (Helix aspersa) as Bioindicators of Trace Element Contamination in Campania (Italy). O. A. Lib. Journal 4 (2), e3339. https://doi.org/10.4236/oalib.1103339. De Vallejuelo, S.F.O., Gredilla, A., da Boit, K., Teixeira, E.C., Sampaio, C.H., Madariaga, J.M., Silva, L.F., 2017. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: Environmental impact and risk assessment. Chemosphere 169, 725–733. https://doi.org/10.1016/j.chemosphere.2016.09.125. Dias, C.L., Oliveira, M.L.S., Hower, J.C., Taffarel, S.R., Kautzmann, R.M., Silva, L.F.O., 2014. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. Int. J. Coal Geol. 122, 50–60. https://doi.org/10.1016/j.coal.2013.12.011. Donaldson, K., Stone, V., Clouter, A., Renwick, L., Macnee, W., 2001. Ultrafine particles. Occup. Environ. Med. 58, 211–216. https://doi.org/10.1136/oem.58.3.211. Ehn, M., Thornton, J.A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I.H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L.B., Jørgensen, S., Kjaergaard, H.G., Canagaratna, M., Maso, M.D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V.M., Kulmala, M., Worsnop, D.R., Wildt, J., Mentel, T.F., 2014. A large source of low-volatility secondary organic aerosol. Nature. 506, 476–479. https://ezproxy.cuc.edu.co:2067/10.1038/nature13032. Feng, B., Li, L., Xu, H., Wang, T., Wu, R., Chen, J., Zhang, Y., Liu, S., Ho, S.S.H., Huang, W., 2019. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment. J. Environ. Sci. 77, 11–19. https://doi.org/10.1016/j.jes.2017.12.025. Fernández-Camacho, R., Rodríguez, S., de la Rosa, J., Sánchez de la Campa, A.M., Alastuey, A., Querol, X., González-Castanedo, Y., Garcia-Orellana, I., Nava, S., 2012. Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain. Atmos. Environ. 61, 507–517. https://doi.org/10.1016/j.atmosenv.2012.08.003. Fleischer, N.L., Merialdi, M., van Donkelaar, A., Vadillo-Ortega, F., Martin, R.V., Betran, A.P., Souza, J.P., O’Neill, M.S., 2014. Outdoor air pollution, preterm birth, and low birth weight: Analysis of the world health organization global survey on maternal and perinatal health. Environ. Health Perspect. 122 (4), 425–430. https://doi.org/10.1289/ehp.1306837. Forti, L., Jeuland, N., Raux, S., Pasquereau, M., 2005. Analysis of the particulates emitted by internal combustion engines. Oil Gas Sci. Technol 60 (6), 995–1011. https://doi.org/10.2516/ogst:2005070. Gao, R., Sang, N., 2020. Quasi-ultrafine particles promote cell metastasis via HMGB1-mediated cancer cell adhesion. Environ. Pollut. 256, 113390. https://doi.org/10.1016/j.envpol.2019.113390. Gao, D., Ripley, S., Weichenthal, S., Godri Pollitt, K.J., 2020. Ambient particulate matter oxidative potential: Chemical determinants, associated health effects, and strategies for risk management. Free Radic. Biol. Med. 151, 7–25. https://doi.org/10.1016/j.freeradbiomed.2020.04.028. Garcia, K.O., Teixeira, E.C., Agudelo-Castañeda, D.M., Braga, M., Alabarse, P.G., Wiegand, F., Kautzmann, R.M., Silva, L.F., 2014. Assessment of nitro-polycyclic aromatic hydrocarbons in pm1 near an area of heavy-duty traffic. Sci. Total Environ. 479-480, 57–65. https://doi.org/10.1016/j.scitotenv.2014.01.126. Gasparotto, J., Chaves, P.R., Da Boit, M.K., Da Rosa-Siva, H., Bortolin, R., Silva, L.F.O., Rabelo, T., Da Silva, J., Da Silva, F., Nordin, A., Soares, K., Borges, M., Gelain, D., Moreira, J., 2018. Obese rats are more vulnerable to inflammation, genotoxicity and oxidative stress induced by coal dust inhalation than non-obese rats. Ecotoxicol. Environ. Saf. 165, 44–51. https://doi.org/10.1016/j.ecoenv.2018.08.097. Gasparotto, J., Da Boit, M.K., 2020. Coal as an energy source and its impacts on human health. Energy Geoscience https://doi.org/10.1016/j.engeos.2020.07.003 In press. Gasparotto, J., Rodrigues, C.P., Da Boit, M.K., Silva, O.L.F., Gelain, D.P., Fonseca, M.J.C., 2019. Obesity associated with coal ash inhalation triggers systemic inflammation and oxidative damage in the hippocampus of rats. Food Chem. Toxicol. 133, 110766. https://doi.org/10.1016/j.fct.2019.110766. Goel, A., Kumar, P., 2015. Characterisation of nanoparticle emissions and exposure at traffic intersections through fast-response mobile and sequential measurements. Atmos. Environ. 107, 374–390. https://doi.org/10.1016/j.atmosenv.2015.02.002. Gómez-Ugalde, R., 2003. Efectos de la contaminación atmosférica en poblaciones de pequeños roedores silvestres (Microtus mexicanus, Peromyscus Melanotis y Peromiscus Difficilis) en México. D. F. Ph.D. Thesis. Universitat de Barcelona, p. 415. https://core.ac.uk/download/pdf/19919452.pdf. González, L.T., Longoria Rodríguez, F.E., Sánchez-Domínguez, M., Cavazos, A., LeyvaPorras, C., Silva-Vidaurri, L.G., Acuña Askar, K., Kharissov, B.I., Villareal Chiu, J.F., Alfaro Barbosa, J.M., 2017. Determination of trace metals in TSP and PM2.5 materials collected in the Metropolitan Area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS. Atmos. Res. 196, 8–22. https://doi.org/10.1016/j.atmosres.2017.05.009. Gonzalez-Moragas, L., Roig, A., Laromaine, A., 2015. C. elegans as a tool for in vivo nanoparticle assessment. Adv. Colloid Interface Sci. 219, 10–26. https://doi.org/10.1016/j.cis.2015.02.001. Grana, M., Toschi, N., Vicentini, L., Pietroiusti, A., Magrini, A., 2017. Exposure to ultrafine particles in different transport modes in the city of Rome. Environ. Pollut. 228, 201–210. https://doi.org/10.1016/j.envpol.2017.05.032. Guo, L., Johnson, G.R., Hofmann, W., Wang, H., Morawska, L., 2019. Deposition of ambient ultrafine particles in the respiratory tract of children: a novel experimental method and its application. J. Aerosol Sci. 139, 105465. https://doi.org/10.1016/j.jaerosci.2019.105465. Habre, R., Zhou, H., Eckel, S.P., Enebish, T., Fruin, S., Bastain, T., Rappatort, E., Gilliland, F., 2018. Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. Environ. Int. 118, 48–59. https://doi.org/10.1016/j.envint.2018.05.031. HEI, 2013. Understanding the Health Effects of Ambient Ultrafine Particles. HEI Review Panel on Ultrafine Particles. HEI Perspectives 3. Health Effects Institute (HEI) https://www.healtheffects.org/system/files/Perspectives3.pdf. Heusinkveld, H.J., Wahle, T., Campbell, A., Westerink, R.H.S., Tran, L., Johnston, H., Stone, V., Cassee, F.R., Schins, R.P.F., 2016. Neurodegenerative and neurological disorders by small inhaled particles. NeuroToxicology 56, 94–106. https://doi.org/10.1016/j.neuro.2016.07.007. Hofman, J., Samson, R., Joosen, S., Blust, R., Lenaerts, S., 2018. Cyclist exposure to black carbon, ultrafine particles and heavy metals: An experimental study along two commuting routes near Antwerp. Belgium. Environ. Res. 164, 530–538. https://doi.org/10.1016/j.envres.2018.03.004. Islam, N., Rabha, S., Silva, L.F.O., Saikia, B.K., 2019. Air quality and PM10-associated polyaromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches. Environ. Geochem. Health 41, 2039–2053. https://doi.org/10.1007/s10653-019-00256-z. Jantzen, K., Møller, P., Karottki, D.G., Olsen, Y., Bekö, G., Clausen, G., Hersoug, L.G., Loft, S., 2016. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells. Toxicology 359-360, 11–18. https://doi.org/10.1016/j.tox.2016.06.007. Jeong, C.H., Traub, A., Evans, G.J., 2017. Exposure to ultrafine particles and black carbon in diesel-powered commuter trains. Atmos. Environ. 155, 46–52. https://doi.org/10.1016/j.atmosenv.2017.02.015. De Jesus, A.L., Rahman, M.M., Mazaheri, M., Thompson, H., Knibbs, L.D., Jeong, C., Evans, G., Nei, W., Ding, A., Liping, Q., Li, L., Portin, H., Niemi, J.V., Timonen, H., Luoma, K., Petäjä, T., Kulmala, M., Kowalski, M., Peters, A., Cyrys, J., Ferrero, L., Manigrasso, M., Avino, P., Buonano, G., Reche, C., Querol, X., Beddows, D., Harrison, R.M., Sowlat, M.H., Sioutas, C., Morawska, L., 2019. Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other? Environ. Int. 129, 118–135. https://doi.org/10.1016/j.envint.2019.05.021. Jones, A.M., Harrison, R.M., 2016. Emission of ultrafine particles from the incineration of municipal solid waste: A review. Atmos. Environ. 140, 519–528. https://doi.org/10.1016/j.atmosenv.2016.06.005. Kecorius, S., Kivekäs, N., Kristensson, A., Tuch, T., Covert, D.S., Birmili, W., Lihavainen, H., Hyvärinen, A.P., Martinsson, J., Sporre, M.K., Swietlicki, E., Wiedensohler, A., Ulevicius, V., 2016. Significant increase of aerosol number concentrations in air masses crossing a densely trafficked sea area. Oceanologia 58 (1), 1–12. https://doi.org/10.1016/j.oceano.2015.08.001. Kelly, F.J., Fussell, J.C., 2012. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60, 504–526. https://doi.org/10.1016/j.atmosenv.2012.06.039. Keuken, M.P., Moerman, M., Zandveld, P., Henzing, J.S., 2015. Total and size-resolved particle number and black carbon concentrations near an industrial area. Atmos. Environ. 122, 196–205. https://doi.org/10.1016/j.atmosenv.2015.09.047. Kim, K.H.H., Jahan, S.A., Kabir, E., Brown, R.J.C.C., 2013. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60, 71–80. https://doi.org/10.1016/j.envint.2013.07.019. Kim, H.L., Han, J., Lee, S.M., Kwon, H.B., Hwang, J., Kim, Y.J., 2018. MEMS-based particle detection system for measuring airborne ultrafine particles. Sens. Actuator A. Phys. 283, 235–244. https://doi.org/10.1016/j.sna.2018.09.060. Klaassen, C.D., 2013. Casarett and Doull’s: Toxicology, The basic science of poison (English Editon). Mc Graw Hill Education – Medical, USA, pp. 525–907 ISBN: 978-0-07-176922-8. Koçak, M., Mihalopoulos, N., Kubilay, N., 2007. Contributions of natural sources to high PM10 and PM2.5 events in the eastern Mediterranean. Atmos. Environ. 41 (18), 3806–3818. https://doi.org/10.1016/j.atmosenv.2007.01.009. Kumar, P., Robins, A., Vardoulakis, S., Britter, R., 2010. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmos. Environ. 44 (39), 5035–5052. https://doi.org/10.1016/j.atmosenv.2010.08.016. Kronbauer, M.A., Izquierdo, M., Dai, S., Wannders, F.B., Wagner, N.J., Mastalerz, M., Hower, J.C., Oliverira, M.L.S., Taffarel, S.R., Bizani, D., Silva, L.F.O., 2013. Geochemistry of ultrafine and nano-compounds in coal gasification ashes: A synoptic view. Sci. Total Environ. 456-457, 95–103. https://doi.org/10.1016/j.scitotenv.2013.02.066. Kumar, P., Ketzel, M., Vardoulakis, S., Pirjola, L., Britter, R., 2011. Dynamics and dispersión modelling of nanoparticles from road traffic in the urban atmospheric environment-A review. J. Aerosol Sci. 42 (9), 580–603. https://doi.org/10.1016/j.jaerosci.2011.06.001. Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R.M., Norford, L., Britter, R., 2014. Ultrafine particles in cities. Environ. Int. 66, 1–10. https://doi.org/10.1016/j.envint.2014.01.013. Kumar, P., Wiedensohler, A., Birmili, W., Quincey, P., Hallquist, M., 2016. Ultrafine Particles Pollution and Measurements. Compr. Anal. Chem. 73, 369–390. https://doi.org/10.1016/bs.coac.2016.04.004. Kumar, P., Patton, A.P., Durant, J.L., Frey, H.C., 2018. A review of factors impacting exposure to PM2.5, ultrafine particles and black carbon in Asian transport microenvironments. Atmos. Environ. 187, 301–316. https://doi.org/10.1016/j.atmosenv.2018.05.046. Kwon, H.S., Ryu, M.H., Carlsten, C., 2020. Ultrafine particles: unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 52 (3), 318–328. https://doi.org/10.1038/s12276-020-0405-1. Landkocz, Y., Ledoux, F., André, V., Cazier, F., Genevray, P., Dewaele, D., Martin, P.J., Lepers, C., Verdin, A., Courcot, L., Boushina, S., Sichel, F., Gualtieri, M., Shirali, P., Courcot, D., Billet, S., 2017. Fine and ultrafine atmospheric particulate matter at a multiinfluenced urban site: Physicochemical characterization, mutagenicity and cytotoxicity. Environ. Pollut. 221, 130–140. https://doi.org/10.1016/j.envpol.2016.11.054. Lanzinger, S., Schneider, A., Breitner, S., Stafoggia, M., Erzen, I., Dostal, M., Pastorkova, A., Bastian, S., Cyrys, J., Zscheppang, A., Kolodnitska, T., Peters, A., Mykhalchuk, B., 2016. Associations between ultrafine and fine particles and mortality in five central European cities - Results from the UFIREG study. Environ. Int. 88, 44–52. https://doi.org/10.1016/j.envint.2015.12.006. Lavigne, E., Lima, I., Hatzopoulou, M., Van Ryswyk, K., Decou, M.L., Luo, W., van Donkelaar, A., Martin, R.V., Chen, H., Stieb, D.M., Crighton, E., Gasparrini, A., Elten, M., Yasseen III, A.S., Burnett, R.T., Walker, M., Weichenthal, S., 2019. Spatial variations in ambient ultrafine particle concentrations and risk of congenital heart defects. Environ. Int. 130, 104953. https://doi.org/10.1016/j.envint.2019.104953. Lee, W., Bell, M.L., Gasparrini, A., Armstrong, B.G., Sera, F., Hwang, S., Lavigne, E., Zanobetti, A., Coelho, M.S.Z.S., Saldiva, P.H.N., Osorio, S., Tobias, A., Zeka, A., Goodman, P.G., Forsberg, B., Rocklöv, J., Hashizume, M., Honda, Y., Guo, Y.L.L., Seposo, X., Dung, D.V., Dang, T.N., Tong, S., Guo, Y., Kim, H., 2017. Mortality burden of diurnal temperatura range and its temporal changes : A multi-country study. Environ. Int. 110, 123–130. https://doi.org/10.1016/j.envint.2017.10.018. León-Mejía, G., Silva, L.F., Civeira, M.S., Oliveira, M.L.S., Machado, M., Villela, I.V., Hartmann, A., Premoli, S., Corrêa, D.S., Silva, L., Henriques, J.A.P., 2016. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. Environ. Sci. Pollut. Res. 23, 24019–24031. https://ezproxy.cuc.edu.co:2067/10.1007/s11356-016-7623-z. León-Mejía, G., Machado, M.N., Okuro, R.T., Silva, L.F., Telles, C., Dias, J., Niekraszewicz, L., Da Silva, J., Henriques, J.A.P., Zin, W.A., 2018. Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci. Total Environ. 625, 589–599. https://doi.org/10.1016/j.scitotenv.2017.12.283. Li, Y., Yang, M., Meng, T., Niu, Y., Dai, Y., Zhang, L., Zheng, X., Jalava, P., Dong, G., Gao, W., Zheng, Y., 2020. Oxidative stress induced by ultrafine carbon black particles can elicit apoptosis in vivo and vitro. Sci. Total Environ. 709, 135802. https://doi.org/10.1016/j.scitotenv.2019.135802. Liati, A., Schreiber, D., Arroyo Rojas Dasilva, Y., Dimopoulos Eggenschwiler, P., 2018. Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective. Environ. Pollut. 239, 661–669. https://doi.org/10.1016/j.envpol.2018.04.081. Liu, J.Y., Hsiao, T.C., Lee, K.Y., Chuang, H.C., Cheng, T.J., Chuang, K.J., 2018. Association of ultrafine particles with cardiopulmonary health among adult subjects in the urban areas of northern Taiwan. Sci. Total Environ. 627, 211–215. https://doi.org/10.1016/j.scitotenv.2018.01.218. Lopes, M., Russo, A., Monjardino, J., Gouveia, C., Ferreira, F., 2019. Monitoring of ultrafine particles in the surrounding urban area of a civilian airport. Atmos. Pollut. Res. 10 (5), 1454–1463. https://doi.org/10.1016/j.apr.2019.04.002. Louis, C., Liu, Y., Tassel, P., Perret, P., Chaumond, A., André, M., 2016. PAH, BTEX, carbonyl compound, black-carbon, NO2 and ultrafine particle dynamometer bench emissions for Euro 4 and Euro 5 diesel and gasoline passenger cars. Atmos. Environ. 141, 80–95. https://doi.org/10.1016/j.atmosenv.2016.06.055. Lü, S., Zhang, R., Yao, Z., Yi, F., Ren, J., Wu, M., Feng, M., Wang, Q., 2012. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere. J. Environ. Sci. 24 (5), 882–890. https://doi.org/10.1016/S1001-0742(11)60870-X. Lü, S., Hao, X., Liu, D., Wang, Q.Q., Zhang, W., Liu, P., Zhang, R., Yu, S., Pan, R., Wu, M., Yonemochi, S., Wang, Q., 2016. Mineralogical characterization of ambient fine/ultrafine particles emitted from Xuanwei C1 coal combustion. Atmos. Res. 169, 17–23. https://doi.org/10.1016/j.atmosres.2015.09.020. Luengo-Oroz, J., Reis, S., 2019. Assessment of cyclists’ exposure to ultrafine particles along alternative commuting routes in Edinburgh. Atmos. Pollut. Res. 10 (4), 1148–1158. https://doi.org/10.1016/j.apr.2019.01.020. Lundborg, M., Johard, U., Låstbom, L., Gerde, P., Camner, P., 2001. Human alveolar macrophage phagocytic function is impaired by aggregates of ultrafine carbon particles. Environ. Res. 86 (3), 244–253. https://doi.org/10.1006/enrs.2001.4269. Ma, N., Birmili, W., 2015. Estimating the contribution of photochemical particle formation to ultrafine particle number averages in an urban atmosphere. Sci Total Environ. 512-513, 154–166. https://doi.org/10.1016/j.scitotenv.2015.01.009. Magalhaes, S., Baumgartner, J., Weichenthal, S., 2018. Impacts of exposure to black carbon, elemental carbon, and ultrafine particles from indoor and outdoor sources on blood pressure in adults: A review of epidemiological evidence. Environ. Res. 161, 345–353. https://doi.org/10.1016/j.envres.2017.11.030. Maji, S., Ahmed, S., Siddiqui, W.A., Ghosh, S., 2017. Short term effects of criteria air pollutants on daily mortality in Delhi. India. Atmos. Environ. 150, 210–219. https://doi.org/10.1016/j.atmosenv.2016.11.044. Marabini, L., Ozgen, S., Turacchi, S., Aminti, S., Arnaboldi, F., Lonati, G., Fermo, P., Corbella, L., Valli, G., Bernardoni, V., Dell’Acqua, M., Vecchi, R., Becagli, S., Caruso, D., Corrado, G.L., Marinovich, M., 2017. Ultrafine particles (UFPs) from domestic wood stoves: genotoxicity in human lung carcinoma A549 cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 820, 39–46. https://doi.org/10.1016/j.mrgentox.2017.06.001. Marimon-Bolívar, W., Tejeda-Benítez, L.P., Núñez-Avilés, C.A., De Léon-Pérez, D.D., 2019. Evaluation of the in vivo toxicity of green magnetic nanoparticles using Caenorhabditis elegans as a biological model. Environ. Nanotechnol. Monit. Manag. 12, 100253. https://doi.org/10.1016/j.enmm.2019.100253. Martinello, K., Oliveira, M., Molossi, F., Ramos, C., Teixeira, E., Kautzmann, R., Silva, L.F., 2014. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 470-471, 444–452. https://doi.org/10.1016/j.scitotenv.2013.10.007. Martins, V., Correia, C., Cunha-Lopes, I., Faria, T., Diapouli, E., Manousakas, M.I., Eleftheriadis, K., Almeida, S.M., 2021. Chemical characterisation of particulate matter in urban transport modes. J. Environ. Sci. 100, 51–61. https://doi.org/10.1016/j.jes.2020.07.008. Miller, B.G., 2011. 9 - Emissions Control Strategies for Power Plants. In: Miller, B.G. (Ed.), Clean Coal Engineering Technology. Elsevier, Amsterdam, pp. 375–481 https://doi.org/10.1016/b978-1-85617-710-8.00009-1. Miller, M.R., Shaw, C.A., Langrish, J.P., 2012. From particles to patients: Oxidative stress and the cardiovascular effects of air pollution. Future Cardiol. 8 (4), 577–602. https://doi.org/10.2217/fca.12.43. Mishra, R.K., Shukla, A., Parida, M., Pandey, G., 2016. Urban roadside monitoring and prediction of CO, NO2 and SO2 dispersion from on-road vehicles in megacity Delhi. Transp. Res. D Transp. Environ. 46, 157–165. https://doi.org/10.1016/j.trd.2016.03.019. Møller, K.L., Brauer, C., Mikkelsen, S., Bonde, J.P., Loft, S., Helweg-Larsen, K., Thygesen, L.C., 2020. Cardiovascular disease and long-term occupational exposure to ultrafine particles: A cohort study of airport workers. Int. J. Hyg. Environ. Health 223 (1), 214–219. https://doi.org/10.1016/j.ijheh.2019.08.010. Morawska, L., Ristovski, Z., Jayaratne, E.R., Keogh, D.U., Ling, X., 2008. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmos. Environ. 42 (35), 8113–8138. https://doi.org/10.1016/j.atmosenv.2008.07.050. Morris-Schaffer, K., Sobolewski, M., Welle, K., Conrad, K., Yee, M., O’Reilly, M.A., CorySlechta, D.A., 2018. Cognitive flexibility deficits in male mice exposed to neonatal hyperoxia followed by concentrated ambient ultrafine particles. Neurotoxicol. Teratol. 70, 51–59. https://doi.org/10.1016/j.ntt.2018.10.003. Muñoz-Salazar, J.I., Raga, G.B., Yakobi-Hancock, J., Kim, J.S., Rosas, D., Caudillo, L., AlvarezOspina, H., Ladino, L.A., 2020. Ultrafine aerosol particles in the western Caribbean: A first case study in Merida. Atmos. Pollut. Res. 11 (10), 1767–1775. https://doi.org/10.1016/j.apr.2020.07.008. Nho, R., 2020. Pathological effects of nano-sized particles on the respiratory system. Nanomedicine : N. B.M. 29, 102242. https://doi.org/10.1016/j.nano.2020.102242. Nyarku, M., Buonanno, G., Ofosu, F., Jayaratne, R., Mazaheri, M., Morawska, L., 2019. Schoolchildren’s personal exposure to ultrafine particles in and near Accra. Ghana. Environ. Int. 133. https://doi.org/10.1016/j.envint.2019.105223. Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., Kreyling, W., Cox, C., 2002. Extrapulmonary translocation of ultrafine carbon particles following wholebody inhalation exposure of rats. J. Toxicol. Environ. Health Part A. 65 (20), 1531–1543. https://doi.org/10.1080/00984100290071658. Ohlwein, S., Kappeler, R., Kutlar Joss, M., Künzli, N., Hoffmann, B., 2019. Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. Int. J. Public Health 64, 447–449. https://doi.org/10.1007/s00038-019-01202-7. Oliveira, M.L.S., Navarro, O.G., Crissien, T.J., Tutikian, B.F., Da Boit, K., Texeira, E.C., Cabello, J.J., Agudelo-Castañeda, D.M., Silva, L.F.O., 2017. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls. Environ. Res. 158, 450–455. https://doi.org/10.1016/j.envres.2017.07.002. Oliveira, M.L.S., Izquierdo, M., Querol, X., Lieberman, R.N., Saikia, B.K., Silva, L.F.O., 2019a. Nanoparticles from Construction Wastes: A Problem to Health and the Environment. J. Clean. Prod. 219, 236–243. https://doi.org/10.1016/j.jclepro.2019.02.096. Oliveira, M.L.S., Pinto, D., Tutikian, B.F., Da Boit, K., Saikia, B.K., Silva, L.F.O., 2019b. Pollution from uncontrolled coal fires: Continuous gaseous emissions and nanoparticles from coal mining industry. J. Clean. Prod. 215, 1140–1148. https://doi.org/10.1016/j.jclepro.2019.01.169. Paunescu, A.C., Casas, M., Ferrero, A., Pañella, P., Bougas, N., Beydon, N., Just, J., Lezmi, J., Ballester, F., Momas, I., 2019. Associations of black carbon with lung function and airway inflammation in schoolchildren. Environ. Int. 131, 104984. https://doi.org/10.1016/j.envint.2019.104984. Peralta, O., Ortínez-Alvarez, A., Basaldud, R., Santiago, N., Alvarez-Ospina, H., de la Cruz, K., Barrera, V., Espinosa, M.D.L.C., Saavedra, I., Castro, T., Martínez-Arroyo, A., Páramo, V.H., Ruíz-Suárez, L.G., Vazquez-Galvez, F.A., Gavilán, A., 2019. Atmospheric black carbon concentrations in Mexico. Atmos. Res. 230, 104626. https://doi.org/10.1016/j.atmosres.2019.104626. Pétursdóttir, U., Kirkelund, G.M., Press-Kristensen, K., Hertel, O., Mikkelsen, T.N., 2018. Ultrafine particles in inhabited areas in the Arctic - From very low to high concentrations. Atmos. Pollut. Res. 9 (2), 299–308. https://doi.org/10.1016/j.apr.2017.10.008. Platel, A., Privat, K., Talahari, S., Delobel, A., Dourdin, G., Gateau, E., Simar, S., Saleh, Y., Sotty, J., Antherieu, S., Canivet, L., Alleman, L.Y., Perdrix, E., Garçon, G., Denayer, F.O., Lo Guidice, J.M., Nesslany, F., 2020. Study of in vitro and in vivo genotoxic effects of air pollution fine (PM2.5-0.18) and quasi-ultrafine (PM0.18) particles on lung models. Sci. Total Environ 711, 134666. https://doi.org/10.1016/j.scitotenv.2019.134666. Pourret, O., Hursthouse, A., 2019. It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. Int. J. Environ. Res. Public Health 16 (22), 4446. https://doi.org/10.3390/ijerph16224446. Pyo, J., Ock, Y., Jeong, D., Park, K., Lee, D., 2017. Development of filter-free particle filtration unit utilizing condensational growth: With special emphasis on high-concentration of ultrafine particles. Build. Environ. 112, 200–208. https://doi.org/10.1016/j.buildenv.2016.11.011. Ramírez, O., de la Sánchez, C.A.M., Amato, F., Moreno, T., Silva, L.F.O., de la Rosa, J., 2019. Physicochemical Characterization and Sources of the Thoracic Fraction of Road Dust in a Latin American Megacity. Sci. Total Environ. 652, 434–446. https://doi.org/10.1016/j.scitotenv.2018.10.214. Ramírez, O., Da Boit, K., Blanco, E., Silva, L.F.O., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655. https://doi.org/10.1016/j.uclim.2020.100655. Rengarajan, T., Rajendran, P., Nandakumar, N., Lokeshkumar, B., Rajendran, P., Nishigaki, I., 2015. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac. J. Trop. Biomed. 5, 182–189. https://doi.org/10.1016/S2221-1691(15)30003-4. Ribeiro, J., Flores, D., 2020. Occurrence, leaching and mobility of trace elements in a coal mining waste dump: the case of Douro Coalfield (Portugal). Energy Geoscience https://doi.org/10.1016/j.engeos.2020.09.005 In press. Ribeiro, J., Daboit, K., Flores, D., Kronbauer, M.A., Silva, L.F.O., 2013a. Extensive FE-SEM/ EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash. Sci. Total Environ. 452-453, 98–107. https://doi.org/10.1016/j.scitotenv.2013.02.010. Ribeiro, J., Taffarel, S.R., Sampaio, C.H., Flores, D., Silva, L.F.O., 2013b. Mineral speciation and fate of some hazardous contaminants in coal waste pile from anthracite mining in Portugal. Int. J. Coal Geol. 109-110, 15–23. https://doi.org/10.1016/j.coal.2013.01.007. Rizza, V., Stabile, L., Vistocco, D., Russi, A., Pardi, S., Buonanno, G., 2019. Effects of the exposure to ultrafine particles on heart rate in a healthy population. Sci. Total Environ. 650, 2403–2410. https://doi.org/10.1016/j.scitotenv.2018.09.385. Rojas, J.C., Sánchez, N.E., Schneider, I., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: Environmental implications. Urban Clim. 27, 412–419. https://doi.org/10.1016/j.uclim.2018.12.011. Sade, M.Y., Novack, V., Ifergane, G., Horev, A., Kloog, I., 2015. Air pollution and ischemic stroke among young adults. Stroke 46 (12), 3348–3353. https://doi.org/10.1161/STROKEAHA.115.010992. Saha, P.K., Zimmerman, N., Malings, C., Hauryliuk, A., Li, Z., Snell, L., Subramanian, R., Lipsky, E., Apte, J.S., Robinson, A.L., Presto, A.A., 2019. Quantifying high-resolution spatial variations and local source impacts of urban ultrafine particle concentrations. Sci. Total Environ. 655, 473–481. https://doi.org/10.1016/j.scitotenv.2018.11.197. Saikia, B.K., Saikia, J., Rabha, S., Silva, L.F.O., Finkelman, R., 2018. Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geosci. Front. 9 (3), 863–875. https://doi.org/10.1016/j.gsf.2017.11.013. Sanderson, P., Delgado-Saborit, J.M., Harrison, R.M., 2014. A review of chemical and physical characterisation of atmospheric metallic nanoparticles. Atmos. Environ. 94, 353–365. https://doi.org/10.1016/j.atmosenv.2014.05.023. Santibáñez-Andrade, M., Quezada-Maldonado, E.M., Osornio-Vargas, Á., Sánchez-Pérez, Y., García-Cuellar, C.M., 2017. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis. Environ. Pollut. 229, 412–422. https://doi.org/10.1016/j.envpol.2017.06.019. Schneider, I.L., Teixeira, E.C., Silva, L.F., Wiegand, F., 2015. Atmospheric particle number concentration and size distribution in a traffic-impacted area. Atmos. Pollut. Res. 6, 877–885. https://doi.org/10.5094/APR.2015.097. Schneider, I.L., Teixeira, E.C., Agudelo-Castañeda, D., Silva, G., Balzaretti, N., Braga, M., Silva, L.F.O., 2016. FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM1.0. Sci. Total Environ. 541, 1151–1160. https://doi.org/10.1016/j.scitotenv.2015.09.142. Seigneur, C., 2019. Atmospheric Dispersion. Air Pollution: Concepts, Theory, and Applications. Cambridge University Press, pp. 95–124 https://doi.org/10.1017/9781108674614.006. Sharma, S., Kumar, M.S., Parmar, A., Sachar, S., 2018. Chapter 18 – Understanding toxicity of nanomaterials in the environment: crucial tread for controlling the production, processing, and assessing the risk. Nanomater. Chromatogr., 467–500 https://doi.org/10.1016/B978-0-12-812792-6.00018-2. Shukla, A., Bunkar, N., Kumar, R., Bhargava, A., Tiwari, R., Chaudhury, K., Goryacheva, I.Y., Mishra, P.K., 2019. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. Sci. Total Environ. 656, 760–777. https://doi.org/10.1016/j.scitotenv.2018.11.381. Silva, L.F.O., Da Boit, K., Sampaio, C.H., Jasper, A., Andrade, M.L., Kostova, I.J., Waanders, F.B., Henke, K.R., Hower, J.C., 2012a. The occurrence of hazardous volatile elements and nanoparticles in Bulgarian coal fly ashes and the effect on human health exposure. Sci. Total Environ. 416, 513–526. https://doi.org/10.1016/j.scitotenv.2011.11.012. Silva, L.F.O., Jasper, A., Andrade, M.L., Sampaio, C.H., Dai, S., Li, X., Li, T., Chen, W., Wang, X., Liu, H., Zhao, L., Hopps, S.G., Jewell, R.F., Hower, J.C., 2012b. Applied investigation on the interaction of hazardous elements binding on ultrafine and nanoparticles in Chinese anthracite-derived fly ash. Sci. Total Environ. 419, 250–264. https://doi.org/10.1016/j.scitotenv.2011.12.069. Silva, L.F.O., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020a. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776. https://doi.org/10.1016/j.chemosphere.2019.124776. Silva, L.F.O., Pinto, D., Neckel, A., Oliveira, M.L.S., Sampaio, C.H., 2020b. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 254, 126822. https://doi.org/10.1016/j.chemosphere.2020.126822. Simkhovich, B.Z., Kleinman, M.T., Kloner, R.A., 2008. Air Pollution and Cardiovascular Injury: Epidemiology, Toxicology, and Mechanisms. J. Am. Coll. Cardiol. 52 (9), 719–726. https://doi.org/10.1016/j.jacc.2008.05.029. Sinis, S.I., Gourgoulianis, K.I., Hatzoglou, C., Zarogiannis, S.G., 2019. Mechanisms of engineered nanoparticle induced neurotoxicity in Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 67, 29–34. https://doi.org/10.1016/j.etap.2019.01.010. Slezakova, K., de Oliveira Fernandes, E., Pereira, M.D.C., 2019. Assessment of ultrafine particles in primary schools: Emphasis on different indoor microenvironments. Environ. Pollut. 246, 885–895. https://doi.org/10.1016/j.envpol.2018.12.073. Song, H., Zhang, Y., Luo, M., Gu, J., Wu, M., Xu, D., Xu, G., Ma, L., 2019. Seasonal variation, sources and health risk assessment of polycyclic aromatic hydrocarbons in different particle fractions of PM2.5 in Beijing, China. Atmos. Pollut. Res. 10 (1), 105–114. https://doi.org/10.1016/j.apr.2018.06.012. Soppa, V.J., Shinnawi, S., Hennig, F., Sasse, B., Hellack, B., Kaminski, H., Quass, U., Schins, R.P.F., Kuhlbusch, T.A.J., Hoffmann, B., 2019. Effects of short-term exposure to fine and ultrafine particles from indoor sources on arterial stiffness – A randomized sham-controlled exposure study. Int. J. Hyg. Environ. Health 222 (8), 1115–1132. https://doi.org/10.1016/j.ijheh.2019.08.002. Srimuruganandam, B., Shiva Nagendra, S.M., 2011. Chemical characterization of PM10 and PM2.5 mass concentrations emitted by heterogeneous traffic. Sci. Total Environ. 409 (17), 3144–3157. https://doi.org/10.1016/j.scitotenv.2011.04.042. Stacey, B., 2019. Measurement of ultrafine particles at airports: A review. Atmos. Environ. 198, 463–477. https://doi.org/10.1016/j.atmosenv.2018.10.041. Stacey, B., Harrison, R.M., Pope, F., 2020. Evaluation of ultrafine particle concentrations and size distributions at London Heathrow Airport. Atmos. Environ. 222, 117148. https://doi.org/10.1016/j.atmosenv.2019.117148. Stafoggia, M., Schneider, A., Cyrys, J., Samoli, E., Andersen, Z.J., Bedada, G.B., Bellander, T., Cattani, G., Eleftheriadis, K., Faustini, A., Hoffmann, B., Jacquemin, B., Katsouyanni, K., Massling, A., Pekkanen, J., Perez, N., Peters, A., Quass, U., Yli-Tuomi, T., Forastiere, F., 2017. Association Between Short-term Exposure to Ultrafine Particles and Mortality in Eight European Urban Areas. Epidemiology 28 (2), 172–180. https://doi.org/10.1097/EDE.0000000000000599. Sun, J., Birmili, W., Hermann, M., Tuch, T., Weinhold, K., Spindler, G., Schladitz, A., Bastian, S., Löschau, G., Cyrys, J., Gu, J., Flentje, H., Briel, B., Asbach, C., Kaminski, H., Ries, L., Sohmer, R., Gerwig, H., Wirtz, K., Meinhardt, F., Schwerin, A., Bath, O., Ma, N., Wiedensohler, A., 2019. Variability of black carbon mass concentrations, submicrometer particle number concentrations and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations. Atmos. Environ. 202, 256–268. https://doi.org/10.1016/j.atmosenv.2018.12.029. Sydbom, A., Blomberg, A., Parnia, S., Stenfors, N., Sandström, T., Dahle, S.E., 2001. Health effects of diesel exhaust emissions. Eur. Respir. J. 17, 733–746. https://doi.org/10.1183/09031936.01.17407330. Thurston, G.D., Ito, K., Lall, R., 2011. A source apportionment of U.S. fine particulate matter air pollution. Atmos. Environ. 45 (24), 3924–3936. https://doi.org/10.1016/j.atmosenv.2011.04.070. Timbrell, J.A., 2009. Principles of Biochemical Toxicology. Fourth edition. Informa Healthcare USA, New York. Topinka, J., Milcova, A., Schmuczerova, J., Krouzek, J., Hovorka, J., 2013. Ultrafine particles are not major carriers of carcinogenic PAHs and their genotoxicity in size-segregated aerosols. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 754 (1-2), 1–6. https://doi.org/10.1016/j.mrgentox.2012.12.016. Tran, P.T.M., Ngoh, J.R., Balasubramanian, R., 2020. Assessment of the integrated personal exposure to particulate emissions in urban micro-environments: A pilot study. Aerosol Air Qual Res. 20 (2), 341–357. https://10.4209/aaqr.2019.04.0201. Vallero, D.A., 2011. 18 - Air Pollution: Atmospheric Wastes. In: Letcher, T.M., Vallero, D.A. (Eds.), Waste: A Handbook for Management. Elsevier, Amsterdam, pp. 243–264 https://doi.org/10.1016/B978-0-12-381475-3.10018-X. Van den Bossche, J., Peters, J., Verwaeren, J., Botteldooren, D., Theunis, J., De Baets, B., 2015. Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmos. Environ. 105, 148–161. https://10.1016/j.atmosenv.2015.01.017. Wahlang, B., Jin, J., Bier, J.I., Hardesty, J.E., Daly, E.F., Schnegelberger, R.D., Falkner, C.K., Prough, R.A., Kirpich, I.A., Cave, M.C., 2019. Mechanisms of environmental contributions to fatty liver disease. Curr. Environ. Health Rep. 6, 80–94. https://doi.org/10.1007/s40572-019-00232-w. Wardoyo, A.Y.P., Juswono, U.P., Noor, J.A.E., 2018. Varied dose exposures to ultrafine particles in the motorcycle smoke cause kidney cell damages in male mice. Toxicol. Rep. 5, 383–389. https://doi.org/10.1016/j.toxrep.2018.02.014. Wei, H., Feng, Y., Liang, F., Cheng, W., Wu, X., Zhou, R., Wang, Y., 2017. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter. Toxicology 380, 94–103. https://doi.org/10.1016/j.tox.2017.01.017. Weichenthal, S., Van Ryswyk, K., Goldstein, A., Shekarrizfard, M., Hatzopoulou, M., 2016. Characterizing the spatial distribution of ambient ultrafine particles in Toronto, Canada: A land use regression model. Environ. Pollut. 208, 241–248. https://10.1016/j.envpol.2015.04.011. WHO, 2006. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment. World Health Organization (WHO) https://apps.who.int/iris/handle/10665/69477. (Accessed 30 September 2020). Wong, B.S.E., Hu, Q., Baeg, G.H., 2017. Epigenetic modulations in nanoparticle-mediated toxicity. Food Chem. Toxicol. 109, 746–752. https://doi.org/10.1016/j.fct.2017.07.006. Wu, T., Xu, H., Liang, X., Tang, M., 2019. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. Chemosphere 221, 708–726. https://doi.org/10.1016/j.chemosphere.2019.01.021. Xia, M., Harb, H., Saffari, A., Sioutas, C., Chatila, T.A., 2018. A Jagged 1–Notch 4 molecular switch mediates airway inflammation induced by ultrafine particles. J. Allergy Clin. Immunol. 142 (4), 1243–1256. https://doi.org/10.1016/j.jaci.2018.03.009. Xiao, X., Cao, L., Wang, R., Shen, Z.X., Cao, Y.X., 2016. Airborne fine particulate matter alters the expression of endothelin receptors in rat coronary arteries. Environ. Pollut. 218, 487–496. https://doi.org/10.1016/j.envpol.2016.07.028. Yadav, I.C., Linthoingambi, N.D., Kumar, V.S., Li, J., Zhang, G., 2018. Concentrations, sources and health risk of nitrated- and oxygenated-polycyclic aromatic hydrocarbon in urban indoor air and dust from four cities of Nepal. Sci. Total Environ. 643, 1013–1023. https://doi.org/10.1016/j.scitotenv.2018.06.265. Yang, B., Li, X., Chen, D., Xiao, C., 2017a. Effects of fine air particulates on gene expresión in non-small-cell lung cancer. Adv. Med. Sci. 62 (2), 295–301. https://doi.org/10.1016/j.advms.2016.12.003. Yang, L., Hou, X.Y.Y., Wei, Y., Thai, P., Chai, F., 2017b. Biomarkers of the health outcomes associated with ambient particulate matter exposure. Sci. Total Environ. 579, 1446–1459. https://doi.org/10.1016/j.scitotenv.2016.11.146. Zamberland, D.C., Halmenschelager, P.T., Silva, L.F.O., Da Rocha, A., Rocha, J.B.T., 2020. Copper decreases associative learning and memory in Drosophila melanogaster. Sci. Total Environ 710, 135306. https://doi.org/10.1016/j.scitotenv.2019.135306. Zhang, W., Lei, T., Lin, Z.Q., Zhang, H.S., Yang, D.F., Xi, Z.G., Chen, J.H., Wang, W., 2011. Pulmonary toxicity study in rats with PM10 and PM2.5: Differential responses related to scale and composition. Atmos. Environ. 45 (4), 1034–1041. https://doi.org/10.1016/j.atmosenv.2010.10.043. Zhang, L., Guo, C., Jia, X., Xu, H., Pan, M., Xu, D., Shen, X., Zhang, J., Tan, J., Qian, H., Dong, C., Shi, Y., Zhou, X., Wu, C., 2018b. Personal exposure measurements of school- children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China. PLoS ONE 13 (4), e0193586. https://doi.org/10.1371/journal.pone.0193586. Zhang, Y., Dong, S., Wang, H., Tao, S., Kiyama, R., 2016. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ. Pollut. 213, 809–824. https://doi.org/10.1016/j.envpol.2016.03.050. Zhang, H.H., Li, Z., Liu, Y., Xinag, P., Cui, X.Y., Ye, H., Hu, B.L., Lou, L.P., 2018. Physical and chemical characteristics of PM2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer. J. Zhejiang Univ. Sci B 19 (4), 317–326. https://doi.org/10.1631/jzus.B1700123. Zhang, Y., Tu, B., Jiang, X., Xu, G., Liu, X., Tang, Q., Bai, L., Meng, P., Zhang, L., Qin, X., Zou, Z., Chen, C., 2019. Exposure to carbon black nanoparticles during pregnancy persistently damages the cerebrovascular function in female mice. Toxicology 422, 44–52. https://doi.org/10.1016/j.tox.2019.04.014. Zhang, L., Yang, L., Zhou, Q., Zhang, X., Xing, W., Wei, Y., Hu, M., Zhao, L., Toriba, A., Hayakawa, K., Tang, N., 2020. Size distribution of particulate polycyclic aromatic hydrocarbons in fresh combustion smoke and ambient air: A review. J. Environ. Sci. 88, 370–384. https://doi.org/10.1016/j.jes.2019.09.007. Zhao, Y., Lin, Z., Jia, R., Li, G., Xi, Z., Wang, D., 2014. Transgenerational effects of trafficrelated fine particulate matter (PM2.5) on nematode Caenorhabditis elegans. J. Hazardous Mater. 274, 106–114. https://doi.org/10.1016/j.jhazmat.2014.03.064. Zhao, Y., Wang, F., Zhao, J., 2015. Size-resolved ultrafine particle deposition and Brownian coagulation from gasoline vehicle exhaust in an environmental test chamber. Environ. Technol. 49, 12153–12160. https://doi.org/10.1021/acs.est.5b02455. Zhou, S., Yuan, Q., Li, W., Lu, Y., Zhang, Y., Wang, W., 2014. Trace metals in atmospheric fine particles in one industrial urban city: Spatial variations, sources, and health implications. J. Environ. Sci. 26 (1), 205–213. https://doi.org/10.1016/S1001-0742(13) 60399-X. |
dc.relation.citationendpage.spa.fl_str_mv |
15 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
13 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
15 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
China University of Geosciences (Beijing) and Peking University |
dc.publisher.place.spa.fl_str_mv |
China |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1674987121000116 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/13649e0c-1cda-4422-ab9f-04b27d2933a6/download https://repositorio.cuc.edu.co/bitstreams/a9cb9967-c440-478e-97f1-fc02104fcbe7/download https://repositorio.cuc.edu.co/bitstreams/36878eed-be5d-4ca5-b002-bd87422a0845/download https://repositorio.cuc.edu.co/bitstreams/f9ae695b-3e43-4512-9c15-9b26a1d81e4b/download |
bitstream.checksum.fl_str_mv |
0c36196b1fc8ba285a526b821ea1bc22 e30e9215131d99561d40d6b0abbe9bad 2bfd962d97b4efc7bf7c8d56d373f3e0 36c5e0b88b5927783483a28ee8fea875 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760778006495232 |
spelling |
Moreno-Ríos, Andrea L.Tejeda-Benitez, LeslyBustillo Lecompte, Ciro Fernando2022-03-24T14:09:11Z2022-03-24T14:09:11Z2022https://hdl.handle.net/11323/9086https://doi.org/10.1016/j.gsf.2021.10114710.1016/j.gsf.2021.1011472588-9192Corporación Universidad de la Costa1674-9871REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Air pollution by particulate matter (PM) is one of the main threats to human health, particularly in large cities where pollution levels are continually exceeded. According to their source of emission, geography, and local meteorology, the pollutant particles vary in size and composition. These particles are conditioned to the aerodynamic diameter and thus classified as coarse (2.5–10 μm), fine (0.1–2.5 μm), and ultrafine (<0.1 μm), where the degree of toxicity becomes greater for smaller particles. These particles can get into the lungs and translocate into vital organs due to their size, causing significant human health consequences. Besides, PM pollutants have been linked to respiratory conditions, genotoxic, mutagenic, and carcinogenic activity in human beings. This paper presents an overview of emission sources, physicochemical characteristics, collection and measurement methodologies, toxicity, and existing control mechanisms for ultrafine particles (UFPs) in the last fifteen years.15 páginasapplication/pdfengChina University of Geosciences (Beijing) and Peking UniversityChina© 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sources, characteristics, toxicity, and control of ultrafine particles: an overviewArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.sciencedirect.com/science/article/pii/S1674987121000116Geoscience FrontiersAbbas, I., Badran, G., Verdin, A., Ledoux, F., Roumié, M., Courcot, D., Garçon, G., 2018. Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: sources, analysis and toxicity. Environ. Chem. Lett. 16, 439–475. https://doi.org/10.1007/s10311-017-0697-0.Abdel-Shafy, H.I., Mansour, M.S.M., 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25 (1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011.Abramesko, V., Tartakovsky, L., 2017. Ultrafine particle air pollution inside dieselpropelled passenger trains. Environ. Pollut. 226, 288–296. https://doi.org/10.1016/j.envpol.2017.03.072.Agudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I., Lara, S.R., Silva, L.F.O., 2017. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158–170. https://doi.org/10.1016/j.envpol.2017.01.075.Agudelo-Castañeda, D.M., Teixeira, E.C., Braga, M., Rolim, S.B.A., Silva, L.F.O., Beddows, D.C.S., Harrison, R.M., Querol, X., 2019. Cluster analysis of urban ultrafine particles size distributions. Atmos. Pollut. Res. 10 (1), 45–52. https://doi.org/10.1016/j.apr.2018.06.006.Allen, J.L., Oberdörster, G., Morris-Schaffer, K., Wong, C., Klocke, C., Sobolewski, M., Conrad, K., Mayer-Proschel, M., Cory-Slechta, D.A., 2017. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology 59, 140–154. https://doi.org/10.1016/j.neuro.2015.12.014.Azarmi, F., Kumar, P., 2016. Ambient exposure to coarse and fine particle emissions from building demolition. Atmos. Environ. 137, 62–79. https://doi.org/10.1016/j.atmosenv.2016.04.029.Azarmi, F., Kumar, P., Mulheron, M., 2014. The exposure to coarse, fine and ultrafine particle emissions from concrete mixing, drilling and cutting activities. J. Hazard. Mater. 279, 268–279. https://doi.org/10.1016/j.jhazmat.2014.07.003.Azarmi, F., Kumar, P., Marsh, D., Fuller, G., 2016. Assessment of the long-term impacts of PM10 and PM2.5 particles from construction works on surrounding areas. Environ. Sci.: Process. Impacts 18 (2), 208–221. https://doi.org/10.1039/c5em00549c.Badran, G., Ledoux, F., Verdin, A., Abbas, I., Roumie, M., Genevray, P., Landkocz, Y., Guidice, J.M.L., Garçon, G., Courcot, D., 2020. Toxicity of fine and quasi-ultrafine particles: Focus on the effects of organic extractable and non-extractable matter fractions. Chemosphere 243, 125440. https://doi.org/10.1016/j.chemosphere.2019.125440.Bhargava, A., Tamrakar, S., Aglawe, A., Lad, H., Kumar, R.S., Kumar, D., Tiwari, R., Chaudhury, K., Yu, I., Kumar, P., 2018. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage. Environ. Pollut. 234, 406–419. https://doi.org/10.1016/j.envpol.2017.11.093.Bhargava, A., Shukla, A., Bunkar, N., Shandilya, R., Lodhi, L., Kumari, R., Gupta, P.K., Rahman, A., Chaudhury, K., Tiwari, R., Goryacheva, I.Y., Mishra, P.K., 2019. Exposureto ultrafine particulate matter induces NF-κβ mediated epigenetic modifications. Environ. Pollut. 252, 39–50. https://doi.org/10.1016/j.envpol.2019.05.065.Billet, S., Landkocz, Y., Martin, P.J., Verdin, A., Ledoux, F., Lepers, C., André, V., Cazier, F., Sichel, F., Shirali, P., Gosset, P., Courcot, D., 2018. Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells. J. Environ. Sci. 71, 168–178. https://doi.org/10.1016/j.jes.2018.04.022.Bliss, B., Tran, K.I., Sioutas, C., Campbell, A., 2018. Ambient ultrafine particles actívate human monocytes: Effect of dose, differentiation state and age of donors. Environ.Res. 161, 314–320. https://doi.org/10.1016/j.envres.2017.11.019.Bourdrel, T., Bind, M.A., Béjot, Y., Morel, O., Argacha, J.F., 2017. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 110 (11), 634–642. https://doi.org/10.1016/j.acvd.2017.05.003.Briffa, J., Sinagra, E., Blundell, R., 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6 (9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691.Buiarelli, F., Di Filippo, P., Massimi, L., Pomata, D., Riccardi, C., Simonetti, G., Sonego, E., 2019. Ultrafine, fine and coarse airborne particle mass concentration in workplaces. Atmos. Pollut. Res. 10 (5), 1685–1690. https://doi.org/10.1016/j.apr.2019.06.009.Buonanno, G., Stabile, L., Avino, P., Belluso, E., 2011. Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant. Waste Manage. 31 (11), 2253–2262. https://doi.org/10.1016/j.wasman.2011.06.017.Burtscher, H., Schüepp, K., 2012. The occurrence of ultrafine particles in the specific environment of children. Paediatr. Respir. Rev. 13 (2), 89–94. https://doi.org/10.1016/j.prrv.2011.07.004.Buzea, C., Pacheco, I., 2019. 28 - Toxicity of nanoparticles. In: Pacheco-Torgal, F., Diamanti, M.V., Nazari, A., Granqvist, C.G., Pruna, A., Amirkhanian, S. (Eds.), Nanotechnology in Eco-efficient Construction. Woodhead Publishing Series in Civil and Structural Engineering, Cambridge, pp. 705–754 https://doi.org/10.1016/b978-0-08-102641-0.00028-1.Buzea, C., Pacheco, I.I., Robbie, K., 2007. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2, MR17–MR71. https://doi.org/10.1116/1.2815690.Bzdek, B.R., Pennington, M.R., Johnston, M.V., 2012. Single particle chemical analysis of ambient ultrafine aerosol: A review. J. Aerosol Sci. 52, 109–120. https://doi.org/10.1016/j.jaerosci.2012.05.001.Castro-Rodriguez, J.A., Forno, E., Rodriguez-Martinez, C.E., Celedón, J.C., 2016. Risk and Protective Factors for Childhood Asthma: What Is the Evidence? J. Allergy Clin. Immunol. In Practice 4 (6), 1111–1122. https://doi.org/10.1016/j.jaip.2016.05.003.Cervellati, F., Benedusi, M., Manarini, F., Woodby, B., Russo, M., Valacchi, G., Pietrogrande, M.C., 2020. Proinflammatory properties and oxidative effects of atmospheric particle components in human keratinocytes. Chemosphere 240, 124746. https://doi.org/10.1016/j.chemosphere.2019.124746.Chen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., Chen, C., 2016. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim. Biophys. Acta (BBA), General Subjects 1860 (12), 2844–2855. https://doi.org/10.1016/j.bbagen.2016.03.019.Chen, C., Zhao, Y., Zhang, Y., Zhao, B., 2017. Source strength of ultrafine and fine particle due to Chinese cooking. Procedia Eng. 205, 2231–2237. https://doi.org/10.1016/j.proeng.2017.10.062.Chen, Q.Y., DesMarais, T., Costa, M., 2019. Metals and mechanisms of carcinogénesis. Annu. Rev. Pharmacol. Toxicol. 59, 537–554. https://10.1146/annurev-pharmtox010818-021031.Chen, X.C., Cao, J.J., Ward, T.J., Tian, L.W., Ning, Z., Kumar, N.G., Aquilina, N.J., Lam, S.H.Y., Qu, L., Ho, K.F., 2020. Characteristics and toxicological effects of commuter exposure to black carbon and metal components of fine particles (PM2.5) in Hong Kong. Sci.Total Environ 742, 140501. https://doi.org/10.1016/j.scitotenv.2020.140501.Cheng, Z., Liang, X., Liang, S., Yin, N., Faiola, F., 2020. A human embryonic stem cell-based in vitro model revealed that ultrafine carbon particles may cause skin inflammation and psoriasis. J. Environ. Sci 87, 194–204. https://doi.org/10.1016/j.jes.2019.06.016.Chu, B., Matti Kerminen, V., Bianchi, F., Yan, C., Petäjä, T., Kulmala, M., 2019. Atmospheric new particle formation in China. Atmos. Chem. Phys. 19 (1), 115–138. https://doi.org/10.5194/acp-19-115-2019.Chung, M.C., Tsai, M.H., Que, D.E., Bongo, S.J., Hsu, W.L., Tayo, L.L., Lin, Y.H., Lin, S.L., Gou, Y.Y., Hsu, Y.C., Hou, W.C., Huang, K.L., Chao, H.R., 2019. Fine particulate matterinduced toxic effects in an animal model of caenorhabditis elegans. Aerosol Air Qual. Res. 19 (5), 1068–1078. https://doi.org/10.4209/aaqr.2019.03.0127.Civeira, M., Pinheiro, R., Gredilla, A., De Vallejuelo, S., Oliveira, M., Ramos, C., Taffarel, S., Kautzmann, R., Madariaga, J., Silva, L.F., 2016. The properties of the nano-minerals and hazardous elements: potential environmental impacts of brazilian coal waste fire. Sci. Total Environ. 544, 892–900. https://doi.org/10.1016/j.scitotenv.2015.12.026.Clifford, S., Mazaheri, M., Salimi, F., Ezz, W.N., Yeganeh, B., Low-Choy, S., Walker, K., Mengersen, K., Marks, G., Morawska, L., 2018. Effects of exposure to ambient ultrafine particles on respiratory health and systemic inflammation in children. Environ. Int. 114, 167–180. https://doi.org/10.1016/j.envint.2018.02.019.Cory-Slechta, D.A., Allen, J.L., Conrad, K., Marvin, E., Sobolewski, M., 2018. Developmental exposure to low level ambient ultrafine particle air pollution and cognitive dysfunction. NeuroToxicology 69, 217–231. https://doi.org/10.1016/j.neuro.2017.12.003.Crobeddu, B., Aragao-Santiago, L., Bui, L.C., Boland, S., Baeza, A.S., 2017. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular. Environ. Pollut. 230, 125–133. https://doi.org/10.1016/j.envpol.2017.06.051.Cui, J., Halbrook, R.S., Zang, S., Han, S., Li, X., 2018. Metal concentrations in homing pigeon lung tissue as a biomonitor of atmospheric pollution. Ecotoxicology 27 (2), 169–174. https://doi.org/10.1007/s10646-017-1882-4.Cutruneo, C.M.N.L., Oliveira, M.L.S., Ward, C.R., Hower, J.C., de Brum, I.A.S., Sampaio, C.H., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F.O., 2014. A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of electron beam applications. Int. J. Coal Geol. 130, 33–52. https://doi.org/10.1016/j.coal.2014.05.009.Da, Costa Oliveira, J.R., Base, L.H., de Abreu, L.C., Filho, C.F., Ferreira, C., Morawska, L., 2019. Ultrafine particles and children’s health: Literature review. Paediatr. Respir. Rev. 32, 73–81. https://doi.org/10.1016/j.prrv.2019.06.003.Dall’Osto, M., Thorpe, A., Beddows, D.C.S., Harrison, R.M., Barlow, J.F., Dunbar, T., Williams, P.I., Coe, H., 2011. Remarkable dynamics of nanoparticles in the urban atmosphere. Atmos. Chem. Phys. 11 (13), 6623–6637. https://doi.org/10.5194/acp-11-6623-2011.Dalmora, A.C., Ramos, C.G., Querol, X., Kautzmann, R.M., Oliveira, M.L.S., Taffarel, S.R., Moreno, T., Silva, L.F.O., 2016. Nanoparticulate mineral matter from basalt dust wastes. Chemosphere (Oxford) 144, 2013–2017. https://doi.org/10.1016/j.hemosphere.2015.10.047.De Kok, T.M.C.M., Driece, H.A.L., Hogervorst, J.G.F., Briedé, J.J., 2006. Toxicological assessment of ambient and traffic-related particulate matter: a review of recent studies. Mutat. Res. Rev. Mutat. Res. 613 (2-3), 103–122. https://doi.org/10.1016/j.mrrev.2006.07.001.AQEG, 2017. Ultrafine Particles (UFP) in the UK. Air Quality Expert Group (AQEG). Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland. https://uk-air.defra. gov.uk/assets/documents/reports/cat09/1807261113_180703_UFP_Report_FINAL_for_publication.pdf (accessed 30 December 2020).De Oliveira Galvão, M.F., de Oliveira Alves, N., Ferreira, P.A., Caumo, S., de Castro Vasconcellos, P., Artaxo, P., de Souza Hacon, S., Roubicek, D.A., Batistuzzo de Medeiros, S.R., 2018. Biomass burning particles in the Brazilian Amazon region: Mutagenic effects of nitro and oxy-PAHs and assessment of health risks. Environ. Pollut. 233, 960970. doi:https://doi.org/10.1016/j.envpol.2017.09.068De Roma, A., Neola, B., Serpe, F.P., Sansone, D., Picazio, G., Cerino, P., Esposito, M., 2017. Land Snails (Helix aspersa) as Bioindicators of Trace Element Contamination in Campania (Italy). O. A. Lib. Journal 4 (2), e3339. https://doi.org/10.4236/oalib.1103339.De Vallejuelo, S.F.O., Gredilla, A., da Boit, K., Teixeira, E.C., Sampaio, C.H., Madariaga, J.M., Silva, L.F., 2017. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: Environmental impact and risk assessment. Chemosphere 169, 725–733. https://doi.org/10.1016/j.chemosphere.2016.09.125.Dias, C.L., Oliveira, M.L.S., Hower, J.C., Taffarel, S.R., Kautzmann, R.M., Silva, L.F.O., 2014. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. Int. J. Coal Geol. 122, 50–60. https://doi.org/10.1016/j.coal.2013.12.011.Donaldson, K., Stone, V., Clouter, A., Renwick, L., Macnee, W., 2001. Ultrafine particles. Occup. Environ. Med. 58, 211–216. https://doi.org/10.1136/oem.58.3.211.Ehn, M., Thornton, J.A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I.H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L.B., Jørgensen, S., Kjaergaard, H.G., Canagaratna, M., Maso, M.D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V.M., Kulmala, M., Worsnop, D.R., Wildt, J., Mentel, T.F., 2014. A large source of low-volatility secondary organic aerosol. Nature. 506, 476–479. https://ezproxy.cuc.edu.co:2067/10.1038/nature13032.Feng, B., Li, L., Xu, H., Wang, T., Wu, R., Chen, J., Zhang, Y., Liu, S., Ho, S.S.H., Huang, W., 2019. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment. J. Environ. Sci. 77, 11–19. https://doi.org/10.1016/j.jes.2017.12.025.Fernández-Camacho, R., Rodríguez, S., de la Rosa, J., Sánchez de la Campa, A.M., Alastuey, A., Querol, X., González-Castanedo, Y., Garcia-Orellana, I., Nava, S., 2012. Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain. Atmos. Environ. 61, 507–517. https://doi.org/10.1016/j.atmosenv.2012.08.003.Fleischer, N.L., Merialdi, M., van Donkelaar, A., Vadillo-Ortega, F., Martin, R.V., Betran, A.P., Souza, J.P., O’Neill, M.S., 2014. Outdoor air pollution, preterm birth, and low birth weight: Analysis of the world health organization global survey on maternal and perinatal health. Environ. Health Perspect. 122 (4), 425–430. https://doi.org/10.1289/ehp.1306837.Forti, L., Jeuland, N., Raux, S., Pasquereau, M., 2005. Analysis of the particulates emitted by internal combustion engines. Oil Gas Sci. Technol 60 (6), 995–1011. https://doi.org/10.2516/ogst:2005070.Gao, R., Sang, N., 2020. Quasi-ultrafine particles promote cell metastasis via HMGB1-mediated cancer cell adhesion. Environ. Pollut. 256, 113390. https://doi.org/10.1016/j.envpol.2019.113390.Gao, D., Ripley, S., Weichenthal, S., Godri Pollitt, K.J., 2020. Ambient particulate matter oxidative potential: Chemical determinants, associated health effects, and strategies for risk management. Free Radic. Biol. Med. 151, 7–25. https://doi.org/10.1016/j.freeradbiomed.2020.04.028.Garcia, K.O., Teixeira, E.C., Agudelo-Castañeda, D.M., Braga, M., Alabarse, P.G., Wiegand, F., Kautzmann, R.M., Silva, L.F., 2014. Assessment of nitro-polycyclic aromatic hydrocarbons in pm1 near an area of heavy-duty traffic. Sci. Total Environ. 479-480, 57–65. https://doi.org/10.1016/j.scitotenv.2014.01.126.Gasparotto, J., Chaves, P.R., Da Boit, M.K., Da Rosa-Siva, H., Bortolin, R., Silva, L.F.O., Rabelo, T., Da Silva, J., Da Silva, F., Nordin, A., Soares, K., Borges, M., Gelain, D., Moreira, J., 2018. Obese rats are more vulnerable to inflammation, genotoxicity and oxidative stress induced by coal dust inhalation than non-obese rats. Ecotoxicol. Environ. Saf. 165, 44–51. https://doi.org/10.1016/j.ecoenv.2018.08.097.Gasparotto, J., Da Boit, M.K., 2020. Coal as an energy source and its impacts on human health. Energy Geoscience https://doi.org/10.1016/j.engeos.2020.07.003 In press. Gasparotto, J., Rodrigues, C.P., Da Boit, M.K., Silva, O.L.F., Gelain, D.P., Fonseca, M.J.C., 2019. Obesity associated with coal ash inhalation triggers systemic inflammation and oxidative damage in the hippocampus of rats. Food Chem. Toxicol. 133, 110766. https://doi.org/10.1016/j.fct.2019.110766.Goel, A., Kumar, P., 2015. Characterisation of nanoparticle emissions and exposure at traffic intersections through fast-response mobile and sequential measurements. Atmos. Environ. 107, 374–390. https://doi.org/10.1016/j.atmosenv.2015.02.002.Gómez-Ugalde, R., 2003. Efectos de la contaminación atmosférica en poblaciones de pequeños roedores silvestres (Microtus mexicanus, Peromyscus Melanotis y Peromiscus Difficilis) en México. D. F. Ph.D. Thesis. Universitat de Barcelona, p. 415. https://core.ac.uk/download/pdf/19919452.pdf.González, L.T., Longoria Rodríguez, F.E., Sánchez-Domínguez, M., Cavazos, A., LeyvaPorras, C., Silva-Vidaurri, L.G., Acuña Askar, K., Kharissov, B.I., Villareal Chiu, J.F., Alfaro Barbosa, J.M., 2017. Determination of trace metals in TSP and PM2.5 materials collected in the Metropolitan Area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS. Atmos. Res. 196, 8–22. https://doi.org/10.1016/j.atmosres.2017.05.009.Gonzalez-Moragas, L., Roig, A., Laromaine, A., 2015. C. elegans as a tool for in vivo nanoparticle assessment. Adv. Colloid Interface Sci. 219, 10–26. https://doi.org/10.1016/j.cis.2015.02.001.Grana, M., Toschi, N., Vicentini, L., Pietroiusti, A., Magrini, A., 2017. Exposure to ultrafine particles in different transport modes in the city of Rome. Environ. Pollut. 228, 201–210. https://doi.org/10.1016/j.envpol.2017.05.032.Guo, L., Johnson, G.R., Hofmann, W., Wang, H., Morawska, L., 2019. Deposition of ambient ultrafine particles in the respiratory tract of children: a novel experimental method and its application. J. Aerosol Sci. 139, 105465. https://doi.org/10.1016/j.jaerosci.2019.105465.Habre, R., Zhou, H., Eckel, S.P., Enebish, T., Fruin, S., Bastain, T., Rappatort, E., Gilliland, F., 2018. Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. Environ. Int. 118, 48–59. https://doi.org/10.1016/j.envint.2018.05.031.HEI, 2013. Understanding the Health Effects of Ambient Ultrafine Particles. HEI Review Panel on Ultrafine Particles. HEI Perspectives 3. Health Effects Institute (HEI) https://www.healtheffects.org/system/files/Perspectives3.pdf.Heusinkveld, H.J., Wahle, T., Campbell, A., Westerink, R.H.S., Tran, L., Johnston, H., Stone, V., Cassee, F.R., Schins, R.P.F., 2016. Neurodegenerative and neurological disorders by small inhaled particles. NeuroToxicology 56, 94–106. https://doi.org/10.1016/j.neuro.2016.07.007.Hofman, J., Samson, R., Joosen, S., Blust, R., Lenaerts, S., 2018. Cyclist exposure to black carbon, ultrafine particles and heavy metals: An experimental study along two commuting routes near Antwerp. Belgium. Environ. Res. 164, 530–538. https://doi.org/10.1016/j.envres.2018.03.004.Islam, N., Rabha, S., Silva, L.F.O., Saikia, B.K., 2019. Air quality and PM10-associated polyaromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches. Environ. Geochem. Health 41, 2039–2053. https://doi.org/10.1007/s10653-019-00256-z.Jantzen, K., Møller, P., Karottki, D.G., Olsen, Y., Bekö, G., Clausen, G., Hersoug, L.G., Loft, S., 2016. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells. Toxicology 359-360, 11–18. https://doi.org/10.1016/j.tox.2016.06.007.Jeong, C.H., Traub, A., Evans, G.J., 2017. Exposure to ultrafine particles and black carbon in diesel-powered commuter trains. Atmos. Environ. 155, 46–52. https://doi.org/10.1016/j.atmosenv.2017.02.015.De Jesus, A.L., Rahman, M.M., Mazaheri, M., Thompson, H., Knibbs, L.D., Jeong, C., Evans, G., Nei, W., Ding, A., Liping, Q., Li, L., Portin, H., Niemi, J.V., Timonen, H., Luoma, K., Petäjä, T., Kulmala, M., Kowalski, M., Peters, A., Cyrys, J., Ferrero, L., Manigrasso, M., Avino, P., Buonano, G., Reche, C., Querol, X., Beddows, D., Harrison, R.M., Sowlat, M.H., Sioutas, C., Morawska, L., 2019. Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other? Environ. Int. 129, 118–135. https://doi.org/10.1016/j.envint.2019.05.021.Jones, A.M., Harrison, R.M., 2016. Emission of ultrafine particles from the incineration of municipal solid waste: A review. Atmos. Environ. 140, 519–528. https://doi.org/10.1016/j.atmosenv.2016.06.005.Kecorius, S., Kivekäs, N., Kristensson, A., Tuch, T., Covert, D.S., Birmili, W., Lihavainen, H., Hyvärinen, A.P., Martinsson, J., Sporre, M.K., Swietlicki, E., Wiedensohler, A., Ulevicius, V., 2016. Significant increase of aerosol number concentrations in air masses crossing a densely trafficked sea area. Oceanologia 58 (1), 1–12. https://doi.org/10.1016/j.oceano.2015.08.001.Kelly, F.J., Fussell, J.C., 2012. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60, 504–526. https://doi.org/10.1016/j.atmosenv.2012.06.039.Keuken, M.P., Moerman, M., Zandveld, P., Henzing, J.S., 2015. Total and size-resolved particle number and black carbon concentrations near an industrial area. Atmos. Environ. 122, 196–205. https://doi.org/10.1016/j.atmosenv.2015.09.047.Kim, K.H.H., Jahan, S.A., Kabir, E., Brown, R.J.C.C., 2013. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60, 71–80. https://doi.org/10.1016/j.envint.2013.07.019.Kim, H.L., Han, J., Lee, S.M., Kwon, H.B., Hwang, J., Kim, Y.J., 2018. MEMS-based particle detection system for measuring airborne ultrafine particles. Sens. Actuator A. Phys. 283, 235–244. https://doi.org/10.1016/j.sna.2018.09.060.Klaassen, C.D., 2013. Casarett and Doull’s: Toxicology, The basic science of poison (English Editon). Mc Graw Hill Education – Medical, USA, pp. 525–907 ISBN: 978-0-07-176922-8.Koçak, M., Mihalopoulos, N., Kubilay, N., 2007. Contributions of natural sources to high PM10 and PM2.5 events in the eastern Mediterranean. Atmos. Environ. 41 (18), 3806–3818. https://doi.org/10.1016/j.atmosenv.2007.01.009.Kumar, P., Robins, A., Vardoulakis, S., Britter, R., 2010. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmos. Environ. 44 (39), 5035–5052. https://doi.org/10.1016/j.atmosenv.2010.08.016.Kronbauer, M.A., Izquierdo, M., Dai, S., Wannders, F.B., Wagner, N.J., Mastalerz, M., Hower, J.C., Oliverira, M.L.S., Taffarel, S.R., Bizani, D., Silva, L.F.O., 2013. Geochemistry of ultrafine and nano-compounds in coal gasification ashes: A synoptic view. Sci. Total Environ. 456-457, 95–103. https://doi.org/10.1016/j.scitotenv.2013.02.066.Kumar, P., Ketzel, M., Vardoulakis, S., Pirjola, L., Britter, R., 2011. Dynamics and dispersión modelling of nanoparticles from road traffic in the urban atmospheric environment-A review. J. Aerosol Sci. 42 (9), 580–603. https://doi.org/10.1016/j.jaerosci.2011.06.001.Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R.M., Norford, L., Britter, R., 2014. Ultrafine particles in cities. Environ. Int. 66, 1–10. https://doi.org/10.1016/j.envint.2014.01.013.Kumar, P., Wiedensohler, A., Birmili, W., Quincey, P., Hallquist, M., 2016. Ultrafine Particles Pollution and Measurements. Compr. Anal. Chem. 73, 369–390. https://doi.org/10.1016/bs.coac.2016.04.004.Kumar, P., Patton, A.P., Durant, J.L., Frey, H.C., 2018. A review of factors impacting exposure to PM2.5, ultrafine particles and black carbon in Asian transport microenvironments. Atmos. Environ. 187, 301–316. https://doi.org/10.1016/j.atmosenv.2018.05.046.Kwon, H.S., Ryu, M.H., Carlsten, C., 2020. Ultrafine particles: unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 52 (3), 318–328. https://doi.org/10.1038/s12276-020-0405-1.Landkocz, Y., Ledoux, F., André, V., Cazier, F., Genevray, P., Dewaele, D., Martin, P.J., Lepers, C., Verdin, A., Courcot, L., Boushina, S., Sichel, F., Gualtieri, M., Shirali, P., Courcot, D., Billet, S., 2017. Fine and ultrafine atmospheric particulate matter at a multiinfluenced urban site: Physicochemical characterization, mutagenicity and cytotoxicity. Environ. Pollut. 221, 130–140. https://doi.org/10.1016/j.envpol.2016.11.054.Lanzinger, S., Schneider, A., Breitner, S., Stafoggia, M., Erzen, I., Dostal, M., Pastorkova, A., Bastian, S., Cyrys, J., Zscheppang, A., Kolodnitska, T., Peters, A., Mykhalchuk, B., 2016. Associations between ultrafine and fine particles and mortality in five central European cities - Results from the UFIREG study. Environ. Int. 88, 44–52. https://doi.org/10.1016/j.envint.2015.12.006.Lavigne, E., Lima, I., Hatzopoulou, M., Van Ryswyk, K., Decou, M.L., Luo, W., van Donkelaar, A., Martin, R.V., Chen, H., Stieb, D.M., Crighton, E., Gasparrini, A., Elten, M., Yasseen III, A.S., Burnett, R.T., Walker, M., Weichenthal, S., 2019. Spatial variations in ambient ultrafine particle concentrations and risk of congenital heart defects. Environ. Int. 130, 104953. https://doi.org/10.1016/j.envint.2019.104953.Lee, W., Bell, M.L., Gasparrini, A., Armstrong, B.G., Sera, F., Hwang, S., Lavigne, E., Zanobetti, A., Coelho, M.S.Z.S., Saldiva, P.H.N., Osorio, S., Tobias, A., Zeka, A., Goodman, P.G., Forsberg, B., Rocklöv, J., Hashizume, M., Honda, Y., Guo, Y.L.L., Seposo, X., Dung, D.V., Dang, T.N., Tong, S., Guo, Y., Kim, H., 2017. Mortality burden of diurnal temperatura range and its temporal changes : A multi-country study. Environ. Int. 110, 123–130. https://doi.org/10.1016/j.envint.2017.10.018.León-Mejía, G., Silva, L.F., Civeira, M.S., Oliveira, M.L.S., Machado, M., Villela, I.V., Hartmann, A., Premoli, S., Corrêa, D.S., Silva, L., Henriques, J.A.P., 2016. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. Environ. Sci. Pollut. Res. 23, 24019–24031. https://ezproxy.cuc.edu.co:2067/10.1007/s11356-016-7623-z.León-Mejía, G., Machado, M.N., Okuro, R.T., Silva, L.F., Telles, C., Dias, J., Niekraszewicz, L., Da Silva, J., Henriques, J.A.P., Zin, W.A., 2018. Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci. Total Environ. 625, 589–599. https://doi.org/10.1016/j.scitotenv.2017.12.283.Li, Y., Yang, M., Meng, T., Niu, Y., Dai, Y., Zhang, L., Zheng, X., Jalava, P., Dong, G., Gao, W., Zheng, Y., 2020. Oxidative stress induced by ultrafine carbon black particles can elicit apoptosis in vivo and vitro. Sci. Total Environ. 709, 135802. https://doi.org/10.1016/j.scitotenv.2019.135802.Liati, A., Schreiber, D., Arroyo Rojas Dasilva, Y., Dimopoulos Eggenschwiler, P., 2018. Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective. Environ. Pollut. 239, 661–669. https://doi.org/10.1016/j.envpol.2018.04.081.Liu, J.Y., Hsiao, T.C., Lee, K.Y., Chuang, H.C., Cheng, T.J., Chuang, K.J., 2018. Association of ultrafine particles with cardiopulmonary health among adult subjects in the urban areas of northern Taiwan. Sci. Total Environ. 627, 211–215. https://doi.org/10.1016/j.scitotenv.2018.01.218.Lopes, M., Russo, A., Monjardino, J., Gouveia, C., Ferreira, F., 2019. Monitoring of ultrafine particles in the surrounding urban area of a civilian airport. Atmos. Pollut. Res. 10 (5), 1454–1463. https://doi.org/10.1016/j.apr.2019.04.002.Louis, C., Liu, Y., Tassel, P., Perret, P., Chaumond, A., André, M., 2016. PAH, BTEX, carbonyl compound, black-carbon, NO2 and ultrafine particle dynamometer bench emissions for Euro 4 and Euro 5 diesel and gasoline passenger cars. Atmos. Environ. 141, 80–95. https://doi.org/10.1016/j.atmosenv.2016.06.055.Lü, S., Zhang, R., Yao, Z., Yi, F., Ren, J., Wu, M., Feng, M., Wang, Q., 2012. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere. J. Environ. Sci. 24 (5), 882–890. https://doi.org/10.1016/S1001-0742(11)60870-X.Lü, S., Hao, X., Liu, D., Wang, Q.Q., Zhang, W., Liu, P., Zhang, R., Yu, S., Pan, R., Wu, M., Yonemochi, S., Wang, Q., 2016. Mineralogical characterization of ambient fine/ultrafine particles emitted from Xuanwei C1 coal combustion. Atmos. Res. 169, 17–23. https://doi.org/10.1016/j.atmosres.2015.09.020.Luengo-Oroz, J., Reis, S., 2019. Assessment of cyclists’ exposure to ultrafine particles along alternative commuting routes in Edinburgh. Atmos. Pollut. Res. 10 (4), 1148–1158. https://doi.org/10.1016/j.apr.2019.01.020.Lundborg, M., Johard, U., Låstbom, L., Gerde, P., Camner, P., 2001. Human alveolar macrophage phagocytic function is impaired by aggregates of ultrafine carbon particles. Environ. Res. 86 (3), 244–253. https://doi.org/10.1006/enrs.2001.4269.Ma, N., Birmili, W., 2015. Estimating the contribution of photochemical particle formation to ultrafine particle number averages in an urban atmosphere. Sci Total Environ. 512-513, 154–166. https://doi.org/10.1016/j.scitotenv.2015.01.009.Magalhaes, S., Baumgartner, J., Weichenthal, S., 2018. Impacts of exposure to black carbon, elemental carbon, and ultrafine particles from indoor and outdoor sources on blood pressure in adults: A review of epidemiological evidence. Environ. Res. 161, 345–353. https://doi.org/10.1016/j.envres.2017.11.030.Maji, S., Ahmed, S., Siddiqui, W.A., Ghosh, S., 2017. Short term effects of criteria air pollutants on daily mortality in Delhi. India. Atmos. Environ. 