Radiation damping of a Yang–Mills particle revisited
The problem of a colour-charged point particle interacting with a four-dimensional Yang–Mills gauge theory is revisited. The radiation damping is obtained inspired in Dirac’s computation. The difficulties in the non-abelian case were solved by using an ansatz for the Liénard–Wiechert potentials alre...
- Autores:
-
Arquez, Sair
Cordero, Rubén
Compeán Jasso, Victor Hugo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7916
- Acceso en línea:
- https://hdl.handle.net/11323/7916
https://doi.org/10.1139/cjp-2019-0389
https://repositorio.cuc.edu.co/
- Palabra clave:
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_b40a73e35feee6811a1aae5995b79882 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7916 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Radiation damping of a Yang–Mills particle revisited |
title |
Radiation damping of a Yang–Mills particle revisited |
spellingShingle |
Radiation damping of a Yang–Mills particle revisited |
title_short |
Radiation damping of a Yang–Mills particle revisited |
title_full |
Radiation damping of a Yang–Mills particle revisited |
title_fullStr |
Radiation damping of a Yang–Mills particle revisited |
title_full_unstemmed |
Radiation damping of a Yang–Mills particle revisited |
title_sort |
Radiation damping of a Yang–Mills particle revisited |
dc.creator.fl_str_mv |
Arquez, Sair Cordero, Rubén Compeán Jasso, Victor Hugo |
dc.contributor.author.spa.fl_str_mv |
Arquez, Sair Cordero, Rubén Compeán Jasso, Victor Hugo |
description |
The problem of a colour-charged point particle interacting with a four-dimensional Yang–Mills gauge theory is revisited. The radiation damping is obtained inspired in Dirac’s computation. The difficulties in the non-abelian case were solved by using an ansatz for the Liénard–Wiechert potentials already used in the literature (Ö. Sarıoğlu. Phys. Rev. D, 66, 085005 (2002). doi:10.1103/PhysRevD.66.085005) for finding solutions to the Yang–Mills equations. Three non-trivial examples of radiation damping for a non-abelian particle are discussed in detail. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-23T22:27:07Z |
dc.date.available.none.fl_str_mv |
2021-02-23T22:27:07Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7916 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1139/cjp-2019-0389 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7916 https://doi.org/10.1139/cjp-2019-0389 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Abraham M. Ann. Phys. (Leypzig), 315, 105 (1903). 2. Dirac P.A.M. Proc. Roy. Soc. Lond. A, 167, 148 (1938). 3. Teitelboim C. Phys. Rev. D, 1, 1572 (1970). Erratum. Phys. Phys. Rev. D, 2, 1763 (1970). 4. Bonnor W.B. Proc. R. Soc. Lond. A, 337, 591 (1974). 5. Ares de Parga G. and Mares R. Nuovo Cim. B, 113, 1469 (1998). 6. J.D. Jackson. Classical electrodynamics. 3rd ed. Wiley, New York (1999). 7. F. Rohrlich. Classical charged particles. 2nd ed. Addison Wesley, Rodwood City, California (1990). 8. Rohrlich F. Am. J. Phys. 68 (12), 1109 (2000). 9. Rohrlich F. Phys. Rev. D, 60, 084017 (1999). 10. Wong S.K. Nuovo Cim. A, 65, 689 (1970). 11. Balachandran A.P., Salomonson P., Skagerstam B.S., and Winnberg J.O. Phys. Rev. D, 15, 2308 (1977). 12. Balachandran A.P., Borchardt S., and Stern A. Phys. Rev. D, 17, 3247 (1978). 13. Arodz H. Phys. Lett. B, 116, 251 (1982). 14. Bastianelli F., Bonezzi R., Corradini O., and Latini E. J. High Energ. Phys. 1310, 098 (2013). 15. Heinz U.W. Phys. Rev. Lett. 51, 351 (1983). 16. Heinz U.W. Nucl. Phys. A, 418, 603 (1984). 17. Kelly P.F., Liu Q., Lucchesi C., and Manuel C. Phys. Rev. D, 50, 4209 (1994). 18. Gyulassy M. and Selikhov A.V. Nucl. Phys. A, 566, 133 (1994). 19. Nayak G.C. and Ravishankar V. Phys. Rev. D, 55, 6877 (1997). 20. Litim D.F. and Manuel C. Nucl. Phys. B, 562, 237 (1999). 21. Bistrovic B., Jackiw R., Li H., Nair V.P., and Pi S.Y. Phys. Rev. D, 67, 025013 (2003). 22. Arnold P.B., Moore G.D., and Yaffe L.G. Phys. Rev. D, 72, 054003 (2005). 23. Dumitru A., Nara Y., Schenke B., and Strickland M. Phys. Rev. C, 78, 024909 (2008). 24. Peralta-Ramos J. and Calzetta E. Phys. Rev. D, 86, 125024 (2012). 25. Fernandez-Melgarejo J.J., Rey S.J., and Surówka P. J. High Energ. Phys. 1702, 122 (2017). 27. Jalilian-Marian J., Jeon S., and Venugopalan R. Phys. Rev. D, 63, 036004 (2001) 28. Voronyuk V., Goloviznin V.V., Zinovjev G.M., Cassing W., Molodtsov S.V., Snigirev A.M., and Toneev V.D. Phys. Atom. Nucl. 78 (2), 312 (2015). 29. Mrowczynski S., Schenke B., and Strickland M. Phys. Rep. 682, 1 (2017). 30. Dumitru A., Miller G.A., and Venugopalan R. Phys. Rev. D, 98, 094004 (2018). 31. Bern Z., Carrasco J.J.M., and Johansson H. Phys. Rev. D, 78, 085011 (2008). 32. Goldberger W.D. and Ridgway A.K. Phys. Rev. D, 95 (12), 125010 (2017). 33. Dzhunushaliev V., Folomeev V., and Protsenko N. Int. J. Mod. Phys. D, 28 (01) 1950017 (2019). 34. Drechsler W. and Rosenblum A. Phys. Lett. B, 106, 81 (1981). 35. Kates R.E. and Rosenblum A. Phys. Rev. D, 28, 3066 (1983). 36. Trautman A. Phys. Rev. Lett. 46, 875 (1981). 37. Oh C.H., Lai C.H., and The R. Phys. Rev. D, 33, 1133 (1986). 38. A. Liénard. Champ électrique et magnétique. In: L’éclairage Électrique. Vol. 16, pp. 5–14, 53–59, 106–112 (1898) 39. Wiechert E. Ann. Phys. 309, 667 (1901). 40. Sarıoğlu Ö. Phys. Rev. D, 66, 085005 (2002). 41. Gürses M. and Sarioglu Ö. Class. Quant. Grav. 19, 4249 (2002).Erratum, Class. Quant. Grav. 20, 1413 (2003). 42. Von Laue M. Ann. Phys. 28, 436 (1909). 43. Rohrlich F. Am. J. Phys. 65, 1051 (1997). 44. Sprott J.C. Phys. Rev. E, 50, R647 (1994). 45. Sprott J.C. Am. J. Phys. 65, 537 (1997). 46. Chernicoff M., Garcia J.A., and Guijosa A. Phys. Rev. Lett. 102, 241601 (2009). |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Canadian Journal of Physics |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://cdnsciencepub.com/doi/abs/10.1139/cjp-2019-0389 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/4fa6848d-8058-44dd-b285-fa66ab548300/download https://repositorio.cuc.edu.co/bitstreams/1d4f2549-8a58-40aa-b186-96f6b3b1bc57/download https://repositorio.cuc.edu.co/bitstreams/6c3d7107-fc76-476d-a01a-c3e9b4899158/download https://repositorio.cuc.edu.co/bitstreams/376d5a98-c772-4326-855b-681b4c67d29b/download https://repositorio.cuc.edu.co/bitstreams/99e1e346-5599-480f-ad83-e03d8acf75b5/download |
bitstream.checksum.fl_str_mv |
ef27331bf69e48f79c2d6503cbb1b5a9 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 89ce41cb9afb29d34b27c787e5836219 443aa137784121138b017273b817beb7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760826409811968 |
spelling |
Arquez, SairCordero, RubénCompeán Jasso, Victor Hugo2021-02-23T22:27:07Z2021-02-23T22:27:07Z2020https://hdl.handle.net/11323/7916https://doi.org/10.1139/cjp-2019-0389Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The problem of a colour-charged point particle interacting with a four-dimensional Yang–Mills gauge theory is revisited. The radiation damping is obtained inspired in Dirac’s computation. The difficulties in the non-abelian case were solved by using an ansatz for the Liénard–Wiechert potentials already used in the literature (Ö. Sarıoğlu. Phys. Rev. D, 66, 085005 (2002). doi:10.1103/PhysRevD.66.085005) for finding solutions to the Yang–Mills equations. Three non-trivial examples of radiation damping for a non-abelian particle are discussed in detail.Arquez, Sair-will be generated-orcid-0000-0003-0827-2185-600Cordero, RubénCompeán Jasso, Victor Hugo-will be generated-orcid-0000-0003-1273-7790-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Canadian Journal of Physicshttps://cdnsciencepub.com/doi/abs/10.1139/cjp-2019-0389Radiation damping of a Yang–Mills particle revisitedArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Abraham M. Ann. Phys. (Leypzig), 315, 105 (1903).2. Dirac P.A.M. Proc. Roy. Soc. Lond. A, 167, 148 (1938).3. Teitelboim C. Phys. Rev. D, 1, 1572 (1970). Erratum. Phys. Phys. Rev. D, 2, 1763 (1970).4. Bonnor W.B. Proc. R. Soc. Lond. A, 337, 591 (1974).5. Ares de Parga G. and Mares R. Nuovo Cim. B, 113, 1469 (1998).6. J.D. Jackson. Classical electrodynamics. 3rd ed. Wiley, New York (1999).7. F. Rohrlich. Classical charged particles. 2nd ed. Addison Wesley, Rodwood City, California (1990).8. Rohrlich F. Am. J. Phys. 68 (12), 1109 (2000).9. Rohrlich F. Phys. Rev. D, 60, 084017 (1999).10. Wong S.K. Nuovo Cim. A, 65, 689 (1970).11. Balachandran A.P., Salomonson P., Skagerstam B.S., and Winnberg J.O. Phys. Rev. D, 15, 2308 (1977).12. Balachandran A.P., Borchardt S., and Stern A. Phys. Rev. D, 17, 3247 (1978).13. Arodz H. Phys. Lett. B, 116, 251 (1982).14. Bastianelli F., Bonezzi R., Corradini O., and Latini E. J. High Energ. Phys. 1310, 098 (2013).15. Heinz U.W. Phys. Rev. Lett. 51, 351 (1983).16. Heinz U.W. Nucl. Phys. A, 418, 603 (1984).17. Kelly P.F., Liu Q., Lucchesi C., and Manuel C. Phys. Rev. D, 50, 4209 (1994).18. Gyulassy M. and Selikhov A.V. Nucl. Phys. A, 566, 133 (1994).19. Nayak G.C. and Ravishankar V. Phys. Rev. D, 55, 6877 (1997).20. Litim D.F. and Manuel C. Nucl. Phys. B, 562, 237 (1999).21. Bistrovic B., Jackiw R., Li H., Nair V.P., and Pi S.Y. Phys. Rev. D, 67, 025013 (2003).22. Arnold P.B., Moore G.D., and Yaffe L.G. Phys. Rev. D, 72, 054003 (2005).23. Dumitru A., Nara Y., Schenke B., and Strickland M. Phys. Rev. C, 78, 024909 (2008).24. Peralta-Ramos J. and Calzetta E. Phys. Rev. D, 86, 125024 (2012).25. Fernandez-Melgarejo J.J., Rey S.J., and Surówka P. J. High Energ. Phys. 1702, 122 (2017).27. Jalilian-Marian J., Jeon S., and Venugopalan R. Phys. Rev. D, 63, 036004 (2001)28. Voronyuk V., Goloviznin V.V., Zinovjev G.M., Cassing W., Molodtsov S.V., Snigirev A.M., and Toneev V.D. Phys. Atom. Nucl. 78 (2), 312 (2015).29. Mrowczynski S., Schenke B., and Strickland M. Phys. Rep. 682, 1 (2017).30. Dumitru A., Miller G.A., and Venugopalan R. Phys. Rev. D, 98, 094004 (2018).31. Bern Z., Carrasco J.J.M., and Johansson H. Phys. Rev. D, 78, 085011 (2008).32. Goldberger W.D. and Ridgway A.K. Phys. Rev. D, 95 (12), 125010 (2017).33. Dzhunushaliev V., Folomeev V., and Protsenko N. Int. J. Mod. Phys. D, 28 (01) 1950017 (2019).34. Drechsler W. and Rosenblum A. Phys. Lett. B, 106, 81 (1981).35. Kates R.E. and Rosenblum A. Phys. Rev. D, 28, 3066 (1983).36. Trautman A. Phys. Rev. Lett. 46, 875 (1981).37. Oh C.H., Lai C.H., and The R. Phys. Rev. D, 33, 1133 (1986).38. A. Liénard. Champ électrique et magnétique. In: L’éclairage Électrique. Vol. 16, pp. 5–14, 53–59, 106–112 (1898)39. Wiechert E. Ann. Phys. 309, 667 (1901).40. Sarıoğlu Ö. Phys. Rev. D, 66, 085005 (2002).41. Gürses M. and Sarioglu Ö. Class. Quant. Grav. 19, 4249 (2002).Erratum, Class. Quant. Grav. 20, 1413 (2003).42. Von Laue M. Ann. Phys. 28, 436 (1909).43. Rohrlich F. Am. J. Phys. 65, 1051 (1997).44. Sprott J.C. Phys. Rev. E, 50, R647 (1994).45. Sprott J.C. Am. J. Phys. 65, 537 (1997).46. Chernicoff M., Garcia J.A., and Guijosa A. Phys. Rev. Lett. 102, 241601 (2009).PublicationORIGINALRadiation damping of a Yang–Mills particle revisited.pdfRadiation damping of a Yang–Mills particle revisited.pdfapplication/pdf179280https://repositorio.cuc.edu.co/bitstreams/4fa6848d-8058-44dd-b285-fa66ab548300/downloadef27331bf69e48f79c2d6503cbb1b5a9MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/1d4f2549-8a58-40aa-b186-96f6b3b1bc57/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/6c3d7107-fc76-476d-a01a-c3e9b4899158/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILRadiation damping of a Yang–Mills particle revisited.pdf.jpgRadiation damping of a Yang–Mills particle revisited.pdf.jpgimage/jpeg24171https://repositorio.cuc.edu.co/bitstreams/376d5a98-c772-4326-855b-681b4c67d29b/download89ce41cb9afb29d34b27c787e5836219MD54TEXTRadiation damping of a Yang–Mills particle revisited.pdf.txtRadiation damping of a Yang–Mills particle revisited.pdf.txttext/plain710https://repositorio.cuc.edu.co/bitstreams/99e1e346-5599-480f-ad83-e03d8acf75b5/download443aa137784121138b017273b817beb7MD5511323/7916oai:repositorio.cuc.edu.co:11323/79162024-09-17 14:06:05.315http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |