Using Big Data to determine potential dropouts in higher education

In higher education, student dropout is a relevant problem, not just in Latin America but also in developed countries. Although there is no consensus to measure the education quality, one of the important indicators of university success is the time to graduation (TTG), which is directly related to...

Full description

Autores:
amelec, viloria
Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Nuñez, William
Niebles Nuñez, Leonardo David
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5950
Acceso en línea:
https://hdl.handle.net/11323/5950
https://repositorio.cuc.edu.co/
Palabra clave:
Big Data
Dropouts
Higher education
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_b418ec8aa7c99d20dc97a51c22eeba0d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5950
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Using Big Data to determine potential dropouts in higher education
title Using Big Data to determine potential dropouts in higher education
spellingShingle Using Big Data to determine potential dropouts in higher education
Big Data
Dropouts
Higher education
title_short Using Big Data to determine potential dropouts in higher education
title_full Using Big Data to determine potential dropouts in higher education
title_fullStr Using Big Data to determine potential dropouts in higher education
title_full_unstemmed Using Big Data to determine potential dropouts in higher education
title_sort Using Big Data to determine potential dropouts in higher education
dc.creator.fl_str_mv amelec, viloria
Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Nuñez, William
Niebles Nuñez, Leonardo David
dc.contributor.author.spa.fl_str_mv amelec, viloria
Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Nuñez, William
Niebles Nuñez, Leonardo David
dc.subject.spa.fl_str_mv Big Data
Dropouts
Higher education
topic Big Data
Dropouts
Higher education
description In higher education, student dropout is a relevant problem, not just in Latin America but also in developed countries. Although there is no consensus to measure the education quality, one of the important indicators of university success is the time to graduation (TTG), which is directly related to student dropout [1]. Global estimates put this dropout rate at 42% [2]. In the United States, this rate is around 30% and represents a loss of 9 billion dollars in the education of these students [3]. However, desertion not only affects the quality of education and the economy of a country, but also has effects on the development of society, since society demands the contributions derived from the population with higher education such as: innovation, knowledge production and scientific discovery [4]. Using basic statistical learning techniques, this paper presents a simple way to predict possible dropouts based on their demographic and academic characteristics.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-01-30T13:42:58Z
dc.date.available.none.fl_str_mv 2020-01-30T13:42:58Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1742-6588
1742-6596
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5950
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1742-6588
1742-6596
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5950
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv 10.1088/1742-6596/1432/1/012077/pdf
dc.relation.references.spa.fl_str_mv [1] Pineda Lezama, O., & Gómez Dorta, R. (2017). Techniques of multivariate statistical analysis: An application for the Honduran banking sector. Innovare: Journal of Science and Technology, 5 (2), 61-75
[2] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham
[3] Badr, G.; Algobail, A.; Almutairi, H.; Almutery, M.: Predicting Students’ Performance in University Courses: A Case Study and Tool in KSU Mathematics Department. Procedia Computer Science, Vol. 82, pp. 80-89 (2016)
[4] Hutt, S.; Gardener, M.; Kamentz, D.; Duckworth, A.; D'Mello, S.: Prospectively Predicting 4- year College Graduation from Student Applications. Proceedings of the 8th International Conference on Learning Analytics and Knowledge, pp. 280-289 (2018)
[5] Ahuja, R.; Kankane, Y.: Predicting the probability of student's degree completion by using different data mining techniques. Fourth International Conference on Image Information Processing (ICIIP), pp. 1-4 (2017)
[6] Martins, L.; Carvalho, R.; Victorino, C.; Holanda, M.: Early Prediction of College Attrition Using Data Mining. 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1075-1078 (2017)
[7] James, G.; Witten, D.; Hastie, T.; Tibshirani, R.: An Introduction to Statistical Learning. Springer 7th Ed, pp. 25 (2014)
[8] Russell, S.; Norvig, P.: Artificial Intelligence A Modern Approach. Pearson Education 3rd Ed, pp. 705 (2010)
[9] Makhabel, B.: Learning Data Mining with R. Packt Publishing 1st Ed, pp. 143 (2015)
[10] Witten, I.; Frank, E.; Hall, M.; Pal, C.: Data Mining Practical Machine Learning Tools and Techniques. Elsevier 4th Ed, pp. 167-169 (2016).
[11] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham.
[12] Gaitán-Angulo, M., Viloria, A., & Abril, J. E. S. (2018, June). Hierarchical Ascending Classification: An Application to Contraband Apprehensions in Colombia (2015–2016). In Data Mining and Big Data: Third International Conference, DMBD 2018, Shanghai, China, June 17– 22, 2018, Proceedings (Vol. 10943, p. 168). Springer.
[13] Viloria, A., & Lezama, O. B. P. (2019). An intelligent approach for the design and development of a personalized system of knowledge representation. Procedia Computer Science , 151 , 1225- 1230.
[14] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham
[15] Viloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J. P., Parody, A., Bent, D. E. S., & López, L. A. B. (2018, June). Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In International Conference on Data Mining and Big Data (pp. 304-313). Springer, Cham.
[16] Demsar, J., Curk, T., Erjavec, A., Gorup C, Hocevar, T., Milutinovic, M., Mozina, M., Polajnar, M., Toplak, M., Staric, A., Stajdohar, M., Umek, L., Zagar, L., Zbontar, J., Zitnik, M., Zupan, B.: Orange: Data Mining Toolbox in Python. Journal of Machine Learning Research 14(Aug):2349−2353 (2013).
[17] Pretnar, A. The Mystery of Test & Score. Ljubljana: University of Ljubljana. Retrieved from: https://orange.biolab.si/blog/2019/1/28/the-mystery-of-test-and-score/ (2019).
[18] Demšar, J., & Zupan, B. Orange: Data mining fruitful and fun-a historical perspective. Informatica, 37(1), 55-60. (2013).
[19] Yasser, A. M., Clawson, K., & Bowerman, C.: Saving cultural heritage with digital make-believe: machine learning and digital techniques to the rescue. In Proceedings of the 31st British Computer Society Human Computer Interaction Conference (p. 97). BCS Learning & Development Ltd. (2017).
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Physics: Conference Series
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/9daaff64-66b3-465b-b7e3-4503c1c66365/download
https://repositorio.cuc.edu.co/bitstreams/a99b988f-fda1-4e85-9491-1465b6b7e6b5/download
https://repositorio.cuc.edu.co/bitstreams/c9524ce4-5346-493f-923e-2dc34383ec42/download
https://repositorio.cuc.edu.co/bitstreams/67ca0eff-9452-4797-a68e-b605c2b2e64b/download
https://repositorio.cuc.edu.co/bitstreams/6739e4d6-90a5-4e63-b22c-b819d076c177/download
bitstream.checksum.fl_str_mv 78cdb8cffa4a22c11d8e76571491ef90
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
60de637d03a0a975bc55b5eb825219c1
46e868ba3eb14c39649b499b8df3a92b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166848530612224
spelling amelec, viloriaSenior Naveda, AlexaHernández Palma, HugoNiebles Nuñez, WilliamNiebles Nuñez, Leonardo David2020-01-30T13:42:58Z2020-01-30T13:42:58Z20201742-65881742-6596https://hdl.handle.net/11323/5950Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In higher education, student dropout is a relevant problem, not just in Latin America but also in developed countries. Although there is no consensus to measure the education quality, one of the important indicators of university success is the time to graduation (TTG), which is directly related to student dropout [1]. Global estimates put this dropout rate at 42% [2]. In the United States, this rate is around 30% and represents a loss of 9 billion dollars in the education of these students [3]. However, desertion not only affects the quality of education and the economy of a country, but also has effects on the development of society, since society demands the contributions derived from the population with higher education such as: innovation, knowledge production and scientific discovery [4]. Using basic statistical learning techniques, this paper presents a simple way to predict possible dropouts based on their demographic and academic characteristics.amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Senior Naveda, AlexaHernández Palma, HugoNiebles Nuñez, WilliamNiebles Nuñez, Leonardo David-will be generated-orcid-0000-0003-2970-2498-600engJournal of Physics: Conference Series10.1088/1742-6596/1432/1/012077/pdf[1] Pineda Lezama, O., & Gómez Dorta, R. (2017). Techniques of multivariate statistical analysis: An application for the Honduran banking sector. Innovare: Journal of Science and Technology, 5 (2), 61-75[2] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham[3] Badr, G.; Algobail, A.; Almutairi, H.; Almutery, M.: Predicting Students’ Performance in University Courses: A Case Study and Tool in KSU Mathematics Department. Procedia Computer Science, Vol. 82, pp. 80-89 (2016)[4] Hutt, S.; Gardener, M.; Kamentz, D.; Duckworth, A.; D'Mello, S.: Prospectively Predicting 4- year College Graduation from Student Applications. Proceedings of the 8th International Conference on Learning Analytics and Knowledge, pp. 280-289 (2018)[5] Ahuja, R.; Kankane, Y.: Predicting the probability of student's degree completion by using different data mining techniques. Fourth International Conference on Image Information Processing (ICIIP), pp. 1-4 (2017)[6] Martins, L.; Carvalho, R.; Victorino, C.; Holanda, M.: Early Prediction of College Attrition Using Data Mining. 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1075-1078 (2017)[7] James, G.; Witten, D.; Hastie, T.; Tibshirani, R.: An Introduction to Statistical Learning. Springer 7th Ed, pp. 25 (2014)[8] Russell, S.; Norvig, P.: Artificial Intelligence A Modern Approach. Pearson Education 3rd Ed, pp. 705 (2010)[9] Makhabel, B.: Learning Data Mining with R. Packt Publishing 1st Ed, pp. 143 (2015)[10] Witten, I.; Frank, E.; Hall, M.; Pal, C.: Data Mining Practical Machine Learning Tools and Techniques. Elsevier 4th Ed, pp. 167-169 (2016).[11] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham.[12] Gaitán-Angulo, M., Viloria, A., & Abril, J. E. S. (2018, June). Hierarchical Ascending Classification: An Application to Contraband Apprehensions in Colombia (2015–2016). In Data Mining and Big Data: Third International Conference, DMBD 2018, Shanghai, China, June 17– 22, 2018, Proceedings (Vol. 10943, p. 168). Springer.[13] Viloria, A., & Lezama, O. B. P. (2019). An intelligent approach for the design and development of a personalized system of knowledge representation. Procedia Computer Science , 151 , 1225- 1230.[14] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham[15] Viloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J. P., Parody, A., Bent, D. E. S., & López, L. A. B. (2018, June). Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In International Conference on Data Mining and Big Data (pp. 304-313). Springer, Cham.[16] Demsar, J., Curk, T., Erjavec, A., Gorup C, Hocevar, T., Milutinovic, M., Mozina, M., Polajnar, M., Toplak, M., Staric, A., Stajdohar, M., Umek, L., Zagar, L., Zbontar, J., Zitnik, M., Zupan, B.: Orange: Data Mining Toolbox in Python. Journal of Machine Learning Research 14(Aug):2349−2353 (2013).[17] Pretnar, A. The Mystery of Test & Score. Ljubljana: University of Ljubljana. Retrieved from: https://orange.biolab.si/blog/2019/1/28/the-mystery-of-test-and-score/ (2019).[18] Demšar, J., & Zupan, B. Orange: Data mining fruitful and fun-a historical perspective. Informatica, 37(1), 55-60. (2013).[19] Yasser, A. M., Clawson, K., & Bowerman, C.: Saving cultural heritage with digital make-believe: machine learning and digital techniques to the rescue. In Proceedings of the 31st British Computer Society Human Computer Interaction Conference (p. 97). BCS Learning & Development Ltd. (2017).CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Big DataDropoutsHigher educationUsing Big Data to determine potential dropouts in higher educationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALUsing Big Data to Determine Potential Dropouts in Higher Education.pdfUsing Big Data to Determine Potential Dropouts in Higher Education.pdfapplication/pdf708443https://repositorio.cuc.edu.co/bitstreams/9daaff64-66b3-465b-b7e3-4503c1c66365/download78cdb8cffa4a22c11d8e76571491ef90MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a99b988f-fda1-4e85-9491-1465b6b7e6b5/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/c9524ce4-5346-493f-923e-2dc34383ec42/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILUsing Big Data to Determine Potential Dropouts in Higher Education.pdf.jpgUsing Big Data to Determine Potential Dropouts in Higher Education.pdf.jpgimage/jpeg27574https://repositorio.cuc.edu.co/bitstreams/67ca0eff-9452-4797-a68e-b605c2b2e64b/download60de637d03a0a975bc55b5eb825219c1MD55TEXTUsing Big Data to Determine Potential Dropouts in Higher Education.pdf.txtUsing Big Data to Determine Potential Dropouts in Higher Education.pdf.txttext/plain21040https://repositorio.cuc.edu.co/bitstreams/6739e4d6-90a5-4e63-b22c-b819d076c177/download46e868ba3eb14c39649b499b8df3a92bMD5611323/5950oai:repositorio.cuc.edu.co:11323/59502024-09-17 14:17:46.365http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=