150, 210–219. https://doi.org/10.1016/j.atmosenv.2016.11.044.Marabini, L., Ozgen, S., Turacchi, S., Aminti, S., Arnaboldi, F., Lonati, G., Fermo, P., Corbella, L., Valli, G., Bernardoni, V., Dell’Acqua, M., Vecchi, R., Becagli, S., Caruso, D., Corrado, G.L., Marinovich, M., 2017. Ultrafine particles (UFPs) from domestic wood stoves: genotoxicity in human lung carcinoma A549 cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 820, 39–46. https://doi.org/10.1016/j.mrgentox.2017.06.001.Marimon-Bolívar, W., Tejeda-Benítez, L.P., Núñez-Avilés, C.A., De Léon-Pérez, D.D., 2019. Evaluation of the in vivo toxicity of green magnetic nanoparticles using Caenorhabditis elegans as a biological model. Environ. Nanotechnol. Monit. Manag. 12, 100253. https://doi.org/10.1016/j.enmm.2019.100253.Martinello, K., Oliveira, M., Molossi, F., Ramos, C., Teixeira, E., Kautzmann, R., Silva, L.F., 2014. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 470-471, 444–452. https://doi.org/10.1016/j.scitotenv.2013.10.007.Martins, V., Correia, C., Cunha-Lopes, I., Faria, T., Diapouli, E., Manousakas, M.I., Eleftheriadis, K., Almeida, S.M., 2021. Chemical characterisation of particulate matter in urban transport modes. J. Environ. Sci. 100, 51–61. https://doi.org/10.1016/j.jes.2020.07.008.Miller, B.G., 2011. 9 - Emissions Control Strategies for Power Plants. In: Miller, B.G. (Ed.), Clean Coal Engineering Technology. Elsevier, Amsterdam, pp. 375–481 https://doi.org/10.1016/b978-1-85617-710-8.00009-1.Miller, M.R., Shaw, C.A., Langrish, J.P., 2012. From particles to patients: Oxidative stress and the cardiovascular effects of air pollution. Future Cardiol. 8 (4), 577–602. https://doi.org/10.2217/fca.12.43.Mishra, R.K., Shukla, A., Parida, M., Pandey, G., 2016. Urban roadside monitoring and prediction of CO, NO2 and SO2 dispersion from on-road vehicles in megacity Delhi. Transp. Res. D Transp. Environ. 46, 157–165. https://doi.org/10.1016/j.trd.2016.03.019.Møller, K.L., Brauer, C., Mikkelsen, S., Bonde, J.P., Loft, S., Helweg-Larsen, K., Thygesen, L.C., 2020. Cardiovascular disease and long-term occupational exposure to ultrafine particles: A cohort study of airport workers. Int. J. Hyg. Environ. Health 223 (1), 214–219. https://doi.org/10.1016/j.ijheh.2019.08.010.Morawska, L., Ristovski, Z., Jayaratne, E.R., Keogh, D.U., Ling, X., 2008. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmos. Environ. 42 (35), 8113–8138. https://doi.org/10.1016/j.atmosenv.2008.07.050.Morris-Schaffer, K., Sobolewski, M., Welle, K., Conrad, K., Yee, M., O’Reilly, M.A., CorySlechta, D.A., 2018. Cognitive flexibility deficits in male mice exposed to neonatal hyperoxia followed by concentrated ambient ultrafine particles. Neurotoxicol. Teratol. 70, 51–59. https://doi.org/10.1016/j.ntt.2018.10.003.Muñoz-Salazar, J.I., Raga, G.B., Yakobi-Hancock, J., Kim, J.S., Rosas, D., Caudillo, L., AlvarezOspina, H., Ladino, L.A., 2020. Ultrafine aerosol particles in the western Caribbean: A first case study in Merida. Atmos. Pollut. Res. 11 (10), 1767–1775. https://doi.org/10.1016/j.apr.2020.07.008.Nho, R., 2020. Pathological effects of nano-sized particles on the respiratory system. Nanomedicine : N. B.M. 29, 102242. https://doi.org/10.1016/j.nano.2020.102242.Nyarku, M., Buonanno, G., Ofosu, F., Jayaratne, R., Mazaheri, M., Morawska, L., 2019. Schoolchildren’s personal exposure to ultrafine particles in and near Accra. Ghana. Environ. Int. 133. https://doi.org/10.1016/j.envint.2019.105223.Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., Kreyling, W., Cox, C., 2002. Extrapulmonary translocation of ultrafine carbon particles following wholebody inhalation exposure of rats. J. Toxicol. Environ. Health Part A. 65 (20), 1531–1543. https://doi.org/10.1080/00984100290071658.Ohlwein, S., Kappeler, R., Kutlar Joss, M., Künzli, N., Hoffmann, B., 2019. Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. Int. J. Public Health 64, 447–449. https://doi.org/10.1007/s00038-019-01202-7.Oliveira, M.L.S., Navarro, O.G., Crissien, T.J., Tutikian, B.F., Da Boit, K., Texeira, E.C., Cabello, J.J., Agudelo-Castañeda, D.M., Silva, L.F.O., 2017. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls. Environ. Res. 158, 450–455. https://doi.org/10.1016/j.envres.2017.07.002.Oliveira, M.L.S., Izquierdo, M., Querol, X., Lieberman, R.N., Saikia, B.K., Silva, L.F.O., 2019a. Nanoparticles from Construction Wastes: A Problem to Health and the Environment. J. Clean. Prod. 219, 236–243. https://doi.org/10.1016/j.jclepro.2019.02.096.Oliveira, M.L.S., Pinto, D., Tutikian, B.F., Da Boit, K., Saikia, B.K., Silva, L.F.O., 2019b. Pollution from uncontrolled coal fires: Continuous gaseous emissions and nanoparticles from coal mining industry. J. Clean. Prod. 215, 1140–1148. https://doi.org/10.1016/j.jclepro.2019.01.169.Paunescu, A.C., Casas, M., Ferrero, A., Pañella, P., Bougas, N., Beydon, N., Just, J., Lezmi, J., Ballester, F., Momas, I., 2019. Associations of black carbon with lung function and airway inflammation in schoolchildren. Environ. Int. 131, 104984. https://doi.org/10.1016/j.envint.2019.104984.Peralta, O., Ortínez-Alvarez, A., Basaldud, R., Santiago, N., Alvarez-Ospina, H., de la Cruz, K., Barrera, V., Espinosa, M.D.L.C., Saavedra, I., Castro, T., Martínez-Arroyo, A., Páramo, V.H., Ruíz-Suárez, L.G., Vazquez-Galvez, F.A., Gavilán, A., 2019. Atmospheric black carbon concentrations in Mexico. Atmos. Res. 230, 104626. https://doi.org/10.1016/j.atmosres.2019.104626.Pétursdóttir, U., Kirkelund, G.M., Press-Kristensen, K., Hertel, O., Mikkelsen, T.N., 2018. Ultrafine particles in inhabited areas in the Arctic - From very low to high concentrations. Atmos. Pollut. Res. 9 (2), 299–308. https://doi.org/10.1016/j.apr.2017.10.008.Platel, A., Privat, K., Talahari, S., Delobel, A., Dourdin, G., Gateau, E., Simar, S., Saleh, Y., Sotty, J., Antherieu, S., Canivet, L., Alleman, L.Y., Perdrix, E., Garçon, G., Denayer, F.O., Lo Guidice, J.M., Nesslany, F., 2020. Study of in vitro and in vivo genotoxic effects of air pollution fine (PM2.5-0.18) and quasi-ultrafine (PM0.18) particles on lung models. Sci. Total Environ 711, 134666. https://doi.org/10.1016/j.scitotenv.2019.134666.Pourret, O., Hursthouse, A., 2019. It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. Int. J. Environ. Res. Public Health 16 (22), 4446. https://doi.org/10.3390/ijerph16224446.Pyo, J., Ock, Y., Jeong, D., Park, K., Lee, D., 2017. Development of filter-free particle filtration unit utilizing condensational growth: With special emphasis on high-concentration of ultrafine particles. Build. Environ. 112, 200–208. https://doi.org/10.1016/j.buildenv.2016.11.011.Ramírez, O., de la Sánchez, C.A.M., Amato, F., Moreno, T., Silva, L.F.O., de la Rosa, J., 2019. Physicochemical Characterization and Sources of the Thoracic Fraction of Road Dust in a Latin American Megacity. Sci. Total Environ. 652, 434–446. https://doi.org/10.1016/j.scitotenv.2018.10.214.Ramírez, O., Da Boit, K., Blanco, E., Silva, L.F.O., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655. https://doi.org/10.1016/j.uclim.2020.100655.Rengarajan, T., Rajendran, P., Nandakumar, N., Lokeshkumar, B., Rajendran, P., Nishigaki, I., 2015. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac. J. Trop. Biomed. 5, 182–189. https://doi.org/10.1016/S2221-1691(15)30003-4.Ribeiro, J., Flores, D., 2020. Occurrence, leaching and mobility of trace elements in a coal mining waste dump: the case of Douro Coalfield (Portugal). Energy Geoscience https://doi.org/10.1016/j.engeos.2020.09.005 In press.Ribeiro, J., Daboit, K., Flores, D., Kronbauer, M.A., Silva, L.F.O., 2013a. Extensive FE-SEM/ EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash. Sci. Total Environ. 452-453, 98–107. https://doi.org/10.1016/j.scitotenv.2013.02.010.Ribeiro, J., Taffarel, S.R., Sampaio, C.H., Flores, D., Silva, L.F.O., 2013b. Mineral speciation and fate of some hazardous contaminants in coal waste pile from anthracite mining in Portugal. Int. J. Coal Geol. 109-110, 15–23. https://doi.org/10.1016/j.coal.2013.01.007.Rizza, V., Stabile, L., Vistocco, D., Russi, A., Pardi, S., Buonanno, G., 2019. Effects of the exposure to ultrafine particles on heart rate in a healthy population. Sci. Total Environ. 650, 2403–2410. https://doi.org/10.1016/j.scitotenv.2018.09.385.Rojas, J.C., Sánchez, N.E., Schneider, I., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: Environmental implications. Urban Clim. 27, 412–419. https://doi.org/10.1016/j.uclim.2018.12.011.Sade, M.Y., Novack, V., Ifergane, G., Horev, A., Kloog, I., 2015. Air pollution and ischemic stroke among young adults. Stroke 46 (12), 3348–3353. https://doi.org/10.1161/STROKEAHA.115.010992.Saha, P.K., Zimmerman, N., Malings, C., Hauryliuk, A., Li, Z., Snell, L., Subramanian, R., Lipsky, E., Apte, J.S., Robinson, A.L., Presto, A.A., 2019. Quantifying high-resolution spatial variations and local source impacts of urban ultrafine particle concentrations. Sci. Total Environ. 655, 473–481. https://doi.org/10.1016/j.scitotenv.2018.11.197.Saikia, B.K., Saikia, J., Rabha, S., Silva, L.F.O., Finkelman, R., 2018. Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geosci. Front. 9 (3), 863–875. https://doi.org/10.1016/j.gsf.2017.11.013.Sanderson, P., Delgado-Saborit, J.M., Harrison, R.M., 2014. A review of chemical and physical characterisation of atmospheric metallic nanoparticles. Atmos. Environ. 94, 353–365. https://doi.org/10.1016/j.atmosenv.2014.05.023.Santibáñez-Andrade, M., Quezada-Maldonado, E.M., Osornio-Vargas, Á., Sánchez-Pérez, Y., García-Cuellar, C.M., 2017. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis. Environ. Pollut. 229, 412–422. https://doi.org/10.1016/j.envpol.2017.06.019.Schneider, I.L., Teixeira, E.C., Silva, L.F., Wiegand, F., 2015. Atmospheric particle number concentration and size distribution in a traffic-impacted area. Atmos. Pollut. Res. 6, 877–885. https://doi.org/10.5094/APR.2015.097.Schneider, I.L., Teixeira, E.C., Agudelo-Castañeda, D., Silva, G., Balzaretti, N., Braga, M., Silva, L.F.O., 2016. FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM1.0. Sci. Total Environ. 541, 1151–1160. https://doi.org/10.1016/j.scitotenv.2015.09.142.Seigneur, C., 2019. Atmospheric Dispersion. Air Pollution: Concepts, Theory, and Applications. Cambridge University Press, pp. 95–124 https://doi.org/10.1017/9781108674614.006.Sharma, S., Kumar, M.S., Parmar, A., Sachar, S., 2018. Chapter 18 – Understanding toxicity of nanomaterials in the environment: crucial tread for controlling the production, processing, and assessing the risk. Nanomater. Chromatogr., 467–500 https://doi.org/10.1016/B978-0-12-812792-6.00018-2.Shukla, A., Bunkar, N., Kumar, R., Bhargava, A., Tiwari, R., Chaudhury, K., Goryacheva, I.Y., Mishra, P.K., 2019. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. Sci. Total Environ. 656, 760–777. https://doi.org/10.1016/j.scitotenv.2018.11.381.Silva, L.F.O., Da Boit, K., Sampaio, C.H., Jasper, A., Andrade, M.L., Kostova, I.J., Waanders, F.B., Henke, K.R., Hower, J.C., 2012a. The occurrence of hazardous volatile elements and nanoparticles in Bulgarian coal fly ashes and the effect on human health exposure. Sci. Total Environ. 416, 513–526. https://doi.org/10.1016/j.scitotenv.2011.11.012.Silva, L.F.O., Jasper, A., Andrade, M.L., Sampaio, C.H., Dai, S., Li, X., Li, T., Chen, W., Wang, X., Liu, H., Zhao, L., Hopps, S.G., Jewell, R.F., Hower, J.C., 2012b. Applied investigation on the interaction of hazardous elements binding on ultrafine and nanoparticles in Chinese anthracite-derived fly ash. Sci. Total Environ. 419, 250–264. https://doi.org/10.1016/j.scitotenv.2011.12.069.Silva, L.F.O., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020a. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776. https://doi.org/10.1016/j.chemosphere.2019.124776.Silva, L.F.O., Pinto, D., Neckel, A., Oliveira, M.L.S., Sampaio, C.H., 2020b. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 254, 126822. https://doi.org/10.1016/j.chemosphere.2020.126822.Simkhovich, B.Z., Kleinman, M.T., Kloner, R.A., 2008. Air Pollution and Cardiovascular Injury: Epidemiology, Toxicology, and Mechanisms. J. Am. Coll. Cardiol. 52 (9), 719–726. https://doi.org/10.1016/j.jacc.2008.05.029.Sinis, S.I., Gourgoulianis, K.I., Hatzoglou, C., Zarogiannis, S.G., 2019. Mechanisms of engineered nanoparticle induced neurotoxicity in Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 67, 29–34. https://doi.org/10.1016/j.etap.2019.01.010.Slezakova, K., de Oliveira Fernandes, E., Pereira, M.D.C., 2019. Assessment of ultrafine particles in primary schools: Emphasis on different indoor microenvironments. Environ. Pollut. 246, 885–895. https://doi.org/10.1016/j.envpol.2018.12.073.Song, H., Zhang, Y., Luo, M., Gu, J., Wu, M., Xu, D., Xu, G., Ma, L., 2019. Seasonal variation, sources and health risk assessment of polycyclic aromatic hydrocarbons in different particle fractions of PM2.5 in Beijing, China. Atmos. Pollut. Res. 10 (1), 105–114. https://doi.org/10.1016/j.apr.2018.06.012.Soppa, V.J., Shinnawi, S., Hennig, F., Sasse, B., Hellack, B., Kaminski, H., Quass, U., Schins, R.P.F., Kuhlbusch, T.A.J., Hoffmann, B., 2019. Effects of short-term exposure to fine and ultrafine particles from indoor sources on arterial stiffness – A randomized sham-controlled exposure study. Int. J. Hyg. Environ. Health 222 (8), 1115–1132. https://doi.org/10.1016/j.ijheh.2019.08.002.Srimuruganandam, B., Shiva Nagendra, S.M., 2011. Chemical characterization of PM10 and PM2.5 mass concentrations emitted by heterogeneous traffic. Sci. Total Environ. 409 (17), 3144–3157. https://doi.org/10.1016/j.scitotenv.2011.04.042.Stacey, B., 2019. Measurement of ultrafine particles at airports: A review. Atmos. Environ. 198, 463–477. https://doi.org/10.1016/j.atmosenv.2018.10.041.Stacey, B., Harrison, R.M., Pope, F., 2020. Evaluation of ultrafine particle concentrations and size distributions at London Heathrow Airport. Atmos. Environ. 222, 117148. https://doi.org/10.1016/j.atmosenv.2019.117148.Stafoggia, M., Schneider, A., Cyrys, J., Samoli, E., Andersen, Z.J., Bedada, G.B., Bellander, T., Cattani, G., Eleftheriadis, K., Faustini, A., Hoffmann, B., Jacquemin, B., Katsouyanni, K., Massling, A., Pekkanen, J., Perez, N., Peters, A., Quass, U., Yli-Tuomi, T., Forastiere, F., 2017. Association Between Short-term Exposure to Ultrafine Particles and Mortality in Eight European Urban Areas. Epidemiology 28 (2), 172–180. https://doi.org/10.1097/EDE.0000000000000599.Sun, J., Birmili, W., Hermann, M., Tuch, T., Weinhold, K., Spindler, G., Schladitz, A., Bastian, S., Löschau, G., Cyrys, J., Gu, J., Flentje, H., Briel, B., Asbach, C., Kaminski, H., Ries, L., Sohmer, R., Gerwig, H., Wirtz, K., Meinhardt, F., Schwerin, A., Bath, O., Ma, N., Wiedensohler, A., 2019. Variability of black carbon mass concentrations, submicrometer particle number concentrations and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations. Atmos. Environ. 202, 256–268. https://doi.org/10.1016/j.atmosenv.2018.12.029.Sydbom, A., Blomberg, A., Parnia, S., Stenfors, N., Sandström, T., Dahle, S.E., 2001. Health effects of diesel exhaust emissions. Eur. Respir. J. 17, 733–746. https://doi.org/10.1183/09031936.01.17407330.Thurston, G.D., Ito, K., Lall, R., 2011. A source apportionment of U.S. fine particulate matter air pollution. Atmos. Environ. 45 (24), 3924–3936. https://doi.org/10.1016/j.atmosenv.2011.04.070.Timbrell, J.A., 2009. Principles of Biochemical Toxicology. Fourth edition. Informa Healthcare USA, New York.Topinka, J., Milcova, A., Schmuczerova, J., Krouzek, J., Hovorka, J., 2013. Ultrafine particles are not major carriers of carcinogenic PAHs and their genotoxicity in size-segregated aerosols. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 754 (1-2), 1–6. https://doi.org/10.1016/j.mrgentox.2012.12.016.Tran, P.T.M., Ngoh, J.R., Balasubramanian, R., 2020. Assessment of the integrated personal exposure to particulate emissions in urban micro-environments: A pilot study. Aerosol Air Qual Res. 20 (2), 341–357. https://10.4209/aaqr.2019.04.0201.Vallero, D.A., 2011. 18 - Air Pollution: Atmospheric Wastes. In: Letcher, T.M., Vallero, D.A. (Eds.), Waste: A Handbook for Management. Elsevier, Amsterdam, pp. 243–264 https://doi.org/10.1016/B978-0-12-381475-3.10018-X.Van den Bossche, J., Peters, J., Verwaeren, J., Botteldooren, D., Theunis, J., De Baets, B., 2015. Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmos. Environ. 105, 148–161. https://10.1016/j.atmosenv.2015.01.017.Wahlang, B., Jin, J., Bier, J.I., Hardesty, J.E., Daly, E.F., Schnegelberger, R.D., Falkner, C.K., Prough, R.A., Kirpich, I.A., Cave, M.C., 2019. Mechanisms of environmental contributions to fatty liver disease. Curr. Environ. Health Rep. 6, 80–94. https://doi.org/10.1007/s40572-019-00232-w.Wardoyo, A.Y.P., Juswono, U.P., Noor, J.A.E., 2018. Varied dose exposures to ultrafine particles in the motorcycle smoke cause kidney cell damages in male mice. Toxicol. Rep. 5, 383–389. https://doi.org/10.1016/j.toxrep.2018.02.014.Wei, H., Feng, Y., Liang, F., Cheng, W., Wu, X., Zhou, R., Wang, Y., 2017. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter. Toxicology 380, 94–103. https://doi.org/10.1016/j.tox.2017.01.017.Weichenthal, S., Van Ryswyk, K., Goldstein, A., Shekarrizfard, M., Hatzopoulou, M., 2016. Characterizing the spatial distribution of ambient ultrafine particles in Toronto, Canada: A land use regression model. Environ. Pollut. 208, 241–248. https://10.1016/j.envpol.2015.04.011.WHO, 2006. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment. World Health Organization (WHO) https://apps.who.int/iris/handle/10665/69477. (Accessed 30 September 2020).Wong, B.S.E., Hu, Q., Baeg, G.H., 2017. Epigenetic modulations in nanoparticle-mediated toxicity. Food Chem. Toxicol. 109, 746–752. https://doi.org/10.1016/j.fct.2017.07.006.Wu, T., Xu, H., Liang, X., Tang, M., 2019. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. Chemosphere 221, 708–726. https://doi.org/10.1016/j.chemosphere.2019.01.021.Xia, M., Harb, H., Saffari, A., Sioutas, C., Chatila, T.A., 2018. A Jagged 1–Notch 4 molecular switch mediates airway inflammation induced by ultrafine particles. J. Allergy Clin. Immunol. 142 (4), 1243–1256. https://doi.org/10.1016/j.jaci.2018.03.009.Xiao, X., Cao, L., Wang, R., Shen, Z.X., Cao, Y.X., 2016. Airborne fine particulate matter alters the expression of endothelin receptors in rat coronary arteries. Environ. Pollut. 218, 487–496. https://doi.org/10.1016/j.envpol.2016.07.028.Yadav, I.C., Linthoingambi, N.D., Kumar, V.S., Li, J., Zhang, G., 2018. Concentrations, sources and health risk of nitrated- and oxygenated-polycyclic aromatic hydrocarbon in urban indoor air and dust from four cities of Nepal. Sci. Total Environ. 643, 1013–1023. https://doi.org/10.1016/j.scitotenv.2018.06.265.Yang, B., Li, X., Chen, D., Xiao, C., 2017a. Effects of fine air particulates on gene expresión in non-small-cell lung cancer. Adv. Med. Sci. 62 (2), 295–301. https://doi.org/10.1016/j.advms.2016.12.003.Yang, L., Hou, X.Y.Y., Wei, Y., Thai, P., Chai, F., 2017b. Biomarkers of the health outcomes associated with ambient particulate matter exposure. Sci. Total Environ. 579, 1446–1459. https://doi.org/10.1016/j.scitotenv.2016.11.146.Zamberland, D.C., Halmenschelager, P.T., Silva, L.F.O., Da Rocha, A., Rocha, J.B.T., 2020. Copper decreases associative learning and memory in Drosophila melanogaster. Sci. Total Environ 710, 135306. https://doi.org/10.1016/j.scitotenv.2019.135306.Zhang, W., Lei, T., Lin, Z.Q., Zhang, H.S., Yang, D.F., Xi, Z.G., Chen, J.H., Wang, W., 2011. Pulmonary toxicity study in rats with PM10 and PM2.5: Differential responses related to scale and composition. Atmos. Environ. 45 (4), 1034–1041. https://doi.org/10.1016/j.atmosenv.2010.10.043.Zhang, L., Guo, C., Jia, X., Xu, H., Pan, M., Xu, D., Shen, X., Zhang, J., Tan, J., Qian, H., Dong, C., Shi, Y., Zhou, X., Wu, C., 2018b. Personal exposure measurements of school- children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China. PLoS ONE 13 (4), e0193586. https://doi.org/10.1371/journal.pone.0193586.Zhang, Y., Dong, S., Wang, H., Tao, S., Kiyama, R., 2016. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ. Pollut. 213, 809–824. https://doi.org/10.1016/j.envpol.2016.03.050.Zhang, H.H., Li, Z., Liu, Y., Xinag, P., Cui, X.Y., Ye, H., Hu, B.L., Lou, L.P., 2018. Physical and chemical characteristics of PM2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer. J. Zhejiang Univ. Sci B 19 (4), 317–326. https://doi.org/10.1631/jzus.B1700123.Zhang, Y., Tu, B., Jiang, X., Xu, G., Liu, X., Tang, Q., Bai, L., Meng, P., Zhang, L., Qin, X., Zou, Z., Chen, C., 2019. Exposure to carbon black nanoparticles during pregnancy persistently damages the cerebrovascular function in female mice. Toxicology 422, 44–52. https://doi.org/10.1016/j.tox.2019.04.014.Zhang, L., Yang, L., Zhou, Q., Zhang, X., Xing, W., Wei, Y., Hu, M., Zhao, L., Toriba, A., Hayakawa, K., Tang, N., 2020. Size distribution of particulate polycyclic aromatic hydrocarbons in fresh combustion smoke and ambient air: A review. J. Environ. Sci. 88, 370–384. https://doi.org/10.1016/j.jes.2019.09.007.Zhao, Y., Lin, Z., Jia, R., Li, G., Xi, Z., Wang, D., 2014. Transgenerational effects of trafficrelated fine particulate matter (PM2.5) on nematode Caenorhabditis elegans. J. Hazardous Mater. 274, 106–114. https://doi.org/10.1016/j.jhazmat.2014.03.064.Zhao, Y., Wang, F., Zhao, J., 2015. Size-resolved ultrafine particle deposition and Brownian coagulation from gasoline vehicle exhaust in an environmental test chamber. Environ. Technol. 49, 12153–12160. https://doi.org/10.1021/acs.est.5b02455.Zhou, S., Yuan, Q., Li, W., Lu, Y., Zhang, Y., Wang, W., 2014. Trace metals in atmospheric fine particles in one industrial urban city: Spatial variations, sources, and health implications. J. Environ. Sci. 26 (1), 205–213. https://doi.org/10.1016/S1001-0742(13) 60399-X.151113Particulate matterUltrafine particlesAir pollutionToxicityMeasurement methodologiesPublicationORIGINALSources, characteristics, toxicity, and control of ultrafine particles. an overview.pdfSources, characteristics, toxicity, and control of ultrafine particles. an overview.pdfapplication/pdf1566726https://repositorio.cuc.edu.co/bitstreams/13649e0c-1cda-4422-ab9f-04b27d2933a6/download0c36196b1fc8ba285a526b821ea1bc22MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/a9cb9967-c440-478e-97f1-fc02104fcbe7/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTSources, characteristics, toxicity, and control of ultrafine particles. an overview.pdf.txtSources, characteristics, toxicity, and control of ultrafine particles. an overview.pdf.txttext/plain117871https://repositorio.cuc.edu.co/bitstreams/36878eed-be5d-4ca5-b002-bd87422a0845/download2bfd962d97b4efc7bf7c8d56d373f3e0MD53THUMBNAILSources, characteristics, toxicity, and control of ultrafine particles. an overview.pdf.jpgSources, characteristics, toxicity, and control of ultrafine particles. an overview.pdf.jpgimage/jpeg14950https://repositorio.cuc.edu.co/bitstreams/f9ae695b-3e43-4512-9c15-9b26a1d81e4b/download36c5e0b88b5927783483a28ee8fea875MD5411323/9086oai:repositorio.cuc.edu.co:11323/90862024-09-17 11:06:30.158https://creativecommons.org/licenses/by-nc-nd/4.0/© 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |