Prototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la Costa
The present document seeks to achieve the development of a computational tool for teaching brain anatomy, using virtual learning tools as purpose to facilitate the learning process to college students, incentivizing the use of technological tools in education given the current needs identified in th...
- Autores:
-
Vásquez Carbonell, Mauricio
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5561
- Acceso en línea:
- http://hdl.handle.net/11323/5561
https://repositorio.cuc.edu.co/
- Palabra clave:
- Education
Virtual reality (VR)
Virtual learning tools
TIC
Educación
Realidad virtual (RV)
Herramientas virtuales de aprendizaje
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
RCUC2_b37d165242f187653ec6457672ee817b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5561 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Prototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la Costa |
title |
Prototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la Costa |
spellingShingle |
Prototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la Costa Education Virtual reality (VR) Virtual learning tools TIC Educación Realidad virtual (RV) Herramientas virtuales de aprendizaje |
title_short |
Prototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la Costa |
title_full |
Prototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la Costa |
title_fullStr |
Prototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la Costa |
title_full_unstemmed |
Prototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la Costa |
title_sort |
Prototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la Costa |
dc.creator.fl_str_mv |
Vásquez Carbonell, Mauricio |
dc.contributor.advisor.spa.fl_str_mv |
Silva Ortega, Jorge Iván Vélez, Jaime |
dc.contributor.author.spa.fl_str_mv |
Vásquez Carbonell, Mauricio |
dc.subject.spa.fl_str_mv |
Education Virtual reality (VR) Virtual learning tools TIC Educación Realidad virtual (RV) Herramientas virtuales de aprendizaje |
topic |
Education Virtual reality (VR) Virtual learning tools TIC Educación Realidad virtual (RV) Herramientas virtuales de aprendizaje |
description |
The present document seeks to achieve the development of a computational tool for teaching brain anatomy, using virtual learning tools as purpose to facilitate the learning process to college students, incentivizing the use of technological tools in education given the current needs identified in the training area and research laboratories, where activities are carried out for the training of health professionals in the discipline of study, where models and images are used and in some cases, a software, resulting in limitations of knowledge. Therefore, it is proposed to provide students with the description of brain anatomy through virtual learning tools with the purpose of providing improvements to undergraduate education regarding this topic. The project is based on four methodological stages starting with the definition of the requirements for the tool´s design, collecting the required academic components, followed by the definition and selection of the input information, being the basis for the tool´s development. Finally, the validations are carried out and evaluation tests are applied to know the satisfaction of the target audience with respect to the competences acquired in virtual learning in the teaching of cerebral anatomy. The results show that the software has an excellent rate of approbation by the teachers. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-01T14:06:48Z |
dc.date.available.none.fl_str_mv |
2019-11-01T14:06:48Z |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/11323/5561 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
http://hdl.handle.net/11323/5561 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Altamura, A. C., Maggioni, E., Dhanoa, T., Ciappolino, V., Paoli, R. A., Cremaschi, L., … Brambilla, P. (2018). The impact of psychosis on brain anatomy in bipolar disorder: A structural MRI study. Journal of Affective Disorders, 233(October 2017), 100–109. https://doi.org/10.1016/j.jad.2017.11.092 Alves, P., Miranda, L., & Morais, C. (2015). Publishing and accessing contents on a virtual learning environment of a higher education institution. In 2015 10th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1–6). https://doi.org/10.1109/CISTI.2015.7170468 Andersson, G. (2018). Internet interventions: Past, present and future. Internet Interventions, 12(March), 181–188. https://doi.org/10.1016/j.invent.2018.03.008 AP. (2016). Chicago: Centro médico usa realidad virtual para enseñanza - Hoy Chicago. Retrieved April 26, 2018, from http://www.chicagotribune.com/hoy/ct-hoy-8662179 chicago-centro-medico-usa-realidad-virtual-para-ensenanza-story.html Archives Center, National Museum of American History, S. I. (2010). Whirlwind Computer Collection. Ariyana, Y., & Wuryandari, A. I. (2012). Virtual Interaction on Augmented Reality for Education with Nonparametric Belief Propagation Algorithm. Procedia - Social and Behavioral Sciences, 67(November 2011), 590–599. https://doi.org/10.1016/j.sbspro.2012.11.364 Bailenson, J. N., Yee, N., Merget, D., & Schroeder, R. (2006). The effect of behavioral realism and form realism of real-time avatar faces on verbal disclosure, nonverbal disclosure, emotion recognition, and copresence in dyadic interaction. Presence: Teleoperators and Virtual Environments, 15(4), 359–372. https://doi.org/10.1162/pres.15.4.359 Barron, A. B., Hebets, E. A., Cleland, T. A., Fitzpatrick, C. L., Hauber, M. E., & Stevens, J. R. (2015). Embracing multiple definitions of learning. Trends in Neurosciences, 38(7), 405– 407. https://doi.org/10.1016/j.tins.2015.04.008 Bell, J. T., Fogler, H. S., & Arbor, A. (1995). The Investigation and Application of Virtual Reality as an Educational Tool. In Proceedings of the American Society for Engineering Education (pp. 1–11). Anaheim, U.S. Retrieved from https://www.researchgate.net/profile/Hs_Fogler/publication/247920944_The_Investigation_ and_Application_of_Virtual_Reality_as_an_Educational_Tool/links/55f721fb08ae07629db fcfee.pdf Bertrand, J., Brickler, D., Babu, S., Madathil, K., Zelaya, M., Wang, T., … Luo, J. (2015). The role of dimensional symmetry on bimanual psychomotor skills education in immersive virtual environments. In 2015 IEEE Virtual Reality Conference, VR 2015 - Proceedings (pp. 3–10). https://doi.org/10.1109/VR.2015.7223317 Biocca, F. (2006). The Cyborg ’ s Dilemma : Progressive Embodiment in Virtual Environments . The Cyborg ’ s Dilemma : Progressive Embodiment in Virtual Environments [ 1 ], (December). Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12(12). https://doi.org/10.1038/nrn3122 Bolas, M. T. (1994). Human factors in the design of an immersive display. IEEE Computer Graphics and Applications, 14(1), 55–59. Bongers, P. J., Van Hove, P. D., Stassen, L. P. S., Dankelman, J., & Schreuder, H. W. R. (2015). A new virtual-reality training module for laparoscopic surgical skills and equipment handling: Can multitasking be trained? A randomized controlled trial. Journal of Surgical Education, 72(2), 184–191. https://doi.org/10.1016/j.jsurg.2014.09.004 Brooks, F. P., Ouh-Young, M., Batter, J. J., & Kilpatrick, P. J. (1990). Project GROPE Haptic displays for scientific visualization. ACM SIGGRAPH Computer Graphics, 24(4), 177–185. https://doi.org/10.1145/97880.97899 Brooks Jr, F. P., Airey, J., Alspaugh, J., Bell, A., Brown, R., Hill, C., … Yuan, X. (1992). Six Generations of Building Walkthrough: Final Technical Report to the National Science Foundation. North Carolina, U.S. Brundage, S. B., Brinton, J. M., & Hancock, A. B. (2016). Utility of virtual reality environments to examine physiological reactivity and subjective distress in adults who stutter. Journal of Fluency Disorders, 50, 85–95. https://doi.org/10.1016/j.jfludis.2016.10.001 Bryson, S., & Levit, C. (1991). The virtual windtunnel: An environment for the exploration of three-dimensional unsteady flows. Proceedings of the 2nd Conference on Visualization’91, (October), 17–24. https://doi.org/10.1109/TVCG.2005.87 Bun, P., Gorski, F., Grajewski, D., Wichniarek, R., & Zawadzki, P. (2017). Low – Cost Devices Used in Virtual Reality Exposure Therapy. Procedia Computer Science, 104(December 2016), 445–451. https://doi.org/10.1016/j.procs.2017.01.158 Cabero Almerana, J. (2007). Nuevas Tecnologías Aplicadas a la Educación. McGRAW-HILL INTERAMERICANA DE ESPAÑA, S. A. U (Vol. 1). Centers for Medicare and Medicaid Services. (2008). Selecting a development approach. Chuptys, S., & Coninck, J. De. (2013). Head Mounted Displays. In inproceedings (pp. 1–6). https://doi.org/10.2493/jjspe.54.264 Cipresso, P., Giglioli, I. A. C., Raya, M. A., & Riva, G. (2018). The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Frontiers in Psychology, 9(November), 1–20. https://doi.org/10.3389/fpsyg.2018.02086 Comisión de las Comunidades Europeas. (2001). Tecnologías de la información y de la comunicación en el ámbito del desarrollo El papel de las TIC en la política comunitaria de desarrollo. Bruselas. Cornell INSEAD WIPO. (2017). Indicator Rankings & Analysis | Global Innovation Index. Retrieved April 26, 2018, from https://www.globalinnovationindex.org/analysis-indicator Cruz-neira, C., Sandin, D. J., & Defanti, T. A. (1993). Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE. In Proceedings of the 20th annual conference on Computer graphics and interactive techniques (pp. 135–142). Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., & Hart, J. C. (1992). The CAVE: audio visual experience automatic virtual environment. Communications of the ACM, 35(6), 64–72. https://doi.org/10.1145/129888.129892 Da Silva, M. H., Legey, A. P., & Mól, A. C. D. A. (2016). Review study of virtual reality techniques used at nuclear issues with emphasis on Brazilian research. Annals of Nuclear Energy, 87, 192–197. https://doi.org/10.1016/j.anucene.2015.08.017 Dávideková, M., Mjartan, M., & Greguš, M. (2017). Utilization of Virtual Reality in Education of Employees in Slovakia. Procedia Computer Science, 113, 253–260. https://doi.org/10.1016/j.procs.2017.08.365 Davis, M. C., Can, D. D., Pindrik, J., Rocque, B. G., & Johnston, J. M. (2016). Virtual Interactive Presence in Global Surgical Education: International Collaboration Through Augmented Reality. World Neurosurgery, 86, 103–111 https://doi.org/10.1016/j.wneu.2015.08.053 Didehbani, N., Allen, T., Kandalaft, M., Krawczyk, D., & Chapman, S. (2016). Virtual Reality Social Cognition Training for children with high functioning autism. Computers in Human Behavior, 62, 703–711. https://doi.org/10.1016/j.chb.2016.04.033 Djukic, T., Mandic, V., & Filipovic, N. (2013). Virtual reality aided visualization of fluid flow simulations with application in medical education and diagnostics. Computers in Biology and Medicine, 43(12), 2046–2052. https://doi.org/10.1016/j.compbiomed.2013.10.004 Everett, R. R., & Jacobs, J. F. (1965). Whirlwind I Computer. Everett, R. R., & Swain, F. E. (1947). Project Whirlwind. SERVOMECHANISMS LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY. Massachusetts. Retrieved from http://libraries.mit.edu/archives/exhibits/project-whirlwind/index.html Fang, Y., Yan, J., Liu, X., & Wang, J. (2019). Stereoscopic image quality assessment by deep convolutional neural network. Journal of Visual Communication and Image Representation, 58, 400–406. https://doi.org/10.1016/j.jvcir.2018.12.006 Farra, S., Miller, E. T., Hodgson, E., Cosgrove, E., Brady, W., Gneuhs, M., & Baute, B. (2016). Storyboard Development for Virtual Reality Simulation. Clinical Simulation in Nursing, 12(9), 392–399. https://doi.org/10.1016/j.ecns.2016.04.002 Feiner, S., Macintyre, B., & Seligmann, D. (1993). Knowledge-based augmented reality. Communications of the ACM, 36(7), 53–62. https://doi.org/10.1145/159544.159587 Figueroa, P., Coral, M., Boulanger, P., Borda, J., Londoño, E., Vega, F., … Restrepo, D. (2009). Multi-modal exploration of small artifacts. In Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology - VRST ’09 (Vol. 1, p. 67). Kyoto, Japan. https://doi.org/10.1145/1643928.1643945 Fuchs, H., Bishop, G., Bricken, W., Brooks, F., Brown, M., Burbeck, C., … Wenzel, E. (1992). Research Directions in Virtual Environments. NSF Invitational Workshop. Chapel Hill. https://doi.org/10.1145/142413.142416 Gagné, R. M. (1984). Learning outcomes and their effects: Useful categories of human performance. American Psychologist, 39(4), 377–385. https://doi.org/10.1037/0003 066X.39.4.377 Graells, P. M. (2015). Las TIC y sus aportaciones a la sociedad. ResearchGate, (35), 7. Retrieved from https://www.researchgate.net/publication/267419766_LAS_TIC_Y_SUS_APORTACIONE S_A_LA_SOCIEDAD Greenwald, S. W., Kulik, A., Beck, S., Cobb, S., Parsons, S., Newbutt, N., … Maes, P. (2017). Technology and Applications for Collaborative Learning in Virtual Reality. Technology and Applications for Collaborative Learning in Virtual Reality, 719–726. Retrieved from https://repository.isls.org/bitstream/1/210/1/115.pdf Guedes, H. G., Câmara Costa Ferreira, Z. M., Ribeiro de Sousa Leão, L., Souza Montero, E. F., Otoch, J. P., & Luiz de Almeida Artifon, E. (2019). Virtual reality simulator versus box trainer to teach minimally invasive procedures: A meta-analysis. International Journal of Surgery, 61(December 2018), 60–68. https://doi.org/10.1016/j.ijsu.2018.12.001 Guney, A., & Al, S. (2012). Effective Learning Environments in Relation to Different Learning Theories. Procedia - Social and Behavioral Sciences, 46, 2334–2338. https://doi.org/10.1016/j.sbspro.2012.05.480 Haelermans, C., & Witte, K. De. (2012). The role of innovations in secondary school performance – Evidence from a conditional efficiency model. European Journal of Operational Research, 223(2), 541–549. https://doi.org/10.1016/j.ejor.2012.06.030 Hafner, K., & Lyon, M. (1998). Where wizards stay up late: The origins of the Internet. Journal of Chemical Information and Modeling (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004 Häfner, P., Häfner, V., & Ovtcharova, J. (2013). Teaching methodology for virtual reality practical course in engineering education. In Procedia Computer Science (Vol. 25, pp. 251– 260). Elsevier Masson SAS. https://doi.org/10.1016/j.procs.2013.11.031 Hagar, C. (2011). Introduction. In Crisis Information Management: Communication and Technologies (pp. 1–7). https://doi.org/10.1016/B978-1-84334-647-0.50017-5 Harrington, C. M., Kavanagh, D. O., Quinlan, J. F., Ryan, D., Dicker, P., O’Keeffe, D., … Tierney, S. (2017). Development and evaluation of a trauma decision-making simulator in Oculus virtual reality. American Journal of Surgery, pp. 1–6. https://doi.org/10.1016/j.amjsurg.2017.02.011 He, C., Hu, X., Liu, Y., Wang, Y., & Cheng, H. (2012). A novel drift compensating method for orientation measurement system in VR applications. In 2012 IEEE I2MTC - International Instrumentation and Measurement Technology Conference, Proceedings (pp. 2482–2487). https://doi.org/10.1109/I2MTC.2012.6229539 Hogg, M. E., Tam, V., Zenati, M., Novak, S., Miller, J., Zureikat, A. H., & Zeh, H. J. (2016). Mastery-Based Virtual Reality Robotic Simulation Curriculum: The First Step Toward Operative Robotic Proficiency. Journal of Surgical Education. https://doi.org/10.1016/j.jsurg.2016.10.015 Holloway, R., & Lastra, A. (1995). Virtual environments: A survey of the technology. SIGGRAPH’95 Course, 8(September), 1–40. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.7388&rep=rep1&ty pe=pdf Howard, M. C. (2019). Virtual Reality Interventions for Personal Development: A Meta Analysis of Hardware and Software. Human-Computer Interaction, 34(3), 205–239. https://doi.org/10.1080/07370024.2018.1469408 Jang, S., Vitale, J. M., Jyung, R. W., & Black, J. B. (2017). Direct manipulation is better than passive viewing for learning anatomy in a three-dimensional virtual reality environment. Computers and Education, 106, 150–165. https://doi.org/10.1016/j.compedu.2016.12.009 Juang, J. R., Hung, W. H., & Kang, S. C. (2013). SimCrane 3D+: A crane simulator with kinesthetic and stereoscopic vision. Advanced Engineering Informatics, 27(4), 506–518. https://doi.org/10.1016/j.aei.2013.05.002 Kalavakonda, N., Chandra, S., & Thondiyath, A. (2015). Development of virtual reality based robotic surgical trainer for patient-specific deformable anatomy. In Conference on Advances In Robotics - AIR ’15 (pp. 1–5). Goa, India. https://doi.org/10.1145/2783449.2783465 Kim, H. E., Hong, Y. J., Kim, M. K., Jung, Y. H., Kyeong, S., & Kim, J. J. (2017). Effectiveness of self-training using the mobile-based virtual reality program in patients with social anxiety disorder. Computers in Human Behavior, 73, 614–619. https://doi.org/10.1016/j.chb.2017.04.017 Kim, J.-H. K. J.-H., Thang, N. D. T. N. D., Kim, T.-S. K. T.-S., Ph, D., Voinea, A., Shin, J., … Smith, K. (2013). Virtual Reality History, Applications, Technology and Future. Digital Outcasts, 63(ISlE), 92–98. https://doi.org/http://dx.doi.org/10.1016/B978-0-12-404705 1.00006-6 Klopfer, E., & Squire, K. (2008). Environmental detectives-the development of an augmented reality platform for environmental simulations. Educational Technology Research and Development, 56(2), 203–228. https://doi.org/10.1007/s11423-007-9037-6 KOCIAN, D. F. (1977). A Visually-Coupled Airborne Systems Simulator (VCASS) - An Approach To Visual Simulation. In Image Conference (p. pp 3-11). Phoenix, U.S. Kockro, R. A., Killeen, T., Ayyad, A., Glaser, M., Stadie, A., Reisch, R., … Schwandt, E. (2016). Aneurysm Surgery with Preoperative Three-Dimensional Planning in a Virtual Reality Environment: Technique and Outcome Analysis. World Neurosurgery, 96, 489– 499. https://doi.org/10.1016/j.wneu.2016.08.124 Lam, C. K., Sundaraj, K., & Sulaiman, M. N. (2013). Virtual reality simulator for phacoemulsification cataract surgery education and training. In Procedia Computer Science (Vol. 18, pp. 742–748). Elsevier B.V. https://doi.org/10.1016/j.procs.2013.05.238 Lamargue-Hamel, D., Deloire, M., Saubusse, A., Ruet, A., Taillard, J., Philip, P., & Brochet, B. (2015). Cognitive evaluation by tasks in a virtual reality environment in multiple sclerosis. Journal of the Neurological Sciences, 359(1–2), 94–99. https://doi.org/10.1016/j.jns.2015.10.039 Leiner, B. M., Cerf, V. G., Clarck, D. D., Kahn, R. E., Kleinrock, L., Lynch, D., … Wolff, S. (1997). A brief history of internet. Studies in Health Technology and Informatics (Vol. 36). https://doi.org/10.3233/978-1-60750-880-9-121 Liu, D., Sun, Z., Li, R., Liu, J., & Chen, C. (2010). The application of Virtual Reality in the practice course of physical education. In ICDLE 2010 - 2010 4th International Conference on Distance Learning and Education, Proceedings (pp. 78–80). San Juan, PR, USA: IEEE. https://doi.org/10.1109/ICDLE.2010.5606035 Liu, X., Toki, E. I., & Pange, J. (2014). The Use of ICT in Preschool Education in Greece and China : A Comparative Study. In Procedia - Social and Behavioral Sciences (Vol. 112, pp. 1167–1176). Elsevier B.V. https://doi.org/10.1016/j.sbspro.2014.01.1281 López-Martín, O., Segura Fragoso, A., Rodríguez Hernández, M., Dimbwadyo Terrer, I., & Polonio-López, B. (2016). Efectividad de un programa de juego basado en realidad virtual para la mejora cognitiva en la esquizofrenia. Gaceta Sanitaria, 30(2), 133–136. https://doi.org/10.1016/j.gaceta.2015.10.004 López, B. G., Cerveró, G. A., Rodríguez, J. M. S., Félix, E. G., & Esteban, P. R. G. (2013). Learning styles and approaches to learning in excellent and average first-year university students. European Journal of Psychology of Education, 28(4), 1361–1379. https://doi.org/10.1007/s10212-012-0170-1 Machover, C., & Tice, S. E. (1994). Virtual reality. IEEE Computer Graphics and Applications, 14(1), 15–16. https://doi.org/10.1109/38.250913 Maffei, L., Masullo, M., Pascale, A., Ruggiero, G., & Romero, V. P. (2016). Immersive virtual reality in community planning: Acoustic and visual congruence of simulated vs real world. Sustainable Cities and Society, 27, 338–345. https://doi.org/10.1016/j.scs.2016.06.022 Mai, C., Hassib, M., & Königbauer, R. (2017). Estimating visual discomfort in head-mounted displays using electroencephalography. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10516 LNCS, 243–252. https://doi.org/10.1007/978-3-319-68059-0_15 Makransky, G., Lilleholt, L., & Aaby, A. (2017). Development and validation of the Multimodal Presence Scale for virtual reality environments: A confirmatory factor analysis and item response theory approach. Computers in Human Behavior, 72, 276–285. https://doi.org/10.1016/j.chb.2017.02.066 Marins, R., Mol, D. A., Paula, A., Siqueira, L. De, & Mol, D. M. (2015). Progress in Nuclear Energy Using virtual reality to support the physical security of nuclear facilities, 78. https://doi.org/10.1016/j.pnucene.2014.07.004 Mathews, M., Mitrovic, A., Ohlsson, S., Holland, J., & McKinley, A. (2016). A Virtual Reality Environment for Rehabilitation of Prospective Memory in Stroke Patients. Procedia Computer Science, 96, 7–15. https://doi.org/10.1016/j.procs.2016.08.081 Matzke, J., Ziegler, C., Martin, K., Crawford, S., & Sutton, E. (2017). Usefulness of virtual reality in assessment of medical student laparoscopic skill. Journal of Surgical Research, 211(502), 191–195. https://doi.org/10.1016/j.jss.2016.11.054 McGreevy, M. W. (1991). THE VIRTUAL ENVIRONMENT DISPLAY SYSTEM. National Aeronautics and Space Administration, Technology 2000. https://doi.org/10.1007/978-3 642-24474-2 McLean, A. N., & Christensen, J. W. (2017). The application of learning theory in horse training. Applied Animal Behaviour Science, 190, 18–27. https://doi.org/10.1016/j.applanim.2017.02.020 Mechta, D., Harous, S., Djoudi, M., Douar, A., & Belmahdi, R. (2011). Supervision and control tool for E-learning virtual laboratory. In 2011 International Conference on Innovations in Information Technology, IIT 2011 (pp. 61–66). https://doi.org/10.1109/INNOVATIONS.2011.5893869 Miki, T., Iwai, T., Kotani, K., Dang, J., Sawada, H., & Miyake, M. (2016). Development of a virtual reality training system for endoscope-assisted submandibular gland removal. Journal of Cranio-Maxillofacial Surgery, 44(11), 1800–1805. https://doi.org/10.1016/j.jcms.2016.08.018 Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1994). Mixed Reality (MR) Reality Virtuality (RV) Continuum. Proceedings of SPIE - The International Society for Optical Engineering, 2351(Telemanipulator and Telepresence Technologies), 282–292. https://doi.org/10.1.1.83.6861 Miranda, L. C. M., & Lima, C. A. S. (2012). Trends and cycles of the internet evolution and worldwide impacts. Technological Forecasting and Social Change, 79(4), 744–765. https://doi.org/10.1016/j.techfore.2011.09.001 Mirelman, A., Patritti, B. L., Bonato, P., & Deutsch, J. E. (2010). Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait and Posture, 31(4), 433–437. https://doi.org/10.1016/j.gaitpost.2010.01.016 Myron, K. W. (1992). An architecture for artificial realities. In Digest of Papers COMPCON Spring 1992 (pp. 462–465). San Francisco, CA, USA, USA: IEEE. https://doi.org/10.1109/CMPCON.1992.186756 Niu, L., Aha, L., Mattila, J., Gotchev, A., & Ruiz, E. (2019). A stereoscopic eye-in-hand vision system for remote handling in ITER. Fusion Engineering and Design, (February), 0–1. https://doi.org/10.1016/j.fusengdes.2019.03.036 Odlyzko, A. (2012). Web history and economics. Computer Networks, 56(18), 3886–3890. https://doi.org/10.1016/j.comnet.2012.10.011 Papanikolaou, I. G., Haidopoulos, D., Paschopoulos, M., Chatzipapas, I., Loutradis, D., & Vlahos, N. F. (2019). Changing the way we train surgeons in the 21th century: A narrative comparative review focused on box trainers and virtual reality simulators. European Journal of Obstetrics Gynecology and Reproductive Biology, 235, 13–18. https://doi.org/10.1016/j.ejogrb.2019.01.016 Parsons, S. (2016). Authenticity in Virtual Reality for assessment and intervention in autism: A conceptual review. Educational Research Review. Elsevier Ltd. https://doi.org/10.1016/j.edurev.2016.08.001 Pelargos, P. E., Nagasawa, D. T., Lagman, C., Tenn, S., Demos, J. V., Lee, S. J., … Yang, I. (2017). Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery. Journal of Clinical Neuroscience. Elsevier Ltd. https://doi.org/10.1016/j.jocn.2016.09.002 Pelgrum, W. J. (2001). Obstacles to the integration of ICT in education: Results from a worldwide educational assessment. Computers and Education, 37(2), 163–178. https://doi.org/10.1016/S0360-1315(01)00045-8 Portman, M. E., Natapov, A., & Fisher-Gewirtzman, D. (2015). To go where no man has gone before: Virtual reality in architecture, landscape architecture and environmental planning. Computers, Environment and Urban Systems, 54, 376–384. https://doi.org/10.1016/j.compenvurbsys.2015.05.001 Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V. M., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309–327. https://doi.org/10.1016/j.compedu.2016.02.002 Prendes Espinosa, C. (2014). Realidad aumentada y educación: análisis de experiencias prácticas. Píxel-Bit, Revista de Medios y Educación, 46(46), 187–203. https://doi.org/10.12795/pixelbit.2015.i46.12 Pujol, J., Fenoll, R., Ribas-Vidal, N., Martínez-Vilavella, G., Blanco-Hinojo, L., García-Alba, J., … Esteba-Castillo, S. (2018). A longitudinal study of brain anatomy changes preceding dementia in Down syndrome. NeuroImage: Clinical, 18(September 2017), 160–166. https://doi.org/10.1016/j.nicl.2018.01.024 Rizzo, A., John, B., Newman, B., Williams, J., Hartholt, A., Lethin, C., & Buckwalter, J. G. (2012). Virtual Reality as a Tool for Delivering PTSD Exposure Therapy and Stress Resilience Training. Military Behavioral Health, 1(1), 52–58. https://doi.org/10.1080/21635781.2012.721064 Roy, A. K., Soni, Y., & Dubey, S. (2013). Enhancing effectiveness of motor rehabilitation using kinect motion sensing technology. C2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite, GHTC-SAS 2013, 298–304. https://doi.org/10.1109/GHTC-SAS.2013.6629934 Roy, E., Bakr, M. M., & George, R. (2015). The need for virtual reality simulators in dental education: A review. Saudi Dental Journal, pp. 41–47. https://doi.org/10.1016/j.sdentj.2017.02.001 Rushton, S., Mon-Williams, M., & Wann, J. P. (1994). Binocular vision in a bi-ocular world: new-generation head-mounted displays avoid causing visual deficit. Displays, 15(4), 255– 260. https://doi.org/10.1016/0141-9382(94)90073-6 Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332–339. https://doi.org/10.1038/nrn1651 Sandaruwan, D., Kodikara, N., Keppitiyagama, C., Rosa, R., Jayawardena, M., & Samarasinghe, P. (2012). User perception of the physical & behavioral realism of a maritime virtual reality environment. In Proceedings - 2012 14th International Conference on Modelling and Simulation, UKSim 2012 (pp. 172–178). https://doi.org/10.1109/UKSim.2012.32 Semana Educacion. (2016). Colombia quedó entre los diez países con peor resultado en las Pruebas Pisa 2012. Retrieved April 26, 2018, from https://www.semana.com/educacion/articulo/colombia-quedo-entre-los-diez-paises-con peor-resultado-en-las-pruebas-pisa-2012/460104 Seth, A., Vance, J. M., & Oliver, J. H. (2011). Virtual reality for assembly methods prototyping: A review. Virtual Reality, 15(1), 5–20. https://doi.org/10.1007/s10055-009-0153-y Seymour, N. E., Gallagher, A. G., Roman, S. A., O’Brien, M. K., Bansal, V. K., Andersen, D. K., & Satava, R. M. (2002). Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Annals of Surgery, 236(4), 454–458. https://doi.org/10.1097/01.sla.0000028969.51489.b4 Sfard, A. (2007). On Two Metaphors for Learning and the Dangers of Choosing Just One. Educational Researcher, 27(2), 4–13. https://doi.org/10.3102/0013189x027002004 Skinner, B. F. (2014). Science and Human Behavior. Free Press; Edición: New Impression (1 de marzo de 1965) (Vol. 28). https://doi.org/10.1021/cen-v028n052.p4529 Slater, M., Usoh, M., & Steed, A. (2015). Depth of Presence in Virtual Environments. Presence: Teleoperators and Virtual Environments, 3(2), 130–144. https://doi.org/10.1162/pres.1994.3.2.130 Sobota, B., Kore??ko, Pastornick??, P., & Jacho, L. (2016). Virtual-reality technologies in the process of handicapped school children education. In ICETA 2016 - 14th IEEE International Conference on Emerging eLearning Technologies and Applications, Proceedings (pp. 321–326). Starý Smokovec, Slovakia. https://doi.org/10.1109/ICETA.2016.7802077 Stratos, A., Loukas, R., Dimitris, M., Konstantinos, G., Dimitris, M., & George, C. (2016). A Virtual Reality Application to Attract Young Talents to Manufacturing. Procedia CIRP, 57, 134–139. https://doi.org/10.1016/j.procir.2016.11.024 Su, X., & Zhao, G. (2010). Study on virtual experiment platform of computer network. In 2010 International Conference on Intelligent Computation Technology and Automation, ICICTA 2010 (Vol. 3, pp. 648–651). https://doi.org/10.1109/ICICTA.2010.782 Sundar, S. S., Xu, Q., & Bellur, S. (2010). Designing interactivity in media interfaces, (January), 2247. https://doi.org/10.1145/1753326.1753666 Sutherland, I. E. (1965). The Ultimate Display. In Proceedings of IFIP Congress (pp. 506–508). Munich, Germany. https://doi.org/10.1109/MC.2005.274 Sutherland, I. E. (1968). A head-mounted three dimensional display. Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I on - AFIPS ’68 (Fall, Part I), 757. https://doi.org/10.1145/1476589.1476686 Thomas, J. S., France, C. R., Applegate, M. E., Leitkam, S. T., & Walkowski, S. (2016). Feasibility and Safety of a Virtual Reality Dodgeball Intervention for Chronic Low Back Pain: A Randomized Clinical Trial. Journal of Pain, 17(12), 1302–1317. https://doi.org/10.1016/j.jpain.2016.08.011 Ulrich, D., Farra, S., Smith, S., & Hodgson, E. (2014). The student experience using virtual reality simulation to teach decontamination. Clinical Simulation in Nursing, 10(11), 546– 553. https://doi.org/10.1016/j.ecns.2014.08.003 UNESCO. (2008). ICT Competency Standards for Teachers. Vaughan, N., Gabrys, B., & Dubey, V. N. (2016). An overview of self-adaptive technologies within virtual reality training. Computer Science Review. Elsevier Inc. https://doi.org/10.1016/j.cosrev.2016.09.001 Wilson, M., Scalise, K., & Gochyyev, P. (2015). Rethinking ICT literacy: From computer skills to social network settings. Thinking Skills and Creativity, 18, 65–80. https://doi.org/10.1016/j.tsc.2015.05.001 Witmer, B. G., & Sadowski, W. J. (2007). Nonvisually Guided Locomotion to a Previously Viewed Target in Real and Virtual Environments. Human Factors: The Journal of the Human Factors and Ergonomics Society, 40(3), 478–488. https://doi.org/10.1518/001872098779591340 Witte, K. De, & Rogge, N. (2014). Computers & Education Does ICT matter for effectiveness and efficiency in mathematics education ? Computers & Education, 75, 173–184. https://doi.org/10.1016/j.compedu.2014.02.012 Wu, J. X., Chen, G. C., Chang, C. W., & Lin, C. H. (2016). Development of virtual-reality simulator system for minimally invasive surgery (MIS) using fractional-order vascular access. In Proceedings of 2016 SAI Computing Conference, SAI 2016 (pp. 1257–1259). https://doi.org/10.1109/SAI.2016.7556140 Yuan, Y. (2016). Cloud Classroom Boost Online Learning and Educational Resources Sharing. 2016 International Symposium on Educational Technology (ISET), 80–83. https://doi.org/10.1109/ISET.2016.18 Zahedi, E., Rahmat-Khan, H., Dargahi, J., & Zadeh, M. (2017). Virtual Reality Based Training : Evaluation of User Performance by Capturing Upper Limb Motion. Virtual Reality (VR), 2017 IEEE, 255–256. https://doi.org/10.1109/VR.2017.7892273 Zhirnova, G. I., & Absalyamova, S. G. (2013). Global innovation gap and quality of education. In 2013 International Conference on Interactive Collaborative Learning (ICL) (pp. 144– 145). Kazan, Russia. https://doi.org/10.1109/ICL.2013.6644558 Zhou, X., Zhao, Y., Zhou, Y., & Li, F. (2011). Information research of remote pulse diagnose based on virtual technology. In 2011 IEEE 3rd International Conference on Communication Software and Networks, ICCSN 2011 (pp. 419–421). https://doi.org/10.1109/ICCSN.2011.6014082 Zita Sampaio, A., & Viana, L. (2013). Virtual Reality used as a learning technology: Visual simulation of the construction of a bridge deck. Information Systems and Technologies (CISTI), 1–5. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6615855 Ray Schmeck, Ronald. (1988). Learning Strategies and Learning Styles. 10.1007/978-1-4899- 2118-5. Daroff, R. B., & Aminoff, M. J. (2014). Encyclopedia of the Neurological Sciences. Burlington: Elsevier Science. |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.publisher.program.spa.fl_str_mv |
Maestría en Ingeniería |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/e1edf154-b49b-4f82-a50f-1d4d78cf2cdb/download https://repositorio.cuc.edu.co/bitstreams/b4da22d5-f990-47e3-87e2-cd93b1bb7c4c/download https://repositorio.cuc.edu.co/bitstreams/5e4816ad-1f45-4631-baab-0f6f9996a509/download https://repositorio.cuc.edu.co/bitstreams/f2c11575-d6ba-4026-8537-b04c26465f3b/download https://repositorio.cuc.edu.co/bitstreams/4196fd8b-dfd0-48db-815d-e6d3cb77523e/download https://repositorio.cuc.edu.co/bitstreams/c52ced25-ad61-4676-8c70-facc000d562f/download https://repositorio.cuc.edu.co/bitstreams/f80f962b-6266-428f-b7eb-569f170f0938/download https://repositorio.cuc.edu.co/bitstreams/fc26d5fd-c878-4073-809f-281eb56e6ae0/download |
bitstream.checksum.fl_str_mv |
934f4ca17e109e0a05eaeaba504d7ce4 8a4605be74aa9ea9d79846c1fba20a33 5376910852885c7d4466180ae7455162 7917fac9063bd0e3819fb908146215c0 5376910852885c7d4466180ae7455162 48cd37a212df28894f185e87ee0336d8 f51522101ddbd56c7c0efbc6d62010ca ba9caeee82f30756c819cec6d17bfefe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760665187057664 |
spelling |
Silva Ortega, Jorge IvánVélez, JaimeVásquez Carbonell, Mauricio2019-11-01T14:06:48Z2019-11-01T14:06:48Z2019http://hdl.handle.net/11323/5561Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present document seeks to achieve the development of a computational tool for teaching brain anatomy, using virtual learning tools as purpose to facilitate the learning process to college students, incentivizing the use of technological tools in education given the current needs identified in the training area and research laboratories, where activities are carried out for the training of health professionals in the discipline of study, where models and images are used and in some cases, a software, resulting in limitations of knowledge. Therefore, it is proposed to provide students with the description of brain anatomy through virtual learning tools with the purpose of providing improvements to undergraduate education regarding this topic. The project is based on four methodological stages starting with the definition of the requirements for the tool´s design, collecting the required academic components, followed by the definition and selection of the input information, being the basis for the tool´s development. Finally, the validations are carried out and evaluation tests are applied to know the satisfaction of the target audience with respect to the competences acquired in virtual learning in the teaching of cerebral anatomy. The results show that the software has an excellent rate of approbation by the teachers.El presente documento busca mostrar como es el desarrollo de una herramienta computacional para la enseñanza de la anatomía cerebral, utilizando herramientas virtuales de aprendizaje como propósito para facilitar la enseñanza de la temática a nivel académico en pregrado, incentivando el uso de herramientas tecnológicas en la educación dadas las necesidades actuales identificadas en el área de formación y en laboratorios de investigación, donde se realizan actividades para la formación de profesionales de la salud en la disciplina de estudio, mediante el uso de maquetas e imágenes; y en algunos casos, software. Lo anterior, puede limitar la profundización del conocimiento. Se busca facilitar a los estudiantes la descripción de la anatomía cerebral mediante herramientas de aprendizaje virtual con el propósito de brindar mejoras a la educación en pregrado respecto a esta temática. El proyecto se sustenta en cuatro etapas metodológicas iniciando con la definición de los requerimientos para el diseño de la herramienta recopilando los componentes académicos del área de la salud requeridos, de manera seguida se define y se selecciona la información de entrada, siendo la base el desarrollo de la herramienta. Finalmente, se realizaron las validaciones y se aplican fichas de evaluación para conocer la satisfacción del público objetivo respecto a las competencias adquiridas en el aprendizaje virtual en la enseñanza de la anatomía cerebral, obteniendo unas excelentes valoraciones de parte de los usuarios.Vásquez Carbonell, MauriciospaUniversidad de la CostaMaestría en IngenieríaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2EducationVirtual reality (VR)Virtual learning toolsTICEducaciónRealidad virtual (RV)Herramientas virtuales de aprendizajePrototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la CostaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionAltamura, A. C., Maggioni, E., Dhanoa, T., Ciappolino, V., Paoli, R. A., Cremaschi, L., … Brambilla, P. (2018). The impact of psychosis on brain anatomy in bipolar disorder: A structural MRI study. Journal of Affective Disorders, 233(October 2017), 100–109. https://doi.org/10.1016/j.jad.2017.11.092 Alves, P., Miranda, L., & Morais, C. (2015). Publishing and accessing contents on a virtual learning environment of a higher education institution. In 2015 10th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1–6). https://doi.org/10.1109/CISTI.2015.7170468 Andersson, G. (2018). Internet interventions: Past, present and future. Internet Interventions, 12(March), 181–188. https://doi.org/10.1016/j.invent.2018.03.008 AP. (2016). Chicago: Centro médico usa realidad virtual para enseñanza - Hoy Chicago. Retrieved April 26, 2018, from http://www.chicagotribune.com/hoy/ct-hoy-8662179 chicago-centro-medico-usa-realidad-virtual-para-ensenanza-story.html Archives Center, National Museum of American History, S. I. (2010). Whirlwind Computer Collection. Ariyana, Y., & Wuryandari, A. I. (2012). Virtual Interaction on Augmented Reality for Education with Nonparametric Belief Propagation Algorithm. Procedia - Social and Behavioral Sciences, 67(November 2011), 590–599. https://doi.org/10.1016/j.sbspro.2012.11.364 Bailenson, J. N., Yee, N., Merget, D., & Schroeder, R. (2006). The effect of behavioral realism and form realism of real-time avatar faces on verbal disclosure, nonverbal disclosure, emotion recognition, and copresence in dyadic interaction. Presence: Teleoperators and Virtual Environments, 15(4), 359–372. https://doi.org/10.1162/pres.15.4.359 Barron, A. B., Hebets, E. A., Cleland, T. A., Fitzpatrick, C. L., Hauber, M. E., & Stevens, J. R. (2015). Embracing multiple definitions of learning. Trends in Neurosciences, 38(7), 405– 407. https://doi.org/10.1016/j.tins.2015.04.008 Bell, J. T., Fogler, H. S., & Arbor, A. (1995). The Investigation and Application of Virtual Reality as an Educational Tool. In Proceedings of the American Society for Engineering Education (pp. 1–11). Anaheim, U.S. Retrieved from https://www.researchgate.net/profile/Hs_Fogler/publication/247920944_The_Investigation_ and_Application_of_Virtual_Reality_as_an_Educational_Tool/links/55f721fb08ae07629db fcfee.pdf Bertrand, J., Brickler, D., Babu, S., Madathil, K., Zelaya, M., Wang, T., … Luo, J. (2015). The role of dimensional symmetry on bimanual psychomotor skills education in immersive virtual environments. In 2015 IEEE Virtual Reality Conference, VR 2015 - Proceedings (pp. 3–10). https://doi.org/10.1109/VR.2015.7223317 Biocca, F. (2006). The Cyborg ’ s Dilemma : Progressive Embodiment in Virtual Environments . The Cyborg ’ s Dilemma : Progressive Embodiment in Virtual Environments [ 1 ], (December). Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12(12). https://doi.org/10.1038/nrn3122 Bolas, M. T. (1994). Human factors in the design of an immersive display. IEEE Computer Graphics and Applications, 14(1), 55–59. Bongers, P. J., Van Hove, P. D., Stassen, L. P. S., Dankelman, J., & Schreuder, H. W. R. (2015). A new virtual-reality training module for laparoscopic surgical skills and equipment handling: Can multitasking be trained? A randomized controlled trial. Journal of Surgical Education, 72(2), 184–191. https://doi.org/10.1016/j.jsurg.2014.09.004 Brooks, F. P., Ouh-Young, M., Batter, J. J., & Kilpatrick, P. J. (1990). Project GROPE Haptic displays for scientific visualization. ACM SIGGRAPH Computer Graphics, 24(4), 177–185. https://doi.org/10.1145/97880.97899 Brooks Jr, F. P., Airey, J., Alspaugh, J., Bell, A., Brown, R., Hill, C., … Yuan, X. (1992). Six Generations of Building Walkthrough: Final Technical Report to the National Science Foundation. North Carolina, U.S. Brundage, S. B., Brinton, J. M., & Hancock, A. B. (2016). Utility of virtual reality environments to examine physiological reactivity and subjective distress in adults who stutter. Journal of Fluency Disorders, 50, 85–95. https://doi.org/10.1016/j.jfludis.2016.10.001 Bryson, S., & Levit, C. (1991). The virtual windtunnel: An environment for the exploration of three-dimensional unsteady flows. Proceedings of the 2nd Conference on Visualization’91, (October), 17–24. https://doi.org/10.1109/TVCG.2005.87 Bun, P., Gorski, F., Grajewski, D., Wichniarek, R., & Zawadzki, P. (2017). Low – Cost Devices Used in Virtual Reality Exposure Therapy. Procedia Computer Science, 104(December 2016), 445–451. https://doi.org/10.1016/j.procs.2017.01.158 Cabero Almerana, J. (2007). Nuevas Tecnologías Aplicadas a la Educación. McGRAW-HILL INTERAMERICANA DE ESPAÑA, S. A. U (Vol. 1). Centers for Medicare and Medicaid Services. (2008). Selecting a development approach. Chuptys, S., & Coninck, J. De. (2013). Head Mounted Displays. In inproceedings (pp. 1–6). https://doi.org/10.2493/jjspe.54.264 Cipresso, P., Giglioli, I. A. C., Raya, M. A., & Riva, G. (2018). The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Frontiers in Psychology, 9(November), 1–20. https://doi.org/10.3389/fpsyg.2018.02086 Comisión de las Comunidades Europeas. (2001). Tecnologías de la información y de la comunicación en el ámbito del desarrollo El papel de las TIC en la política comunitaria de desarrollo. Bruselas. Cornell INSEAD WIPO. (2017). Indicator Rankings & Analysis | Global Innovation Index. Retrieved April 26, 2018, from https://www.globalinnovationindex.org/analysis-indicator Cruz-neira, C., Sandin, D. J., & Defanti, T. A. (1993). Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE. In Proceedings of the 20th annual conference on Computer graphics and interactive techniques (pp. 135–142). Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., & Hart, J. C. (1992). The CAVE: audio visual experience automatic virtual environment. Communications of the ACM, 35(6), 64–72. https://doi.org/10.1145/129888.129892 Da Silva, M. H., Legey, A. P., & Mól, A. C. D. A. (2016). Review study of virtual reality techniques used at nuclear issues with emphasis on Brazilian research. Annals of Nuclear Energy, 87, 192–197. https://doi.org/10.1016/j.anucene.2015.08.017 Dávideková, M., Mjartan, M., & Greguš, M. (2017). Utilization of Virtual Reality in Education of Employees in Slovakia. Procedia Computer Science, 113, 253–260. https://doi.org/10.1016/j.procs.2017.08.365 Davis, M. C., Can, D. D., Pindrik, J., Rocque, B. G., & Johnston, J. M. (2016). Virtual Interactive Presence in Global Surgical Education: International Collaboration Through Augmented Reality. World Neurosurgery, 86, 103–111 https://doi.org/10.1016/j.wneu.2015.08.053 Didehbani, N., Allen, T., Kandalaft, M., Krawczyk, D., & Chapman, S. (2016). Virtual Reality Social Cognition Training for children with high functioning autism. Computers in Human Behavior, 62, 703–711. https://doi.org/10.1016/j.chb.2016.04.033 Djukic, T., Mandic, V., & Filipovic, N. (2013). Virtual reality aided visualization of fluid flow simulations with application in medical education and diagnostics. Computers in Biology and Medicine, 43(12), 2046–2052. https://doi.org/10.1016/j.compbiomed.2013.10.004 Everett, R. R., & Jacobs, J. F. (1965). Whirlwind I Computer. Everett, R. R., & Swain, F. E. (1947). Project Whirlwind. SERVOMECHANISMS LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY. Massachusetts. Retrieved from http://libraries.mit.edu/archives/exhibits/project-whirlwind/index.html Fang, Y., Yan, J., Liu, X., & Wang, J. (2019). Stereoscopic image quality assessment by deep convolutional neural network. Journal of Visual Communication and Image Representation, 58, 400–406. https://doi.org/10.1016/j.jvcir.2018.12.006 Farra, S., Miller, E. T., Hodgson, E., Cosgrove, E., Brady, W., Gneuhs, M., & Baute, B. (2016). Storyboard Development for Virtual Reality Simulation. Clinical Simulation in Nursing, 12(9), 392–399. https://doi.org/10.1016/j.ecns.2016.04.002 Feiner, S., Macintyre, B., & Seligmann, D. (1993). Knowledge-based augmented reality. Communications of the ACM, 36(7), 53–62. https://doi.org/10.1145/159544.159587 Figueroa, P., Coral, M., Boulanger, P., Borda, J., Londoño, E., Vega, F., … Restrepo, D. (2009). Multi-modal exploration of small artifacts. In Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology - VRST ’09 (Vol. 1, p. 67). Kyoto, Japan. https://doi.org/10.1145/1643928.1643945 Fuchs, H., Bishop, G., Bricken, W., Brooks, F., Brown, M., Burbeck, C., … Wenzel, E. (1992). Research Directions in Virtual Environments. NSF Invitational Workshop. Chapel Hill. https://doi.org/10.1145/142413.142416 Gagné, R. M. (1984). Learning outcomes and their effects: Useful categories of human performance. American Psychologist, 39(4), 377–385. https://doi.org/10.1037/0003 066X.39.4.377 Graells, P. M. (2015). Las TIC y sus aportaciones a la sociedad. ResearchGate, (35), 7. Retrieved from https://www.researchgate.net/publication/267419766_LAS_TIC_Y_SUS_APORTACIONE S_A_LA_SOCIEDAD Greenwald, S. W., Kulik, A., Beck, S., Cobb, S., Parsons, S., Newbutt, N., … Maes, P. (2017). Technology and Applications for Collaborative Learning in Virtual Reality. Technology and Applications for Collaborative Learning in Virtual Reality, 719–726. Retrieved from https://repository.isls.org/bitstream/1/210/1/115.pdf Guedes, H. G., Câmara Costa Ferreira, Z. M., Ribeiro de Sousa Leão, L., Souza Montero, E. F., Otoch, J. P., & Luiz de Almeida Artifon, E. (2019). Virtual reality simulator versus box trainer to teach minimally invasive procedures: A meta-analysis. International Journal of Surgery, 61(December 2018), 60–68. https://doi.org/10.1016/j.ijsu.2018.12.001 Guney, A., & Al, S. (2012). Effective Learning Environments in Relation to Different Learning Theories. Procedia - Social and Behavioral Sciences, 46, 2334–2338. https://doi.org/10.1016/j.sbspro.2012.05.480 Haelermans, C., & Witte, K. De. (2012). The role of innovations in secondary school performance – Evidence from a conditional efficiency model. European Journal of Operational Research, 223(2), 541–549. https://doi.org/10.1016/j.ejor.2012.06.030 Hafner, K., & Lyon, M. (1998). Where wizards stay up late: The origins of the Internet. Journal of Chemical Information and Modeling (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004 Häfner, P., Häfner, V., & Ovtcharova, J. (2013). Teaching methodology for virtual reality practical course in engineering education. In Procedia Computer Science (Vol. 25, pp. 251– 260). Elsevier Masson SAS. https://doi.org/10.1016/j.procs.2013.11.031 Hagar, C. (2011). Introduction. In Crisis Information Management: Communication and Technologies (pp. 1–7). https://doi.org/10.1016/B978-1-84334-647-0.50017-5 Harrington, C. M., Kavanagh, D. O., Quinlan, J. F., Ryan, D., Dicker, P., O’Keeffe, D., … Tierney, S. (2017). Development and evaluation of a trauma decision-making simulator in Oculus virtual reality. American Journal of Surgery, pp. 1–6. https://doi.org/10.1016/j.amjsurg.2017.02.011 He, C., Hu, X., Liu, Y., Wang, Y., & Cheng, H. (2012). A novel drift compensating method for orientation measurement system in VR applications. In 2012 IEEE I2MTC - International Instrumentation and Measurement Technology Conference, Proceedings (pp. 2482–2487). https://doi.org/10.1109/I2MTC.2012.6229539 Hogg, M. E., Tam, V., Zenati, M., Novak, S., Miller, J., Zureikat, A. H., & Zeh, H. J. (2016). Mastery-Based Virtual Reality Robotic Simulation Curriculum: The First Step Toward Operative Robotic Proficiency. Journal of Surgical Education. https://doi.org/10.1016/j.jsurg.2016.10.015 Holloway, R., & Lastra, A. (1995). Virtual environments: A survey of the technology. SIGGRAPH’95 Course, 8(September), 1–40. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.7388&rep=rep1&ty pe=pdf Howard, M. C. (2019). Virtual Reality Interventions for Personal Development: A Meta Analysis of Hardware and Software. Human-Computer Interaction, 34(3), 205–239. https://doi.org/10.1080/07370024.2018.1469408 Jang, S., Vitale, J. M., Jyung, R. W., & Black, J. B. (2017). Direct manipulation is better than passive viewing for learning anatomy in a three-dimensional virtual reality environment. Computers and Education, 106, 150–165. https://doi.org/10.1016/j.compedu.2016.12.009 Juang, J. R., Hung, W. H., & Kang, S. C. (2013). SimCrane 3D+: A crane simulator with kinesthetic and stereoscopic vision. Advanced Engineering Informatics, 27(4), 506–518. https://doi.org/10.1016/j.aei.2013.05.002 Kalavakonda, N., Chandra, S., & Thondiyath, A. (2015). Development of virtual reality based robotic surgical trainer for patient-specific deformable anatomy. In Conference on Advances In Robotics - AIR ’15 (pp. 1–5). Goa, India. https://doi.org/10.1145/2783449.2783465 Kim, H. E., Hong, Y. J., Kim, M. K., Jung, Y. H., Kyeong, S., & Kim, J. J. (2017). Effectiveness of self-training using the mobile-based virtual reality program in patients with social anxiety disorder. Computers in Human Behavior, 73, 614–619. https://doi.org/10.1016/j.chb.2017.04.017 Kim, J.-H. K. J.-H., Thang, N. D. T. N. D., Kim, T.-S. K. T.-S., Ph, D., Voinea, A., Shin, J., … Smith, K. (2013). Virtual Reality History, Applications, Technology and Future. Digital Outcasts, 63(ISlE), 92–98. https://doi.org/http://dx.doi.org/10.1016/B978-0-12-404705 1.00006-6 Klopfer, E., & Squire, K. (2008). Environmental detectives-the development of an augmented reality platform for environmental simulations. Educational Technology Research and Development, 56(2), 203–228. https://doi.org/10.1007/s11423-007-9037-6 KOCIAN, D. F. (1977). A Visually-Coupled Airborne Systems Simulator (VCASS) - An Approach To Visual Simulation. In Image Conference (p. pp 3-11). Phoenix, U.S. Kockro, R. A., Killeen, T., Ayyad, A., Glaser, M., Stadie, A., Reisch, R., … Schwandt, E. (2016). Aneurysm Surgery with Preoperative Three-Dimensional Planning in a Virtual Reality Environment: Technique and Outcome Analysis. World Neurosurgery, 96, 489– 499. https://doi.org/10.1016/j.wneu.2016.08.124 Lam, C. K., Sundaraj, K., & Sulaiman, M. N. (2013). Virtual reality simulator for phacoemulsification cataract surgery education and training. In Procedia Computer Science (Vol. 18, pp. 742–748). Elsevier B.V. https://doi.org/10.1016/j.procs.2013.05.238 Lamargue-Hamel, D., Deloire, M., Saubusse, A., Ruet, A., Taillard, J., Philip, P., & Brochet, B. (2015). Cognitive evaluation by tasks in a virtual reality environment in multiple sclerosis. Journal of the Neurological Sciences, 359(1–2), 94–99. https://doi.org/10.1016/j.jns.2015.10.039 Leiner, B. M., Cerf, V. G., Clarck, D. D., Kahn, R. E., Kleinrock, L., Lynch, D., … Wolff, S. (1997). A brief history of internet. Studies in Health Technology and Informatics (Vol. 36). https://doi.org/10.3233/978-1-60750-880-9-121 Liu, D., Sun, Z., Li, R., Liu, J., & Chen, C. (2010). The application of Virtual Reality in the practice course of physical education. In ICDLE 2010 - 2010 4th International Conference on Distance Learning and Education, Proceedings (pp. 78–80). San Juan, PR, USA: IEEE. https://doi.org/10.1109/ICDLE.2010.5606035 Liu, X., Toki, E. I., & Pange, J. (2014). The Use of ICT in Preschool Education in Greece and China : A Comparative Study. In Procedia - Social and Behavioral Sciences (Vol. 112, pp. 1167–1176). Elsevier B.V. https://doi.org/10.1016/j.sbspro.2014.01.1281 López-Martín, O., Segura Fragoso, A., Rodríguez Hernández, M., Dimbwadyo Terrer, I., & Polonio-López, B. (2016). Efectividad de un programa de juego basado en realidad virtual para la mejora cognitiva en la esquizofrenia. Gaceta Sanitaria, 30(2), 133–136. https://doi.org/10.1016/j.gaceta.2015.10.004 López, B. G., Cerveró, G. A., Rodríguez, J. M. S., Félix, E. G., & Esteban, P. R. G. (2013). Learning styles and approaches to learning in excellent and average first-year university students. European Journal of Psychology of Education, 28(4), 1361–1379. https://doi.org/10.1007/s10212-012-0170-1 Machover, C., & Tice, S. E. (1994). Virtual reality. IEEE Computer Graphics and Applications, 14(1), 15–16. https://doi.org/10.1109/38.250913 Maffei, L., Masullo, M., Pascale, A., Ruggiero, G., & Romero, V. P. (2016). Immersive virtual reality in community planning: Acoustic and visual congruence of simulated vs real world. Sustainable Cities and Society, 27, 338–345. https://doi.org/10.1016/j.scs.2016.06.022 Mai, C., Hassib, M., & Königbauer, R. (2017). Estimating visual discomfort in head-mounted displays using electroencephalography. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10516 LNCS, 243–252. https://doi.org/10.1007/978-3-319-68059-0_15 Makransky, G., Lilleholt, L., & Aaby, A. (2017). Development and validation of the Multimodal Presence Scale for virtual reality environments: A confirmatory factor analysis and item response theory approach. Computers in Human Behavior, 72, 276–285. https://doi.org/10.1016/j.chb.2017.02.066 Marins, R., Mol, D. A., Paula, A., Siqueira, L. De, & Mol, D. M. (2015). Progress in Nuclear Energy Using virtual reality to support the physical security of nuclear facilities, 78. https://doi.org/10.1016/j.pnucene.2014.07.004 Mathews, M., Mitrovic, A., Ohlsson, S., Holland, J., & McKinley, A. (2016). A Virtual Reality Environment for Rehabilitation of Prospective Memory in Stroke Patients. Procedia Computer Science, 96, 7–15. https://doi.org/10.1016/j.procs.2016.08.081 Matzke, J., Ziegler, C., Martin, K., Crawford, S., & Sutton, E. (2017). Usefulness of virtual reality in assessment of medical student laparoscopic skill. Journal of Surgical Research, 211(502), 191–195. https://doi.org/10.1016/j.jss.2016.11.054 McGreevy, M. W. (1991). THE VIRTUAL ENVIRONMENT DISPLAY SYSTEM. National Aeronautics and Space Administration, Technology 2000. https://doi.org/10.1007/978-3 642-24474-2 McLean, A. N., & Christensen, J. W. (2017). The application of learning theory in horse training. Applied Animal Behaviour Science, 190, 18–27. https://doi.org/10.1016/j.applanim.2017.02.020 Mechta, D., Harous, S., Djoudi, M., Douar, A., & Belmahdi, R. (2011). Supervision and control tool for E-learning virtual laboratory. In 2011 International Conference on Innovations in Information Technology, IIT 2011 (pp. 61–66). https://doi.org/10.1109/INNOVATIONS.2011.5893869 Miki, T., Iwai, T., Kotani, K., Dang, J., Sawada, H., & Miyake, M. (2016). Development of a virtual reality training system for endoscope-assisted submandibular gland removal. Journal of Cranio-Maxillofacial Surgery, 44(11), 1800–1805. https://doi.org/10.1016/j.jcms.2016.08.018 Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1994). Mixed Reality (MR) Reality Virtuality (RV) Continuum. Proceedings of SPIE - The International Society for Optical Engineering, 2351(Telemanipulator and Telepresence Technologies), 282–292. https://doi.org/10.1.1.83.6861 Miranda, L. C. M., & Lima, C. A. S. (2012). Trends and cycles of the internet evolution and worldwide impacts. Technological Forecasting and Social Change, 79(4), 744–765. https://doi.org/10.1016/j.techfore.2011.09.001 Mirelman, A., Patritti, B. L., Bonato, P., & Deutsch, J. E. (2010). Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait and Posture, 31(4), 433–437. https://doi.org/10.1016/j.gaitpost.2010.01.016 Myron, K. W. (1992). An architecture for artificial realities. In Digest of Papers COMPCON Spring 1992 (pp. 462–465). San Francisco, CA, USA, USA: IEEE. https://doi.org/10.1109/CMPCON.1992.186756 Niu, L., Aha, L., Mattila, J., Gotchev, A., & Ruiz, E. (2019). A stereoscopic eye-in-hand vision system for remote handling in ITER. Fusion Engineering and Design, (February), 0–1. https://doi.org/10.1016/j.fusengdes.2019.03.036 Odlyzko, A. (2012). Web history and economics. Computer Networks, 56(18), 3886–3890. https://doi.org/10.1016/j.comnet.2012.10.011 Papanikolaou, I. G., Haidopoulos, D., Paschopoulos, M., Chatzipapas, I., Loutradis, D., & Vlahos, N. F. (2019). Changing the way we train surgeons in the 21th century: A narrative comparative review focused on box trainers and virtual reality simulators. European Journal of Obstetrics Gynecology and Reproductive Biology, 235, 13–18. https://doi.org/10.1016/j.ejogrb.2019.01.016 Parsons, S. (2016). Authenticity in Virtual Reality for assessment and intervention in autism: A conceptual review. Educational Research Review. Elsevier Ltd. https://doi.org/10.1016/j.edurev.2016.08.001 Pelargos, P. E., Nagasawa, D. T., Lagman, C., Tenn, S., Demos, J. V., Lee, S. J., … Yang, I. (2017). Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery. Journal of Clinical Neuroscience. Elsevier Ltd. https://doi.org/10.1016/j.jocn.2016.09.002 Pelgrum, W. J. (2001). Obstacles to the integration of ICT in education: Results from a worldwide educational assessment. Computers and Education, 37(2), 163–178. https://doi.org/10.1016/S0360-1315(01)00045-8 Portman, M. E., Natapov, A., & Fisher-Gewirtzman, D. (2015). To go where no man has gone before: Virtual reality in architecture, landscape architecture and environmental planning. Computers, Environment and Urban Systems, 54, 376–384. https://doi.org/10.1016/j.compenvurbsys.2015.05.001 Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V. M., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309–327. https://doi.org/10.1016/j.compedu.2016.02.002 Prendes Espinosa, C. (2014). Realidad aumentada y educación: análisis de experiencias prácticas. Píxel-Bit, Revista de Medios y Educación, 46(46), 187–203. https://doi.org/10.12795/pixelbit.2015.i46.12 Pujol, J., Fenoll, R., Ribas-Vidal, N., Martínez-Vilavella, G., Blanco-Hinojo, L., García-Alba, J., … Esteba-Castillo, S. (2018). A longitudinal study of brain anatomy changes preceding dementia in Down syndrome. NeuroImage: Clinical, 18(September 2017), 160–166. https://doi.org/10.1016/j.nicl.2018.01.024 Rizzo, A., John, B., Newman, B., Williams, J., Hartholt, A., Lethin, C., & Buckwalter, J. G. (2012). Virtual Reality as a Tool for Delivering PTSD Exposure Therapy and Stress Resilience Training. Military Behavioral Health, 1(1), 52–58. https://doi.org/10.1080/21635781.2012.721064 Roy, A. K., Soni, Y., & Dubey, S. (2013). Enhancing effectiveness of motor rehabilitation using kinect motion sensing technology. C2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite, GHTC-SAS 2013, 298–304. https://doi.org/10.1109/GHTC-SAS.2013.6629934 Roy, E., Bakr, M. M., & George, R. (2015). The need for virtual reality simulators in dental education: A review. Saudi Dental Journal, pp. 41–47. https://doi.org/10.1016/j.sdentj.2017.02.001 Rushton, S., Mon-Williams, M., & Wann, J. P. (1994). Binocular vision in a bi-ocular world: new-generation head-mounted displays avoid causing visual deficit. Displays, 15(4), 255– 260. https://doi.org/10.1016/0141-9382(94)90073-6 Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332–339. https://doi.org/10.1038/nrn1651 Sandaruwan, D., Kodikara, N., Keppitiyagama, C., Rosa, R., Jayawardena, M., & Samarasinghe, P. (2012). User perception of the physical & behavioral realism of a maritime virtual reality environment. In Proceedings - 2012 14th International Conference on Modelling and Simulation, UKSim 2012 (pp. 172–178). https://doi.org/10.1109/UKSim.2012.32 Semana Educacion. (2016). Colombia quedó entre los diez países con peor resultado en las Pruebas Pisa 2012. Retrieved April 26, 2018, from https://www.semana.com/educacion/articulo/colombia-quedo-entre-los-diez-paises-con peor-resultado-en-las-pruebas-pisa-2012/460104 Seth, A., Vance, J. M., & Oliver, J. H. (2011). Virtual reality for assembly methods prototyping: A review. Virtual Reality, 15(1), 5–20. https://doi.org/10.1007/s10055-009-0153-y Seymour, N. E., Gallagher, A. G., Roman, S. A., O’Brien, M. K., Bansal, V. K., Andersen, D. K., & Satava, R. M. (2002). Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Annals of Surgery, 236(4), 454–458. https://doi.org/10.1097/01.sla.0000028969.51489.b4 Sfard, A. (2007). On Two Metaphors for Learning and the Dangers of Choosing Just One. Educational Researcher, 27(2), 4–13. https://doi.org/10.3102/0013189x027002004 Skinner, B. F. (2014). Science and Human Behavior. Free Press; Edición: New Impression (1 de marzo de 1965) (Vol. 28). https://doi.org/10.1021/cen-v028n052.p4529 Slater, M., Usoh, M., & Steed, A. (2015). Depth of Presence in Virtual Environments. Presence: Teleoperators and Virtual Environments, 3(2), 130–144. https://doi.org/10.1162/pres.1994.3.2.130 Sobota, B., Kore??ko, Pastornick??, P., & Jacho, L. (2016). Virtual-reality technologies in the process of handicapped school children education. In ICETA 2016 - 14th IEEE International Conference on Emerging eLearning Technologies and Applications, Proceedings (pp. 321–326). Starý Smokovec, Slovakia. https://doi.org/10.1109/ICETA.2016.7802077 Stratos, A., Loukas, R., Dimitris, M., Konstantinos, G., Dimitris, M., & George, C. (2016). A Virtual Reality Application to Attract Young Talents to Manufacturing. Procedia CIRP, 57, 134–139. https://doi.org/10.1016/j.procir.2016.11.024 Su, X., & Zhao, G. (2010). Study on virtual experiment platform of computer network. In 2010 International Conference on Intelligent Computation Technology and Automation, ICICTA 2010 (Vol. 3, pp. 648–651). https://doi.org/10.1109/ICICTA.2010.782 Sundar, S. S., Xu, Q., & Bellur, S. (2010). Designing interactivity in media interfaces, (January), 2247. https://doi.org/10.1145/1753326.1753666 Sutherland, I. E. (1965). The Ultimate Display. In Proceedings of IFIP Congress (pp. 506–508). Munich, Germany. https://doi.org/10.1109/MC.2005.274 Sutherland, I. E. (1968). A head-mounted three dimensional display. Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I on - AFIPS ’68 (Fall, Part I), 757. https://doi.org/10.1145/1476589.1476686 Thomas, J. S., France, C. R., Applegate, M. E., Leitkam, S. T., & Walkowski, S. (2016). Feasibility and Safety of a Virtual Reality Dodgeball Intervention for Chronic Low Back Pain: A Randomized Clinical Trial. Journal of Pain, 17(12), 1302–1317. https://doi.org/10.1016/j.jpain.2016.08.011 Ulrich, D., Farra, S., Smith, S., & Hodgson, E. (2014). The student experience using virtual reality simulation to teach decontamination. Clinical Simulation in Nursing, 10(11), 546– 553. https://doi.org/10.1016/j.ecns.2014.08.003 UNESCO. (2008). ICT Competency Standards for Teachers. Vaughan, N., Gabrys, B., & Dubey, V. N. (2016). An overview of self-adaptive technologies within virtual reality training. Computer Science Review. Elsevier Inc. https://doi.org/10.1016/j.cosrev.2016.09.001 Wilson, M., Scalise, K., & Gochyyev, P. (2015). Rethinking ICT literacy: From computer skills to social network settings. Thinking Skills and Creativity, 18, 65–80. https://doi.org/10.1016/j.tsc.2015.05.001 Witmer, B. G., & Sadowski, W. J. (2007). Nonvisually Guided Locomotion to a Previously Viewed Target in Real and Virtual Environments. Human Factors: The Journal of the Human Factors and Ergonomics Society, 40(3), 478–488. https://doi.org/10.1518/001872098779591340 Witte, K. De, & Rogge, N. (2014). Computers & Education Does ICT matter for effectiveness and efficiency in mathematics education ? Computers & Education, 75, 173–184. https://doi.org/10.1016/j.compedu.2014.02.012 Wu, J. X., Chen, G. C., Chang, C. W., & Lin, C. H. (2016). Development of virtual-reality simulator system for minimally invasive surgery (MIS) using fractional-order vascular access. In Proceedings of 2016 SAI Computing Conference, SAI 2016 (pp. 1257–1259). https://doi.org/10.1109/SAI.2016.7556140 Yuan, Y. (2016). Cloud Classroom Boost Online Learning and Educational Resources Sharing. 2016 International Symposium on Educational Technology (ISET), 80–83. https://doi.org/10.1109/ISET.2016.18 Zahedi, E., Rahmat-Khan, H., Dargahi, J., & Zadeh, M. (2017). Virtual Reality Based Training : Evaluation of User Performance by Capturing Upper Limb Motion. Virtual Reality (VR), 2017 IEEE, 255–256. https://doi.org/10.1109/VR.2017.7892273 Zhirnova, G. I., & Absalyamova, S. G. (2013). Global innovation gap and quality of education. In 2013 International Conference on Interactive Collaborative Learning (ICL) (pp. 144– 145). Kazan, Russia. https://doi.org/10.1109/ICL.2013.6644558 Zhou, X., Zhao, Y., Zhou, Y., & Li, F. (2011). Information research of remote pulse diagnose based on virtual technology. In 2011 IEEE 3rd International Conference on Communication Software and Networks, ICCSN 2011 (pp. 419–421). https://doi.org/10.1109/ICCSN.2011.6014082 Zita Sampaio, A., & Viana, L. (2013). Virtual Reality used as a learning technology: Visual simulation of the construction of a bridge deck. Information Systems and Technologies (CISTI), 1–5. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6615855 Ray Schmeck, Ronald. (1988). Learning Strategies and Learning Styles. 10.1007/978-1-4899- 2118-5. Daroff, R. B., & Aminoff, M. J. (2014). Encyclopedia of the Neurological Sciences. Burlington: Elsevier Science.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/e1edf154-b49b-4f82-a50f-1d4d78cf2cdb/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/b4da22d5-f990-47e3-87e2-cd93b1bb7c4c/download8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINAL55.png55.pngimage/png1584283https://repositorio.cuc.edu.co/bitstreams/5e4816ad-1f45-4631-baab-0f6f9996a509/download5376910852885c7d4466180ae7455162MD55Prototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la Costa.pdfPrototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la Costa.pdfapplication/pdf1809301https://repositorio.cuc.edu.co/bitstreams/f2c11575-d6ba-4026-8537-b04c26465f3b/download7917fac9063bd0e3819fb908146215c0MD51THUMBNAIL55.png55.pngimage/png1584283https://repositorio.cuc.edu.co/bitstreams/4196fd8b-dfd0-48db-815d-e6d3cb77523e/download5376910852885c7d4466180ae7455162MD5655.png.jpg55.png.jpgimage/jpeg79227https://repositorio.cuc.edu.co/bitstreams/c52ced25-ad61-4676-8c70-facc000d562f/download48cd37a212df28894f185e87ee0336d8MD59Prototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la Costa.pdf.jpgPrototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la Costa.pdf.jpgimage/jpeg28563https://repositorio.cuc.edu.co/bitstreams/f80f962b-6266-428f-b7eb-569f170f0938/downloadf51522101ddbd56c7c0efbc6d62010caMD510TEXTPrototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la Costa.pdf.txtPrototipo de programa computarizado en realidad virtual para la enseñanza de la anatomía cerebral a estudiantes de psicología en la Universidad de la Costa.pdf.txttext/plain143039https://repositorio.cuc.edu.co/bitstreams/fc26d5fd-c878-4073-809f-281eb56e6ae0/downloadba9caeee82f30756c819cec6d17bfefeMD51111323/5561oai:repositorio.cuc.edu.co:11323/55612024-09-16 16:38:03.931http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |