Inventory models in a sustainable supply chain: a bibliometric analysis

This paper presents a bibliometric analysis of inventory models in a sustainable supply chain. The methodology contains reviewing previous research with a performance evaluation, network analysis, and science mapping to identify the applications, trends, and future research topics. Scientific mappin...

Full description

Autores:
Salas-Navarro, Katherinne
Serrano-Pájaro, Paula
Ospina Mateus, Holman
Zamora-Musa, Ronald
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9416
Acceso en línea:
https://hdl.handle.net/11323/9416
https://doi.org/10.3390/su14106003
https://repositorio.cuc.edu.co/
Palabra clave:
Sustainable supply chain
Inventory model
Green supply chain
Sustainable logistic
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_b3c611b3016950a133f72ec69964d62d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9416
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Inventory models in a sustainable supply chain: a bibliometric analysis
title Inventory models in a sustainable supply chain: a bibliometric analysis
spellingShingle Inventory models in a sustainable supply chain: a bibliometric analysis
Sustainable supply chain
Inventory model
Green supply chain
Sustainable logistic
title_short Inventory models in a sustainable supply chain: a bibliometric analysis
title_full Inventory models in a sustainable supply chain: a bibliometric analysis
title_fullStr Inventory models in a sustainable supply chain: a bibliometric analysis
title_full_unstemmed Inventory models in a sustainable supply chain: a bibliometric analysis
title_sort Inventory models in a sustainable supply chain: a bibliometric analysis
dc.creator.fl_str_mv Salas-Navarro, Katherinne
Serrano-Pájaro, Paula
Ospina Mateus, Holman
Zamora-Musa, Ronald
dc.contributor.author.spa.fl_str_mv Salas-Navarro, Katherinne
Serrano-Pájaro, Paula
Ospina Mateus, Holman
Zamora-Musa, Ronald
dc.subject.proposal.eng.fl_str_mv Sustainable supply chain
Inventory model
Green supply chain
Sustainable logistic
topic Sustainable supply chain
Inventory model
Green supply chain
Sustainable logistic
description This paper presents a bibliometric analysis of inventory models in a sustainable supply chain. The methodology contains reviewing previous research with a performance evaluation, network analysis, and science mapping to identify the applications, trends, and future research topics. Scientific mapping examines the periods and volumes of publications, authors, journals, countries, regions, organizations, subject areas, and citation analyses. The dataset was obtained with the Scopus database and analyzed using MS Excel and VOSviewer. The search equation identified 335 research papers, which resulted in 131 significant manuscripts on the subject after being screened and filtered. The most notable countries in developing research were Iran, India, China, the United States, Canada, Taiwan, France, the United Arab Emirates, Turkey, and Denmark. Saha, S., Ajay, S.Y., and Baboli, A. were the most cited authors. The journals that publish the most research were Sustainability, the Journal of Cleaner Production, and the International Journal of Production Economics. Some research focuses on reducing carbon emissions and polluting agents applied in different industries in China, Brazil, India, and others. The main findings were the number of industry sectors researching this topic, increasing the number of publications, and promoting the proper use of resources within a sustainable supply chain. There are many investigations of theoretical models that have applications in real-life cases. There is also evidence of the high importance of promoting sustainable development. The emissions regulations in a green supply chain applied to agricultural products have allowed for more actions to achieve responsible production and consumption, as seen in applied research in the pulp and paper industry.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-01T21:15:41Z
dc.date.available.none.fl_str_mv 2022-08-01T21:15:41Z
dc.date.issued.none.fl_str_mv 2022-05-15
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Salas-Navarro, K.; Serrano-Pájaro, P.; Ospina-Mateus, H.; Zamora-Musa, R. Inventory Models in a Sustainable Supply Chain: A Bibliometric Analysis. Sustainability 2022, 14, 6003. https://doi.org/10.3390/su14106003
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9416
dc.identifier.url.spa.fl_str_mv https://doi.org/10.3390/su14106003
dc.identifier.doi.spa.fl_str_mv 10.3390/su14106003
dc.identifier.eissn.spa.fl_str_mv 2071-1050
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Salas-Navarro, K.; Serrano-Pájaro, P.; Ospina-Mateus, H.; Zamora-Musa, R. Inventory Models in a Sustainable Supply Chain: A Bibliometric Analysis. Sustainability 2022, 14, 6003. https://doi.org/10.3390/su14106003
10.3390/su14106003
2071-1050
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9416
https://doi.org/10.3390/su14106003
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Sustainability
dc.relation.references.spa.fl_str_mv 1. Wang, B.; Pan, S.-Y.; Ke, R.-Y.; Wang, K.; Wei, Y.-M. An overview of climate change vulnerability: A bibliometric analysis based on Web of Science database. Nat. Hazards 2014, 74, 1649–1666. [CrossRef]
2. Argumedo-García, M.; Salas-Navarro, K.; Acevedo-Chedid, J.; Ospina-Mateus, H. Bibliometric Analysis of the Potential of Technologies in the Humanitarian Supply Chain. J. Open Innov. Technol. Mark. Complex. 2021, 7, 232. [CrossRef]
3. Navarro, K.S.; Chedid, J.A.; Florez, W.F.; Mateus, H.O.; Cárdenas-Barrón, L.E.; Sana, S.S. A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. J. Ind. Manag. Optim. 2020, 16, 1613. [CrossRef]
4. Ansari, Z.N.; Kant, R. Exploring the framework development status for sustainability in supply chain management: A systematic literature synthesis and future research directions. Bus. Strategy Environ. 2017, 26, 873–892. [CrossRef]
5. Sarkar, B.; Ahmed, W.; Choi, S.-B.; Tayyab, M. Sustainable inventory management for environmental impact through partial backordering and multi-trade-credit-period. Sustainability 2018, 10, 4761. [CrossRef]
6. Chibeles-Martins, N.; Pinto-Varela, T.; Barbosa-Póvoa, A.P.; Novais, A.Q. A multi-objective meta-heuristic approach for the design and planning of green supply chains-MBSA. Expert Syst. Appl. 2016, 47, 71–84. [CrossRef]
7. Wang, X.; Cai, H.; Florig, H.K. Energy-saving implications from supply chain improvement: An exploratory study on China’s consumer goods retail system. Energy Policy 2016, 95, 411–420. [CrossRef]
8. Nikolopoulou, A.; Ierapetritou, M.G. Optimal design of sustainable chemical processes and supply chains: A review. Comput. Chem. Eng. 2012, 44, 94–103. [CrossRef]
9. Brandenburg, M.; Govindan, K.; Sarkis, J.; Seuring, S. Quantitative models for sustainable supply chain management: Developments and directions. Eur. J. Oper. Res. 2014, 233, 299–312.
10. Pahl, J.; Voß, S. Integrating deterioration and lifetime constraints in production and supply chain planning: A survey. Eur. J. Oper. Res. 2014, 238, 654–674. [CrossRef]
11. Duque-Uribe, V.; Sarache, W.; Gutiérrez, E.V. Sustainable supply chain management practices and sustainable performance in hospitals: A systematic review and integrative framework. Sustainability 2019, 11, 5949. [CrossRef]
12. Wen, D.; Sun, X.; Liu, Y. Bibliometric analysis of supplier management: The theme and cluster perspectives. Sustainability 2020, 12, 2572. [CrossRef]
13. Tang, Z.; Liu, X.; Wang, Y. Integrated optimization of sustainable transportation and inventory with multiplayer dynamic game under carbon tax policy. Math. Probl. Eng. 2020, 2020, 4948383. [CrossRef]
14. Ghosh, A.; Jha, J.; Sarmah, S. Production-inventory models considering different carbon policies: A review. Int. J. Product. Qual. Manag. 2020, 30, 1–27. [CrossRef]
15. Becerra, P.; Mula, J.; Sanchis, R. Green supply chain quantitative models for sustainable inventory management: A review. J. Clean. Prod. 2021, 328, 129544. [CrossRef]
16. Pattnaik, S.; Nayak, M.M.; Abbate, S.; Centobelli, P. Recent trends in sustainable inventory models: A literature review. Sustainability 2021, 13, 11756. [CrossRef]
17. Zhang, C.-T.; Liu, L.-P. Research on coordination mechanism in three-level green supply chain under non-cooperative game. Appl. Math. Model. 2013, 37, 3369–3379. [CrossRef]
18. Sazvar, Z.; Mirzapour Al-E-Hashem, S.; Baboli, A.; Jokar, M.A. A bi-objective stochastic programming model for a centralized green supply chain with deteriorating products. Int. J. Prod. Econ. 2014, 150, 140–154. [CrossRef]
19. Panja, S.; Mondal, S.K. Analyzing a four-layer green supply chain imperfect production inventory model for green products under type-2 fuzzy credit period. Comput. Ind. Eng. 2019, 129, 435–453. [CrossRef]
20. Chung, C.-J.; Wee, H.-M. Short life-cycle deteriorating product remanufacturing in a green supply chain inventory control system. Int. J. Prod. Econ. 2011, 129, 195–203. [CrossRef]
21. Wee, H.-M.; Lee, M.-C.; Jonas, C.; Wang, C.E. Optimal replenishment policy for a deteriorating green product: Life cycle costing analysis. Int. J. Prod. Econ. 2011, 133, 603–611. [CrossRef]
22. Lin, C.C.; Lin, C.W. Defective item inventory model with remanufacturing or replenishing in an integrated supply chain. Int. J. Integr. Supply Manag. 2011, 6, 254–269. [CrossRef]
23. Widyadana, G.A.; Wee, H.M. An economic production quantity model for deteriorating items with multiple production setups and rework. Int. J. Prod. Econ. 2012, 138, 62–67. [CrossRef]
24. Karimi, M.; Niknamfar, A.H.; Pasandideh, S.H.R. Two-stage single period inventory management for a manufacturing vendor under green-supplier supply chain. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 704–718. [CrossRef]
25. Khatua, D.; Roymahapatra, G.; Maity, K. A green supply chain production inventory model with uncertain holding cost. Int. J. Process Manag. Benchmarking 2017, 7, 277–304. [CrossRef]
26. Bai, Q.; Chen, M.; Xu, L. Revenue and promotional cost-sharing contract versus two-part tariff contract in coordinating sustainable supply chain systems with deteriorating items. Int. J. Prod. Econ. 2017, 187, 85–101. [CrossRef]
27. Yang, S.; Xiao, Y.; Zheng, Y.; Liu, Y. The green supply chain design and marketing strategy for perishable food based on temperature control. Sustainability 2017, 9, 1511. [CrossRef]
28. Saxena, N.; Singh, S.R.; Sana, S.S. A green supply chain model of vendor and buyer for remanufacturing. RAIRO-Oper. Res. 2017, 51, 1133–1150. [CrossRef]
29. Taleizadeh, A.A.; Alizadeh-Basban, N.; Sarker, B.R. Coordinated contracts in a two-echelon green supply chain considering pricing strategy. Comput. Ind. Eng. 2018, 124, 249–275. [CrossRef]
30. Rani, S.; Ali, R.; Agarwal, A. Fuzzy inventory model for deteriorating items in a green supply chain with carbon concerned demand. Opsearch 2019, 56, 91–122. [CrossRef]
31. García-Alvarado, M.; Paquet, M.; Chaabane, A.; Amodeo, L. Inventory management under joint product recovery and cap-andtrade constraints. J. Clean. Prod. 2017, 167, 1499–1517. [CrossRef]
32. Martí, J.M.C.; Tancrez, J.-S.; Seifert, R.W. Carbon footprint and responsiveness trade-offs in supply chain network design. Int. J. Prod. Econ. 2015, 166, 129–142. [CrossRef]
33. Sepehri, M.; Sazvar, Z. Multi-objective sustainable supply chain with deteriorating products and transportation options under uncertain demand and backorder. Sci. Iran. 2016, 23, 2977–2994. [CrossRef]
34. Kang, K.; Hong, K.-s.; Kim, K.H.; Lee, C. Shipment consolidation policy under uncertainty of customer order for sustainable supply chain management. Sustainability 2017, 9, 1675. [CrossRef]
35. Gautam, P.; Kishore, A.; Khanna, A.; Jaggi, C.K. Strategic defect management for a sustainable green supply chain. J. Clean. Prod. 2019, 233, 226–241. [CrossRef]
36. Lu, X.; Shang, J.; Wu, S.-y.; Hegde, G.G.; Vargas, L.; Zhao, D. Impacts of supplier hubris on inventory decisions and green manufacturing endeavors. Eur. J. Oper. Res. 2015, 245, 121–132. [CrossRef]
37. Mokhtari, H.; Rezvan, M.T. A single-supplier, multi-buyer, multi-product VMI production-inventory system under partial backordering. Oper. Res. 2020, 20, 37–57. [CrossRef]
38. Bazan, E.; Jaber, M.Y.; Zanoni, S. Carbon emissions and energy effects on a two-level manufacturer-retailer closed-loop supply chain model with remanufacturing subject to different coordination mechanisms. Int. J. Prod. Econ. 2017, 183, 394–408. [CrossRef]
39. Halat, K.; Hafezalkotob, A. Modeling carbon regulation policies in inventory decisions of a multi-stage green supply chain: A game theory approach. Comput. Ind. Eng. 2019, 128, 807–830. [CrossRef]
40. Pan, J.; Chiu, C.-Y.; Wu, K.-S.; Yen, H.-F.; Wang, Y.-W. Sustainable Production–Inventory Model in Technical Cooperation on Investment to Reduce Carbon Emissions. Processes 2020, 8, 1438. [CrossRef]
41. Taleizadeh, A.A.; Hazarkhani, B.; Moon, I. Joint pricing and inventory decisions with carbon emission considerations, partial backordering and planned discounts. Ann. Oper. Res. 2020, 290, 95–113. [CrossRef]
42. Khan, M.; Hussain, M.; Saber, H.M. Information sharing in a sustainable supply chain. Int. J. Prod. Econ. 2016, 181, 208–214. [CrossRef]
43. Cui, L.; Deng, J.; Liu, F.; Zhang, Y.; Xu, M. Investigation of RFID investment in a single retailer two-supplier supply chain with random demand to decrease inventory inaccuracy. J. Clean. Prod. 2017, 142, 2028–2044. [CrossRef]
44. Ospina-Mateus, H.; Jiménez, L.A.Q.; Lopez-Valdes, F.J.; Salas-Navarro, K. Bibliometric analysis in motorcycle accident research: A global overview. Scientometrics 2019, 121, 793–815. [CrossRef]
45. Reyes, J.; Solano-Charris, E.; Montoya-Torres, J. The storage location assignment problem: A literature review. Int. J. Ind. Eng. Comput. 2019, 10, 199–224. [CrossRef]
46. Meza-Peralta, K.; Gonzalez-Feliu, J.; Montoya-Torres, J.R.; Khodadad-Saryazdi, A. A unified typology of urban logistics spaces as interfaces for freight transport: A Systematic Literature Review. Supply Chain. Forum Int. J. 2020, 21, 274–289. [CrossRef]
47. Khan, S.A.R.; Yu, Z.; Golpira, H.; Sharif, A.; Mardani, A. A state-of-the-art review and meta-analysis on sustainable supply chain management: Future research directions. J. Clean. Prod. 2021, 278, 123357. [CrossRef]
48. Martínez, J.M.G.; Carracedo, P.; Comas, D.G.; Siemens, C.H. An analysis of the blockchain and COVID-19 research landscape using a bibliometric study. Sustain. Technol. Entrep. 2022, 1, 100006. [CrossRef]
49. Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [CrossRef]
50. Guerrero-Bote, V.P.; Moya-Anegón, F. A further step forward in measuring journals’ scientific prestige: The SJR2 indicator. J. Informetr. 2012, 6, 674–688. [CrossRef]
51. Zhang, L.; Yang, W.; Yuan, Y.; Zhou, R. An integrated carbon policy-based interactive strategy for carbon reduction and economic development in a construction material supply chain. Sustainability 2017, 9, 2107. [CrossRef]
52. Ma, K.; Wang, L.; Chen, Y. A collaborative cloud service platform for realizing sustainable make-to-order apparel supply chain. Sustainability 2018, 10, 11. [CrossRef]
53. Lee, A.H.; Kang, H.-Y.; Ye, S.-J.; Wu, W.-Y. An integrated approach for sustainable supply chain management with replenishment, transportation, and production decisions. Sustainability 2018, 10, 3887. [CrossRef]
54. Bouchery, Y.; Ghaffari, A.; Jemai, Z.; Dallery, Y. Including sustainability criteria into inventory models. Eur. J. Oper. Res. 2012, 222, 229–240. [CrossRef]
55. Hoen, K.; Tan, T.; Fransoo, J.C.; van Houtum, G.-J. Effect of carbon emission regulations on transport mode selection under stochastic demand. Flex. Serv. Manuf. J. 2014, 26, 170–195. [CrossRef]
56. Abdallah, T.; Diabat, A.; Simchi-Levi, D. Sustainable supply chain design: A closed-loop formulation and sensitivity analysis. Prod. Plan. Control. 2012, 23, 120–133. [CrossRef]
57. Bazan, E.; Jaber, M.Y.; El Saadany, A.M. Carbon emissions and energy effects on manufacturing–remanufacturing inventory models. Comput. Ind. Eng. 2015, 88, 307–316. [CrossRef]
58. Zhao, Y.; Choi, S.; Wang, X.; Qiao, A.; Wang, S. Production and Low-carbon Investment Analysis in Make-to-stock Supply Chain. Eng. Lett. 2017, 25, 1–10.
59. Nielsen, I.E.; Majumder, S.; Sana, S.S.; Saha, S. Comparative analysis of government incentives and game structures on single and two-period green supply chain. J. Clean. Prod. 2019, 235, 1371–1398. [CrossRef]
60. Manupati, V.K.; Jedidah, S.J.; Gupta, S.; Bhandari, A.; Ramkumar, M. Optimization of a multi-echelon sustainable productiondistribution supply chain system with lead time consideration under carbon emission policies. Comput. Ind. Eng. 2019, 135, 1312–1323. [CrossRef]
61. Rout, C.; Paul, A.; Kumar, R.S.; Chakraborty, D.; Goswami, A. Cooperative sustainable supply chain for deteriorating item and imperfect production under different carbon emission regulations. J. Clean. Prod. 2020, 272, 122170. [CrossRef]
62. Diabat, A.; Al-Salem, M. An integrated supply chain problem with environmental considerations. Int. J. Prod. Econ. 2015, 164, 330–338. [CrossRef]
63. Hong, Z.; Dai, W.; Luh, H.; Yang, C. Optimal configuration of a green product supply chain with guaranteed service time and emission constraints. Eur. J. Oper. Res. 2018, 266, 663–677. [CrossRef]
64. Lee, C.; Realff, M.; Ammons, J. Integration of channel decisions in a decentralized reverse production system with retailer collection under deterministic non-stationary demands. Adv. Eng. Inform. 2011, 25, 88–102. [CrossRef]
65. Wang, Q.; Wu, J.; Zhao, N.; Zhu, Q. Inventory control and supply chain management: A green growth perspective. Resour. Conserv. Recycl. 2019, 145, 78–85. [CrossRef]
66. Lieckens, K.T.; Colen, P.J.; Lambrecht, M.R. Network and contract optimization for maintenance services with remanufacturing. Comput. Oper. Res. 2015, 54, 232–244. [CrossRef]
67. Baek, S.H.; Kim, J.S. Efficient Algorithms for a Large-Scale Supplier Selection and Order Allocation Problem Considering Carbon Emissions and Quantity Discounts. Mathematics 2020, 8, 1659. [CrossRef]
68. Sadeghi Rad, R.; Nahavandi, N. A novel multi-objective optimization model for integrated problem of green closed loop supply chain network design and quantity discount. J. Clean. Prod. 2018, 196, 1549–1565. [CrossRef]
69. Jabarzadeh, Y.; Yamchi, H.R.; Kumar, V.; Ghaffarinasab, N. A multi-objective mixed-integer linear model for sustainable fruit closed-loop supply chain network. Manag. Environ. Qual. Int. J. 2020, 31, 1351–1373. [CrossRef]
70. Garcia-Alvarado, M.; Paquet, M.; Chaabane, A. Joint strategic and tactical planning under the dynamics of a cap-and-trade scheme. IFAC-Pap. 2016, 49, 622–627. [CrossRef]
71. Tang, J.; Ji, S.; Jiang, L. The design of a sustainable location-routing-inventory model considering consumer environmental behavior. Sustainability 2016, 8, 211. [CrossRef]
72. Li, Z.; Fei, W.; Zhou, E.; Gajpal, Y.; Chen, X. The Impact of Lead Time Uncertainty on Supply Chain Performance Considering Carbon Cost. Sustainability 2019, 11, 6457. [CrossRef]
73. Treitl, S.; Nolz, P.C.; Jammernegg, W. Incorporating environmental aspects in an inventory routing problem. A case study from the petrochemical industry. Flex. Serv. Manuf. J. 2014, 26, 143–169. [CrossRef]
74. Wanke, P.; Correa, H.; Jacob, J.; Santos, T. Including carbon emissions in the planning of logistic networks: A Brazilian case. Int. J. Shipp. Transp. Logist. 2015, 7, 655–675. [CrossRef]
75. Zhao, Q.; Wen, Z.; Toppinen, A. Constructing the embodied Carbon flows and emissions landscape from the perspective of supply chain. Sustainability 2018, 10, 3865. [CrossRef]
76. Nolz, P.C.; Absi, N.; Feillet, D. A stochastic inventory routing problem for infectious medical waste collection. Networks 2014, 63, 82–95. [CrossRef]
77. Zheng, M.; Li, W.; Liu, Y.; Liu, X. A Lagrangian heuristic algorithm for sustainable supply chain network considering CO2 emission. J. Clean. Prod. 2020, 270, 122409. [CrossRef]
78. Ali, S.S.; Paksoy, T.; Tor ˘gul, B.; Kaur, R. Reverse logistics optimization of an industrial air conditioner manufacturing company for designing sustainable supply chain: A fuzzy hybrid multi-criteria decision-making approach. Wirel. Netw. 2020, 26, 5759–5782. [CrossRef]
79. Shaik, J.H.; Reddy, A.; Chowdary, N.; Jahnavi, Y. Is financial and sustainability performance associated with stock performance? A panel data analysis of bse telecom index companies. Int. J. Civ. Eng. Technol. 2018, 9, 256–263.
80. Niranjan, T.; Parthiban, P.; Sundaram, K.; Jeyaganesan, P.N. Designing a omnichannel closed loop green supply chain network adapting preferences of rational customers. Sadhan ¯ a¯ 2019, 44, 60. [CrossRef]
81. Gholipour, S.; Ashoftehfard, A.; Mina, H. Green supply chain network design considering inventory-location-routing problem: A fuzzy solution approach. Int. J. Logist. Syst. Manag. 2020, 35, 436–452. [CrossRef]
82. Haftor, D.M.; Climent, R.C.; Lundström, J.E. How machine learning activates data network effects in business models: Theory advancement through an industrial case of promoting ecological sustainability. J. Bus. Res. 2021, 131, 196–205. [CrossRef]
83. United Nations. RES/70/1. Transforming Our world: The 2030 Agenda for Sustainable Development. Available online: http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 2 July 2021).
dc.relation.citationendpage.spa.fl_str_mv 21
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 10
dc.relation.citationvolume.spa.fl_str_mv 14
dc.rights.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 21 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI AG
dc.publisher.place.spa.fl_str_mv Switzerland
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.mdpi.com/2071-1050/14/10/6003
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/93ca77c4-1a85-487d-93f7-2f00e76c294c/download
https://repositorio.cuc.edu.co/bitstreams/86e7abb1-1cd5-4003-b78b-039316cdebbf/download
https://repositorio.cuc.edu.co/bitstreams/c1ba4036-cdf0-4abd-805f-7d7515c53a5f/download
https://repositorio.cuc.edu.co/bitstreams/8a92306b-1b63-4b32-99b9-9e99ced1d1c9/download
bitstream.checksum.fl_str_mv 571dff01439f202e832910414a56bfaa
e30e9215131d99561d40d6b0abbe9bad
df2e28e8cdf5f70ac57bf6dc41dd1bb8
8654e407fbb435f686e59ef11cbe431a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760834039250944
spelling Salas-Navarro, KatherinneSerrano-Pájaro, PaulaOspina Mateus, HolmanZamora-Musa, Ronald2022-08-01T21:15:41Z2022-08-01T21:15:41Z2022-05-15Salas-Navarro, K.; Serrano-Pájaro, P.; Ospina-Mateus, H.; Zamora-Musa, R. Inventory Models in a Sustainable Supply Chain: A Bibliometric Analysis. Sustainability 2022, 14, 6003. https://doi.org/10.3390/su14106003https://hdl.handle.net/11323/9416https://doi.org/10.3390/su1410600310.3390/su141060032071-1050Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents a bibliometric analysis of inventory models in a sustainable supply chain. The methodology contains reviewing previous research with a performance evaluation, network analysis, and science mapping to identify the applications, trends, and future research topics. Scientific mapping examines the periods and volumes of publications, authors, journals, countries, regions, organizations, subject areas, and citation analyses. The dataset was obtained with the Scopus database and analyzed using MS Excel and VOSviewer. The search equation identified 335 research papers, which resulted in 131 significant manuscripts on the subject after being screened and filtered. The most notable countries in developing research were Iran, India, China, the United States, Canada, Taiwan, France, the United Arab Emirates, Turkey, and Denmark. Saha, S., Ajay, S.Y., and Baboli, A. were the most cited authors. The journals that publish the most research were Sustainability, the Journal of Cleaner Production, and the International Journal of Production Economics. Some research focuses on reducing carbon emissions and polluting agents applied in different industries in China, Brazil, India, and others. The main findings were the number of industry sectors researching this topic, increasing the number of publications, and promoting the proper use of resources within a sustainable supply chain. There are many investigations of theoretical models that have applications in real-life cases. There is also evidence of the high importance of promoting sustainable development. The emissions regulations in a green supply chain applied to agricultural products have allowed for more actions to achieve responsible production and consumption, as seen in applied research in the pulp and paper industry.21 páginasapplication/pdfengMDPI AGSwitzerlandAtribución 4.0 Internacional (CC BY 4.0)© 2022 by the authors. Licensee MDPI, Basel, Switzerland.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Inventory models in a sustainable supply chain: a bibliometric analysisArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.mdpi.com/2071-1050/14/10/6003Sustainability1. Wang, B.; Pan, S.-Y.; Ke, R.-Y.; Wang, K.; Wei, Y.-M. An overview of climate change vulnerability: A bibliometric analysis based on Web of Science database. Nat. Hazards 2014, 74, 1649–1666. [CrossRef]2. Argumedo-García, M.; Salas-Navarro, K.; Acevedo-Chedid, J.; Ospina-Mateus, H. Bibliometric Analysis of the Potential of Technologies in the Humanitarian Supply Chain. J. Open Innov. Technol. Mark. Complex. 2021, 7, 232. [CrossRef]3. Navarro, K.S.; Chedid, J.A.; Florez, W.F.; Mateus, H.O.; Cárdenas-Barrón, L.E.; Sana, S.S. A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. J. Ind. Manag. Optim. 2020, 16, 1613. [CrossRef]4. Ansari, Z.N.; Kant, R. Exploring the framework development status for sustainability in supply chain management: A systematic literature synthesis and future research directions. Bus. Strategy Environ. 2017, 26, 873–892. [CrossRef]5. Sarkar, B.; Ahmed, W.; Choi, S.-B.; Tayyab, M. Sustainable inventory management for environmental impact through partial backordering and multi-trade-credit-period. Sustainability 2018, 10, 4761. [CrossRef]6. Chibeles-Martins, N.; Pinto-Varela, T.; Barbosa-Póvoa, A.P.; Novais, A.Q. A multi-objective meta-heuristic approach for the design and planning of green supply chains-MBSA. Expert Syst. Appl. 2016, 47, 71–84. [CrossRef]7. Wang, X.; Cai, H.; Florig, H.K. Energy-saving implications from supply chain improvement: An exploratory study on China’s consumer goods retail system. Energy Policy 2016, 95, 411–420. [CrossRef]8. Nikolopoulou, A.; Ierapetritou, M.G. Optimal design of sustainable chemical processes and supply chains: A review. Comput. Chem. Eng. 2012, 44, 94–103. [CrossRef]9. Brandenburg, M.; Govindan, K.; Sarkis, J.; Seuring, S. Quantitative models for sustainable supply chain management: Developments and directions. Eur. J. Oper. Res. 2014, 233, 299–312.10. Pahl, J.; Voß, S. Integrating deterioration and lifetime constraints in production and supply chain planning: A survey. Eur. J. Oper. Res. 2014, 238, 654–674. [CrossRef]11. Duque-Uribe, V.; Sarache, W.; Gutiérrez, E.V. Sustainable supply chain management practices and sustainable performance in hospitals: A systematic review and integrative framework. Sustainability 2019, 11, 5949. [CrossRef]12. Wen, D.; Sun, X.; Liu, Y. Bibliometric analysis of supplier management: The theme and cluster perspectives. Sustainability 2020, 12, 2572. [CrossRef]13. Tang, Z.; Liu, X.; Wang, Y. Integrated optimization of sustainable transportation and inventory with multiplayer dynamic game under carbon tax policy. Math. Probl. Eng. 2020, 2020, 4948383. [CrossRef]14. Ghosh, A.; Jha, J.; Sarmah, S. Production-inventory models considering different carbon policies: A review. Int. J. Product. Qual. Manag. 2020, 30, 1–27. [CrossRef]15. Becerra, P.; Mula, J.; Sanchis, R. Green supply chain quantitative models for sustainable inventory management: A review. J. Clean. Prod. 2021, 328, 129544. [CrossRef]16. Pattnaik, S.; Nayak, M.M.; Abbate, S.; Centobelli, P. Recent trends in sustainable inventory models: A literature review. Sustainability 2021, 13, 11756. [CrossRef]17. Zhang, C.-T.; Liu, L.-P. Research on coordination mechanism in three-level green supply chain under non-cooperative game. Appl. Math. Model. 2013, 37, 3369–3379. [CrossRef]18. Sazvar, Z.; Mirzapour Al-E-Hashem, S.; Baboli, A.; Jokar, M.A. A bi-objective stochastic programming model for a centralized green supply chain with deteriorating products. Int. J. Prod. Econ. 2014, 150, 140–154. [CrossRef]19. Panja, S.; Mondal, S.K. Analyzing a four-layer green supply chain imperfect production inventory model for green products under type-2 fuzzy credit period. Comput. Ind. Eng. 2019, 129, 435–453. [CrossRef]20. Chung, C.-J.; Wee, H.-M. Short life-cycle deteriorating product remanufacturing in a green supply chain inventory control system. Int. J. Prod. Econ. 2011, 129, 195–203. [CrossRef]21. Wee, H.-M.; Lee, M.-C.; Jonas, C.; Wang, C.E. Optimal replenishment policy for a deteriorating green product: Life cycle costing analysis. Int. J. Prod. Econ. 2011, 133, 603–611. [CrossRef]22. Lin, C.C.; Lin, C.W. Defective item inventory model with remanufacturing or replenishing in an integrated supply chain. Int. J. Integr. Supply Manag. 2011, 6, 254–269. [CrossRef]23. Widyadana, G.A.; Wee, H.M. An economic production quantity model for deteriorating items with multiple production setups and rework. Int. J. Prod. Econ. 2012, 138, 62–67. [CrossRef]24. Karimi, M.; Niknamfar, A.H.; Pasandideh, S.H.R. Two-stage single period inventory management for a manufacturing vendor under green-supplier supply chain. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 704–718. [CrossRef]25. Khatua, D.; Roymahapatra, G.; Maity, K. A green supply chain production inventory model with uncertain holding cost. Int. J. Process Manag. Benchmarking 2017, 7, 277–304. [CrossRef]26. Bai, Q.; Chen, M.; Xu, L. Revenue and promotional cost-sharing contract versus two-part tariff contract in coordinating sustainable supply chain systems with deteriorating items. Int. J. Prod. Econ. 2017, 187, 85–101. [CrossRef]27. Yang, S.; Xiao, Y.; Zheng, Y.; Liu, Y. The green supply chain design and marketing strategy for perishable food based on temperature control. Sustainability 2017, 9, 1511. [CrossRef]28. Saxena, N.; Singh, S.R.; Sana, S.S. A green supply chain model of vendor and buyer for remanufacturing. RAIRO-Oper. Res. 2017, 51, 1133–1150. [CrossRef]29. Taleizadeh, A.A.; Alizadeh-Basban, N.; Sarker, B.R. Coordinated contracts in a two-echelon green supply chain considering pricing strategy. Comput. Ind. Eng. 2018, 124, 249–275. [CrossRef]30. Rani, S.; Ali, R.; Agarwal, A. Fuzzy inventory model for deteriorating items in a green supply chain with carbon concerned demand. Opsearch 2019, 56, 91–122. [CrossRef]31. García-Alvarado, M.; Paquet, M.; Chaabane, A.; Amodeo, L. Inventory management under joint product recovery and cap-andtrade constraints. J. Clean. Prod. 2017, 167, 1499–1517. [CrossRef]32. Martí, J.M.C.; Tancrez, J.-S.; Seifert, R.W. Carbon footprint and responsiveness trade-offs in supply chain network design. Int. J. Prod. Econ. 2015, 166, 129–142. [CrossRef]33. Sepehri, M.; Sazvar, Z. Multi-objective sustainable supply chain with deteriorating products and transportation options under uncertain demand and backorder. Sci. Iran. 2016, 23, 2977–2994. [CrossRef]34. Kang, K.; Hong, K.-s.; Kim, K.H.; Lee, C. Shipment consolidation policy under uncertainty of customer order for sustainable supply chain management. Sustainability 2017, 9, 1675. [CrossRef]35. Gautam, P.; Kishore, A.; Khanna, A.; Jaggi, C.K. Strategic defect management for a sustainable green supply chain. J. Clean. Prod. 2019, 233, 226–241. [CrossRef]36. Lu, X.; Shang, J.; Wu, S.-y.; Hegde, G.G.; Vargas, L.; Zhao, D. Impacts of supplier hubris on inventory decisions and green manufacturing endeavors. Eur. J. Oper. Res. 2015, 245, 121–132. [CrossRef]37. Mokhtari, H.; Rezvan, M.T. A single-supplier, multi-buyer, multi-product VMI production-inventory system under partial backordering. Oper. Res. 2020, 20, 37–57. [CrossRef]38. Bazan, E.; Jaber, M.Y.; Zanoni, S. Carbon emissions and energy effects on a two-level manufacturer-retailer closed-loop supply chain model with remanufacturing subject to different coordination mechanisms. Int. J. Prod. Econ. 2017, 183, 394–408. [CrossRef]39. Halat, K.; Hafezalkotob, A. Modeling carbon regulation policies in inventory decisions of a multi-stage green supply chain: A game theory approach. Comput. Ind. Eng. 2019, 128, 807–830. [CrossRef]40. Pan, J.; Chiu, C.-Y.; Wu, K.-S.; Yen, H.-F.; Wang, Y.-W. Sustainable Production–Inventory Model in Technical Cooperation on Investment to Reduce Carbon Emissions. Processes 2020, 8, 1438. [CrossRef]41. Taleizadeh, A.A.; Hazarkhani, B.; Moon, I. Joint pricing and inventory decisions with carbon emission considerations, partial backordering and planned discounts. Ann. Oper. Res. 2020, 290, 95–113. [CrossRef]42. Khan, M.; Hussain, M.; Saber, H.M. Information sharing in a sustainable supply chain. Int. J. Prod. Econ. 2016, 181, 208–214. [CrossRef]43. Cui, L.; Deng, J.; Liu, F.; Zhang, Y.; Xu, M. Investigation of RFID investment in a single retailer two-supplier supply chain with random demand to decrease inventory inaccuracy. J. Clean. Prod. 2017, 142, 2028–2044. [CrossRef]44. Ospina-Mateus, H.; Jiménez, L.A.Q.; Lopez-Valdes, F.J.; Salas-Navarro, K. Bibliometric analysis in motorcycle accident research: A global overview. Scientometrics 2019, 121, 793–815. [CrossRef]45. Reyes, J.; Solano-Charris, E.; Montoya-Torres, J. The storage location assignment problem: A literature review. Int. J. Ind. Eng. Comput. 2019, 10, 199–224. [CrossRef]46. Meza-Peralta, K.; Gonzalez-Feliu, J.; Montoya-Torres, J.R.; Khodadad-Saryazdi, A. A unified typology of urban logistics spaces as interfaces for freight transport: A Systematic Literature Review. Supply Chain. Forum Int. J. 2020, 21, 274–289. [CrossRef]47. Khan, S.A.R.; Yu, Z.; Golpira, H.; Sharif, A.; Mardani, A. A state-of-the-art review and meta-analysis on sustainable supply chain management: Future research directions. J. Clean. Prod. 2021, 278, 123357. [CrossRef]48. Martínez, J.M.G.; Carracedo, P.; Comas, D.G.; Siemens, C.H. An analysis of the blockchain and COVID-19 research landscape using a bibliometric study. Sustain. Technol. Entrep. 2022, 1, 100006. [CrossRef]49. Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [CrossRef]50. Guerrero-Bote, V.P.; Moya-Anegón, F. A further step forward in measuring journals’ scientific prestige: The SJR2 indicator. J. Informetr. 2012, 6, 674–688. [CrossRef]51. Zhang, L.; Yang, W.; Yuan, Y.; Zhou, R. An integrated carbon policy-based interactive strategy for carbon reduction and economic development in a construction material supply chain. Sustainability 2017, 9, 2107. [CrossRef]52. Ma, K.; Wang, L.; Chen, Y. A collaborative cloud service platform for realizing sustainable make-to-order apparel supply chain. Sustainability 2018, 10, 11. [CrossRef]53. Lee, A.H.; Kang, H.-Y.; Ye, S.-J.; Wu, W.-Y. An integrated approach for sustainable supply chain management with replenishment, transportation, and production decisions. Sustainability 2018, 10, 3887. [CrossRef]54. Bouchery, Y.; Ghaffari, A.; Jemai, Z.; Dallery, Y. Including sustainability criteria into inventory models. Eur. J. Oper. Res. 2012, 222, 229–240. [CrossRef]55. Hoen, K.; Tan, T.; Fransoo, J.C.; van Houtum, G.-J. Effect of carbon emission regulations on transport mode selection under stochastic demand. Flex. Serv. Manuf. J. 2014, 26, 170–195. [CrossRef]56. Abdallah, T.; Diabat, A.; Simchi-Levi, D. Sustainable supply chain design: A closed-loop formulation and sensitivity analysis. Prod. Plan. Control. 2012, 23, 120–133. [CrossRef]57. Bazan, E.; Jaber, M.Y.; El Saadany, A.M. Carbon emissions and energy effects on manufacturing–remanufacturing inventory models. Comput. Ind. Eng. 2015, 88, 307–316. [CrossRef]58. Zhao, Y.; Choi, S.; Wang, X.; Qiao, A.; Wang, S. Production and Low-carbon Investment Analysis in Make-to-stock Supply Chain. Eng. Lett. 2017, 25, 1–10.59. Nielsen, I.E.; Majumder, S.; Sana, S.S.; Saha, S. Comparative analysis of government incentives and game structures on single and two-period green supply chain. J. Clean. Prod. 2019, 235, 1371–1398. [CrossRef]60. Manupati, V.K.; Jedidah, S.J.; Gupta, S.; Bhandari, A.; Ramkumar, M. Optimization of a multi-echelon sustainable productiondistribution supply chain system with lead time consideration under carbon emission policies. Comput. Ind. Eng. 2019, 135, 1312–1323. [CrossRef]61. Rout, C.; Paul, A.; Kumar, R.S.; Chakraborty, D.; Goswami, A. Cooperative sustainable supply chain for deteriorating item and imperfect production under different carbon emission regulations. J. Clean. Prod. 2020, 272, 122170. [CrossRef]62. Diabat, A.; Al-Salem, M. An integrated supply chain problem with environmental considerations. Int. J. Prod. Econ. 2015, 164, 330–338. [CrossRef]63. Hong, Z.; Dai, W.; Luh, H.; Yang, C. Optimal configuration of a green product supply chain with guaranteed service time and emission constraints. Eur. J. Oper. Res. 2018, 266, 663–677. [CrossRef]64. Lee, C.; Realff, M.; Ammons, J. Integration of channel decisions in a decentralized reverse production system with retailer collection under deterministic non-stationary demands. Adv. Eng. Inform. 2011, 25, 88–102. [CrossRef]65. Wang, Q.; Wu, J.; Zhao, N.; Zhu, Q. Inventory control and supply chain management: A green growth perspective. Resour. Conserv. Recycl. 2019, 145, 78–85. [CrossRef]66. Lieckens, K.T.; Colen, P.J.; Lambrecht, M.R. Network and contract optimization for maintenance services with remanufacturing. Comput. Oper. Res. 2015, 54, 232–244. [CrossRef]67. Baek, S.H.; Kim, J.S. Efficient Algorithms for a Large-Scale Supplier Selection and Order Allocation Problem Considering Carbon Emissions and Quantity Discounts. Mathematics 2020, 8, 1659. [CrossRef]68. Sadeghi Rad, R.; Nahavandi, N. A novel multi-objective optimization model for integrated problem of green closed loop supply chain network design and quantity discount. J. Clean. Prod. 2018, 196, 1549–1565. [CrossRef]69. Jabarzadeh, Y.; Yamchi, H.R.; Kumar, V.; Ghaffarinasab, N. A multi-objective mixed-integer linear model for sustainable fruit closed-loop supply chain network. Manag. Environ. Qual. Int. J. 2020, 31, 1351–1373. [CrossRef]70. Garcia-Alvarado, M.; Paquet, M.; Chaabane, A. Joint strategic and tactical planning under the dynamics of a cap-and-trade scheme. IFAC-Pap. 2016, 49, 622–627. [CrossRef]71. Tang, J.; Ji, S.; Jiang, L. The design of a sustainable location-routing-inventory model considering consumer environmental behavior. Sustainability 2016, 8, 211. [CrossRef]72. Li, Z.; Fei, W.; Zhou, E.; Gajpal, Y.; Chen, X. The Impact of Lead Time Uncertainty on Supply Chain Performance Considering Carbon Cost. Sustainability 2019, 11, 6457. [CrossRef]73. Treitl, S.; Nolz, P.C.; Jammernegg, W. Incorporating environmental aspects in an inventory routing problem. A case study from the petrochemical industry. Flex. Serv. Manuf. J. 2014, 26, 143–169. [CrossRef]74. Wanke, P.; Correa, H.; Jacob, J.; Santos, T. Including carbon emissions in the planning of logistic networks: A Brazilian case. Int. J. Shipp. Transp. Logist. 2015, 7, 655–675. [CrossRef]75. Zhao, Q.; Wen, Z.; Toppinen, A. Constructing the embodied Carbon flows and emissions landscape from the perspective of supply chain. Sustainability 2018, 10, 3865. [CrossRef]76. Nolz, P.C.; Absi, N.; Feillet, D. A stochastic inventory routing problem for infectious medical waste collection. Networks 2014, 63, 82–95. [CrossRef]77. Zheng, M.; Li, W.; Liu, Y.; Liu, X. A Lagrangian heuristic algorithm for sustainable supply chain network considering CO2 emission. J. Clean. Prod. 2020, 270, 122409. [CrossRef]78. Ali, S.S.; Paksoy, T.; Tor ˘gul, B.; Kaur, R. Reverse logistics optimization of an industrial air conditioner manufacturing company for designing sustainable supply chain: A fuzzy hybrid multi-criteria decision-making approach. Wirel. Netw. 2020, 26, 5759–5782. [CrossRef]79. Shaik, J.H.; Reddy, A.; Chowdary, N.; Jahnavi, Y. Is financial and sustainability performance associated with stock performance? A panel data analysis of bse telecom index companies. Int. J. Civ. Eng. Technol. 2018, 9, 256–263.80. Niranjan, T.; Parthiban, P.; Sundaram, K.; Jeyaganesan, P.N. Designing a omnichannel closed loop green supply chain network adapting preferences of rational customers. Sadhan ¯ a¯ 2019, 44, 60. [CrossRef]81. Gholipour, S.; Ashoftehfard, A.; Mina, H. Green supply chain network design considering inventory-location-routing problem: A fuzzy solution approach. Int. J. Logist. Syst. Manag. 2020, 35, 436–452. [CrossRef]82. Haftor, D.M.; Climent, R.C.; Lundström, J.E. How machine learning activates data network effects in business models: Theory advancement through an industrial case of promoting ecological sustainability. J. Bus. Res. 2021, 131, 196–205. [CrossRef]83. United Nations. RES/70/1. Transforming Our world: The 2030 Agenda for Sustainable Development. Available online: http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 2 July 2021).2111014Sustainable supply chainInventory modelGreen supply chainSustainable logisticPublicationORIGINALInventory Models in a Sustainable Supply Chain- A Bibliometric Analysis.pdfInventory Models in a Sustainable Supply Chain- A Bibliometric Analysis.pdfapplication/pdf4592677https://repositorio.cuc.edu.co/bitstreams/93ca77c4-1a85-487d-93f7-2f00e76c294c/download571dff01439f202e832910414a56bfaaMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/86e7abb1-1cd5-4003-b78b-039316cdebbf/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTInventory Models in a Sustainable Supply Chain- A Bibliometric Analysis.pdf.txtInventory Models in a Sustainable Supply Chain- A Bibliometric Analysis.pdf.txttext/plain79530https://repositorio.cuc.edu.co/bitstreams/c1ba4036-cdf0-4abd-805f-7d7515c53a5f/downloaddf2e28e8cdf5f70ac57bf6dc41dd1bb8MD53THUMBNAILInventory Models in a Sustainable Supply Chain- A Bibliometric Analysis.pdf.jpgInventory Models in a Sustainable Supply Chain- A Bibliometric Analysis.pdf.jpgimage/jpeg15630https://repositorio.cuc.edu.co/bitstreams/8a92306b-1b63-4b32-99b9-9e99ced1d1c9/download8654e407fbb435f686e59ef11cbe431aMD5411323/9416oai:repositorio.cuc.edu.co:11323/94162024-09-17 14:07:39.277https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==