Effect of grain size distribution on the maximum and minimum void ratios of granular soils

The maximum and minimum void ratios define the loosest and densest conditions of a granular soil. Correlations with some granulometric properties of soil are of interest for practical applications, but the experimental procedure to determine these variables can be time consuming. In this work the in...

Full description

Autores:
Duque, Jose
Fuentes Lacouture, William Mario
Barros Ayala, Jorge Andres
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8631
Acceso en línea:
https://hdl.handle.net/11323/8631
https://repositorio.cuc.edu.co/
Palabra clave:
grain size distribution
granular soils
relative density
maximum void ratio
minimum void ratio
Rights
closedAccess
License
CC0 1.0 Universal
id RCUC2_b2ea0cb3e75b0dff9c73083c179e96c2
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8631
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Effect of grain size distribution on the maximum and minimum void ratios of granular soils
dc.title.translated.spa.fl_str_mv Vpliv porazdelitve velikosti zrn na največji in najnižji količnik por v grobozrnatih zemljinah
title Effect of grain size distribution on the maximum and minimum void ratios of granular soils
spellingShingle Effect of grain size distribution on the maximum and minimum void ratios of granular soils
grain size distribution
granular soils
relative density
maximum void ratio
minimum void ratio
title_short Effect of grain size distribution on the maximum and minimum void ratios of granular soils
title_full Effect of grain size distribution on the maximum and minimum void ratios of granular soils
title_fullStr Effect of grain size distribution on the maximum and minimum void ratios of granular soils
title_full_unstemmed Effect of grain size distribution on the maximum and minimum void ratios of granular soils
title_sort Effect of grain size distribution on the maximum and minimum void ratios of granular soils
dc.creator.fl_str_mv Duque, Jose
Fuentes Lacouture, William Mario
Barros Ayala, Jorge Andres
dc.contributor.author.spa.fl_str_mv Duque, Jose
Fuentes Lacouture, William Mario
Barros Ayala, Jorge Andres
dc.subject.spa.fl_str_mv grain size distribution
granular soils
relative density
maximum void ratio
minimum void ratio
topic grain size distribution
granular soils
relative density
maximum void ratio
minimum void ratio
description The maximum and minimum void ratios define the loosest and densest conditions of a granular soil. Correlations with some granulometric properties of soil are of interest for practical applications, but the experimental procedure to determine these variables can be time consuming. In this work the influence of the grain size distribution on the maximum and minimum void ratios is investigated. Twenty different granular soils with varying grain size distributions were prepared and tested. The experimental results, together with a compilation of 56 additional results reported in the literature, are statistically analysed. The analysis is conducted to examine the influence of some granulometric properties (D10, D30 and D60) on the maximum and minimum void ratios. As a result, some correlations considering the aforementioned variables are proposed. Subsequently, it is shown that the proposed correlations have better agreement with the experimental data than other proposals reported in the literature. The paper ends with some concluding remarks.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-09-06T14:18:26Z
dc.date.available.none.fl_str_mv 2021-09-06T14:18:26Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 18540171
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8631
dc.identifier.doi.spa.fl_str_mv 10.18690/actageotechslov.17.2.26-33.2020
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 18540171
10.18690/actageotechslov.17.2.26-33.2020
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8631
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Miura, K., Maeda, K., Furukawa, M., Toki, S. 1998. Mechanical characteristics of sands with different primary properties. Soils and Foundations 38(4), 159-172. https://doi.org/10.3208/sandf.38.4_159
[2] Dyskin, A., Estrin, Y., Kanel, A., Pasternak, E. 2001. Toughening by fragmentation— How topology helps. Advanced Engineering Materials 3(1), 885-888. https://doi. org/10.1002/1527-2648(200111)3:11<885::AIDADEM885>3.0.CO;2-P
[3] Nakata, Y., Kato, Y., Hyodo, M., Hyde, A., Murata, H. 2001. One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. Soils and Foundations 41(2), 39-51. https://doi.org/10.3208/sandf.41.2_39
[4] Guimaraes, M. 2002. Crushed stone fines and ion removal from clay slurries—Fundamental studies. Georgia Institute of Technology: Ph.D. Thesis.
[5] Cho, G., Dodds, J., Santamarina, C. 2006. Particle shape effects on packing density, Stiffness, and Strength: Natural and Crushed Sands. Journal of Geotechnical and Geoenvironmental Engineering 132(5), 591-602. https://doi.org/10.1061/ (ASCE)1090-0241(2006)132:5(591)
[6] Shimboe, S., Moreto, N. 1995. A new classification for sand liquefaction. 1st International Conference of Earthquake Geotechnical Engineering, Tokyo, pp. 315-320.
[7] Cubrinovski, M., Ishihara, K. 2002. Maximum and minimum void ratio characteristics of sands. Soils and Foundations 42(6), 65-78. https://doi. org/10.3208/sandf.42.6_65.
[8] Norris, G. 1980. Shape and surface roughness effects on maximum and minimum void ratios of sand. Proceedings of the Eighteenth Annual Engineeing Geology and Soils Engineering Symposium. Idaho, pp. 187-197.
[9] Edil, T., Krizek, R., Zelasko, J. 1975. Effect of grain characteristics on packing of quartziferous sands. Proceedings of the Istanbul Conference on Soil Mechanics and Foundation Engineering. pp. 46-54.
[10] Panayiotopoulos, K. 1989. Packing of Sands - A Review. Soil & Tillage Research 13(2), 101-121. https://doi.org/10.1016/0167-1987(89)90085-8
[11] Yang, Z. 2013. Study of the minimum void ratio for soils with a range of grain-size distributions. University of Massachusetts Amherst: Master Thesis.
[12] Holtz, R., Kovacs, W. 1981. An Introduction to Geotechnical Engineering. Prentice Hall, Englewood Cliffs, New Jersey.
[13] Lade, P., Liggio, C., Yamamuro, J. 1998. Effects of nonplastic fines on minimum and maximum void ratios of sand. Geotechnical Testing Journal 21(4), 336-347. https://doi.org/10.1520/GTJ11373J
[14] Das, B., Sivakugan, N., Atalar, C. 2012. Maximum and minimum void ratios and median grain size of granular soils: their importance and correlations with material properties. 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, pp. 37-54.
[15] Youd, T. 1973. Factors controlling maximum and minimum densities of sands. Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless soils, ASTM, STP 523, 98-112. https://doi.org/10.1520/STP37866S
[16] Zheng, J. Hryciw, R. 2016. Index Void Ratios of Sands from Their Intrinsic Properties. Journal of Geotechnical and Geoenvironmental Engineering 142(12), 06016019-1-10. https://doi.org/10.1061/ (ASCE)GT.1943-5606.0001575
[17] Åberg, B. 1992. Void ratio of noncohesive soils and similar materials. Journal of Geotechnical Engineering 118(9), 1315-1334. https://doi. org/10.1061/(ASCE)0733-9410(1992)118:9(1315)
[18] Patra, C., Sivakugan, N., Das, B., Rout, S. 2010. Correlations for relative density of clean sand with median grain size and compaction energy. International Journal of Geotechnical Engineering 4(2), 195-203. https://doi.org/10.3328/ IJGE.2010.04.02.195-203
[19] Riquelme, J., Dorador, L. 2014. Metodología para determinar densidades máxima y mínima en suelos granulares gruesos a partir de ensayos de laboratorio de escala reducida. VII congreso chileno de ingeniería geotécnica, pp. 1-11.
[20] Patra, C., Sivakugan, N., Das, B. 2010. Relative density and mean grain-size correlations from laboratory compaction tests on granular soil. International Journal of Geotechnical Engineering 4(1), 55-62. https://doi.org/10.3328/ IJGE.2010.04.01.55-62
[21] Cubrinovski, M., Ishihara, K. 1999. Empirical correlations between SPT N-values and relative density of sandy soils. Soils and Foundations 39(5), 61-71. https://doi.org/10.3208/ sandf.39.5_61
[22] Alvarado, R. 2010. Análisis experimental de las metodologías de curvas homotéticas y corte en la evaluación de propiedades geotécnicas de suelos gruesos. Universidad de Chile: Master Thesis.
[23] Miura, K., Maeda, K., Furukawa, M., Toki, S. 1997. Physical characteristics of sands with different primary properties. Soils and Foundations 37(3), 53-64. https://doi.org/10.3208/sandf.37.3_53
[24] Santamarina, J., Cho, G. 2004. Soil behaviour: the role of particle shape. Advances in geotechnical engineering: The Skempton conference, pp. 604-617.
[25] Shen, C. Liu, S. Xu, S. Wang, L. 2019. Rapid estimation of maximum and minimum void ratios of granular soils. Acta Geotechnica 14(4), 991–1001. https://doi.org/10.1007/s11440-018-0714-x
[26] Moreno, N. 2014. Zonificación geotecnica de los suelos en Barranquilla. Twelfth LACCEI Latin American and Caribbean Conference for Engineering and Technology, pp 1-9.
[27] Salgado, R., Bandini, P., Karim, A. 2000. Shear strength and stiffness of silty sand. Journal of Geotechnical and Geoenvironmental Engineering 126(5), 451-462. https://doi.org/10.1061/ (ASCE)1090-0241(2000)126:5(451)
[28] Kokusho, T. 2000. Correlation of pore-pressure B-value with P-wave velocity and poisson's ratio for imperfectply satured sand or gravel. Soils and Foundations 40(4), 95-102. https://doi. org/10.3208/sandf.40.4_95
[29] Wichtmann, T. 2005. Explicit accumulation model for non-cohesive soils under cyclic loading, RuhrUniversität Bochum: PhD Thesis, pp. 1-288.
[30] Simoni, A., Houlsby, G. 2006. The Direct Shear Strength and Dilatancy of Sand–gravel Mixtures. Geotechnical and geological engineering 24(3), 523-549. https://doi.org/10.1007/s10706-004- 5832-6
[31] Bandini, P., Salthiskumar, S. 2009. Effects of silt content and void ratio on the saturated hydraulic conductivity and compressibility of sand-silt mixtures. Journal of Geotechnical and Geoenvironmental Engineering 135(12), 1976- 1980. https://doi.org/10.1061/(ASCE)GT.1943- 5606.0000177
[32] Arab, A., Sadek, M. Belkhatir, M., Shahrour, I. 2014. Monotonic Preloading Effect on the Liquefaction Resistance of Chlef Silty Sand: a Laboratory Study. Arabian Journal for Science and Engineering 39(2), 685-694. https://doi.org/10.1007/s13369- 013-0700-4
[33] Bablu, K., Maheshwari, B. 2013. Effects of silt content on dynamic properties of solani sand. Seventh International Conference on Case Histories in Geotechnical Engineering, pp. 1-7.
[34] Mahmoudi, Y., Cherif, T., Belkhatir, M., Arab, A., Schanz, T. 2014. Influence of the equivalent intergranular void ratio on shear strength of sand-silt mixtures. Colloque International: Caractérisation et Modélisation des Matériaux et Structures, pp. 1-18.
[35] Bensoula, M., Missoum, H., Bendani, K. 2015. Critical undrained shear strength of loose-medium sand-silt mixtures under monotonic loadings. Journal of Theoretical and Applied Mechanics 53(2), 331-344. https://doi.org/10.15632/jtampl.53.2.331.
[36] Fuentes, W., Gil, M., Duque, J. 2019. Dynamic simulation of the sudden stettlement of a mine waste dump under earthquake loading. International Journal of Mining, Reclamation and Environment 33(6), 425-443. https://doi.org/10.1080/1 7480930.2018.1483703
[37] Pham, H., Van-Impe, P., Van-Impe, W., Mengé, P., Cnudde, V., Haegeman, W. 2017. Effects of particle characteristics on the shear strength of calcareous sand. Acta Geotechnica Slovenica 14(2), 76-89.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Acta Geotechnica Slovenica
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://ezproxy.cuc.edu.co:2104/record/display.uri?eid=2-s2.0-85105111588&origin=resultslist&sort=plf-f&src=s&sid=2b596c5d2ebf14364ea06497aad7ada7&sot=b&sdt=b&sl=202&s=TITLE-ABS-KEY%28Effect+of+grain+size+distribution+on+the+maximum+and+minimum+void+ratios+of+granular+soils+%5bVpliv+porazdelitve+velikosti+zrn+na+najve%c4%8dji+in+najni%c5%beji+koli%c4%8dnik+por+v+grobozrnatih+zemljinah%5d%29&relpos=0&citeCnt=0&searchTerm=
http://fgserver6.fg.um.si/journal-ags/2020-2/article-3.asp
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/630f3d7a-9609-44a9-86c8-ab28d16d0bb9/download
https://repositorio.cuc.edu.co/bitstreams/d20074e3-335c-4ee6-abad-90d355070348/download
https://repositorio.cuc.edu.co/bitstreams/9397458c-0d33-4b8d-8c98-7c3ba6a215b1/download
https://repositorio.cuc.edu.co/bitstreams/4ae12949-0367-46d8-a9e6-7f195a2e1058/download
https://repositorio.cuc.edu.co/bitstreams/a96b7c63-25fe-4615-a263-ff7edc180f38/download
bitstream.checksum.fl_str_mv cc6438f1be317fd79ad896e7cc688f93
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
0c6955f9c0ba3ee3430c83b925f01d2c
af82dad693f91c426cf72689371afd3b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760746844913664
spelling Duque, JoseFuentes Lacouture, William MarioBarros Ayala, Jorge Andres2021-09-06T14:18:26Z2021-09-06T14:18:26Z202018540171https://hdl.handle.net/11323/863110.18690/actageotechslov.17.2.26-33.2020Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The maximum and minimum void ratios define the loosest and densest conditions of a granular soil. Correlations with some granulometric properties of soil are of interest for practical applications, but the experimental procedure to determine these variables can be time consuming. In this work the influence of the grain size distribution on the maximum and minimum void ratios is investigated. Twenty different granular soils with varying grain size distributions were prepared and tested. The experimental results, together with a compilation of 56 additional results reported in the literature, are statistically analysed. The analysis is conducted to examine the influence of some granulometric properties (D10, D30 and D60) on the maximum and minimum void ratios. As a result, some correlations considering the aforementioned variables are proposed. Subsequently, it is shown that the proposed correlations have better agreement with the experimental data than other proposals reported in the literature. The paper ends with some concluding remarks.Duque, JoseFuentes Lacouture, William MarioBarros Ayala, Jorge Andresapplication/pdfengActa Geotechnica SlovenicaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbgrain size distributiongranular soilsrelative densitymaximum void ratiominimum void ratioEffect of grain size distribution on the maximum and minimum void ratios of granular soilsVpliv porazdelitve velikosti zrn na največji in najnižji količnik por v grobozrnatih zemljinahArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://ezproxy.cuc.edu.co:2104/record/display.uri?eid=2-s2.0-85105111588&origin=resultslist&sort=plf-f&src=s&sid=2b596c5d2ebf14364ea06497aad7ada7&sot=b&sdt=b&sl=202&s=TITLE-ABS-KEY%28Effect+of+grain+size+distribution+on+the+maximum+and+minimum+void+ratios+of+granular+soils+%5bVpliv+porazdelitve+velikosti+zrn+na+najve%c4%8dji+in+najni%c5%beji+koli%c4%8dnik+por+v+grobozrnatih+zemljinah%5d%29&relpos=0&citeCnt=0&searchTerm=http://fgserver6.fg.um.si/journal-ags/2020-2/article-3.asp[1] Miura, K., Maeda, K., Furukawa, M., Toki, S. 1998. Mechanical characteristics of sands with different primary properties. Soils and Foundations 38(4), 159-172. https://doi.org/10.3208/sandf.38.4_159[2] Dyskin, A., Estrin, Y., Kanel, A., Pasternak, E. 2001. Toughening by fragmentation— How topology helps. Advanced Engineering Materials 3(1), 885-888. https://doi. org/10.1002/1527-2648(200111)3:11<885::AIDADEM885>3.0.CO;2-P[3] Nakata, Y., Kato, Y., Hyodo, M., Hyde, A., Murata, H. 2001. One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. Soils and Foundations 41(2), 39-51. https://doi.org/10.3208/sandf.41.2_39[4] Guimaraes, M. 2002. Crushed stone fines and ion removal from clay slurries—Fundamental studies. Georgia Institute of Technology: Ph.D. Thesis.[5] Cho, G., Dodds, J., Santamarina, C. 2006. Particle shape effects on packing density, Stiffness, and Strength: Natural and Crushed Sands. Journal of Geotechnical and Geoenvironmental Engineering 132(5), 591-602. https://doi.org/10.1061/ (ASCE)1090-0241(2006)132:5(591)[6] Shimboe, S., Moreto, N. 1995. A new classification for sand liquefaction. 1st International Conference of Earthquake Geotechnical Engineering, Tokyo, pp. 315-320.[7] Cubrinovski, M., Ishihara, K. 2002. Maximum and minimum void ratio characteristics of sands. Soils and Foundations 42(6), 65-78. https://doi. org/10.3208/sandf.42.6_65.[8] Norris, G. 1980. Shape and surface roughness effects on maximum and minimum void ratios of sand. Proceedings of the Eighteenth Annual Engineeing Geology and Soils Engineering Symposium. Idaho, pp. 187-197.[9] Edil, T., Krizek, R., Zelasko, J. 1975. Effect of grain characteristics on packing of quartziferous sands. Proceedings of the Istanbul Conference on Soil Mechanics and Foundation Engineering. pp. 46-54.[10] Panayiotopoulos, K. 1989. Packing of Sands - A Review. Soil & Tillage Research 13(2), 101-121. https://doi.org/10.1016/0167-1987(89)90085-8[11] Yang, Z. 2013. Study of the minimum void ratio for soils with a range of grain-size distributions. University of Massachusetts Amherst: Master Thesis.[12] Holtz, R., Kovacs, W. 1981. An Introduction to Geotechnical Engineering. Prentice Hall, Englewood Cliffs, New Jersey.[13] Lade, P., Liggio, C., Yamamuro, J. 1998. Effects of nonplastic fines on minimum and maximum void ratios of sand. Geotechnical Testing Journal 21(4), 336-347. https://doi.org/10.1520/GTJ11373J[14] Das, B., Sivakugan, N., Atalar, C. 2012. Maximum and minimum void ratios and median grain size of granular soils: their importance and correlations with material properties. 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, pp. 37-54.[15] Youd, T. 1973. Factors controlling maximum and minimum densities of sands. Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless soils, ASTM, STP 523, 98-112. https://doi.org/10.1520/STP37866S[16] Zheng, J. Hryciw, R. 2016. Index Void Ratios of Sands from Their Intrinsic Properties. Journal of Geotechnical and Geoenvironmental Engineering 142(12), 06016019-1-10. https://doi.org/10.1061/ (ASCE)GT.1943-5606.0001575[17] Åberg, B. 1992. Void ratio of noncohesive soils and similar materials. Journal of Geotechnical Engineering 118(9), 1315-1334. https://doi. org/10.1061/(ASCE)0733-9410(1992)118:9(1315)[18] Patra, C., Sivakugan, N., Das, B., Rout, S. 2010. Correlations for relative density of clean sand with median grain size and compaction energy. International Journal of Geotechnical Engineering 4(2), 195-203. https://doi.org/10.3328/ IJGE.2010.04.02.195-203[19] Riquelme, J., Dorador, L. 2014. Metodología para determinar densidades máxima y mínima en suelos granulares gruesos a partir de ensayos de laboratorio de escala reducida. VII congreso chileno de ingeniería geotécnica, pp. 1-11.[20] Patra, C., Sivakugan, N., Das, B. 2010. Relative density and mean grain-size correlations from laboratory compaction tests on granular soil. International Journal of Geotechnical Engineering 4(1), 55-62. https://doi.org/10.3328/ IJGE.2010.04.01.55-62[21] Cubrinovski, M., Ishihara, K. 1999. Empirical correlations between SPT N-values and relative density of sandy soils. Soils and Foundations 39(5), 61-71. https://doi.org/10.3208/ sandf.39.5_61[22] Alvarado, R. 2010. Análisis experimental de las metodologías de curvas homotéticas y corte en la evaluación de propiedades geotécnicas de suelos gruesos. Universidad de Chile: Master Thesis.[23] Miura, K., Maeda, K., Furukawa, M., Toki, S. 1997. Physical characteristics of sands with different primary properties. Soils and Foundations 37(3), 53-64. https://doi.org/10.3208/sandf.37.3_53[24] Santamarina, J., Cho, G. 2004. Soil behaviour: the role of particle shape. Advances in geotechnical engineering: The Skempton conference, pp. 604-617.[25] Shen, C. Liu, S. Xu, S. Wang, L. 2019. Rapid estimation of maximum and minimum void ratios of granular soils. Acta Geotechnica 14(4), 991–1001. https://doi.org/10.1007/s11440-018-0714-x[26] Moreno, N. 2014. Zonificación geotecnica de los suelos en Barranquilla. Twelfth LACCEI Latin American and Caribbean Conference for Engineering and Technology, pp 1-9.[27] Salgado, R., Bandini, P., Karim, A. 2000. Shear strength and stiffness of silty sand. Journal of Geotechnical and Geoenvironmental Engineering 126(5), 451-462. https://doi.org/10.1061/ (ASCE)1090-0241(2000)126:5(451)[28] Kokusho, T. 2000. Correlation of pore-pressure B-value with P-wave velocity and poisson's ratio for imperfectply satured sand or gravel. Soils and Foundations 40(4), 95-102. https://doi. org/10.3208/sandf.40.4_95[29] Wichtmann, T. 2005. Explicit accumulation model for non-cohesive soils under cyclic loading, RuhrUniversität Bochum: PhD Thesis, pp. 1-288.[30] Simoni, A., Houlsby, G. 2006. The Direct Shear Strength and Dilatancy of Sand–gravel Mixtures. Geotechnical and geological engineering 24(3), 523-549. https://doi.org/10.1007/s10706-004- 5832-6[31] Bandini, P., Salthiskumar, S. 2009. Effects of silt content and void ratio on the saturated hydraulic conductivity and compressibility of sand-silt mixtures. Journal of Geotechnical and Geoenvironmental Engineering 135(12), 1976- 1980. https://doi.org/10.1061/(ASCE)GT.1943- 5606.0000177[32] Arab, A., Sadek, M. Belkhatir, M., Shahrour, I. 2014. Monotonic Preloading Effect on the Liquefaction Resistance of Chlef Silty Sand: a Laboratory Study. Arabian Journal for Science and Engineering 39(2), 685-694. https://doi.org/10.1007/s13369- 013-0700-4[33] Bablu, K., Maheshwari, B. 2013. Effects of silt content on dynamic properties of solani sand. Seventh International Conference on Case Histories in Geotechnical Engineering, pp. 1-7.[34] Mahmoudi, Y., Cherif, T., Belkhatir, M., Arab, A., Schanz, T. 2014. Influence of the equivalent intergranular void ratio on shear strength of sand-silt mixtures. Colloque International: Caractérisation et Modélisation des Matériaux et Structures, pp. 1-18.[35] Bensoula, M., Missoum, H., Bendani, K. 2015. Critical undrained shear strength of loose-medium sand-silt mixtures under monotonic loadings. Journal of Theoretical and Applied Mechanics 53(2), 331-344. https://doi.org/10.15632/jtampl.53.2.331.[36] Fuentes, W., Gil, M., Duque, J. 2019. Dynamic simulation of the sudden stettlement of a mine waste dump under earthquake loading. International Journal of Mining, Reclamation and Environment 33(6), 425-443. https://doi.org/10.1080/1 7480930.2018.1483703[37] Pham, H., Van-Impe, P., Van-Impe, W., Mengé, P., Cnudde, V., Haegeman, W. 2017. Effects of particle characteristics on the shear strength of calcareous sand. Acta Geotechnica Slovenica 14(2), 76-89.PublicationORIGINALEffect of grain size distribution on the maximum and minimum void ratios of granular soils.pdfEffect of grain size distribution on the maximum and minimum void ratios of granular soils.pdfapplication/pdf182927https://repositorio.cuc.edu.co/bitstreams/630f3d7a-9609-44a9-86c8-ab28d16d0bb9/downloadcc6438f1be317fd79ad896e7cc688f93MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/d20074e3-335c-4ee6-abad-90d355070348/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/9397458c-0d33-4b8d-8c98-7c3ba6a215b1/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILEffect of grain size distribution on the maximum and minimum void ratios of granular soils.pdf.jpgEffect of grain size distribution on the maximum and minimum void ratios of granular soils.pdf.jpgimage/jpeg54755https://repositorio.cuc.edu.co/bitstreams/4ae12949-0367-46d8-a9e6-7f195a2e1058/download0c6955f9c0ba3ee3430c83b925f01d2cMD54TEXTEffect of grain size distribution on the maximum and minimum void ratios of granular soils.pdf.txtEffect of grain size distribution on the maximum and minimum void ratios of granular soils.pdf.txttext/plain1369https://repositorio.cuc.edu.co/bitstreams/a96b7c63-25fe-4615-a263-ff7edc180f38/downloadaf82dad693f91c426cf72689371afd3bMD5511323/8631oai:repositorio.cuc.edu.co:11323/86312024-09-17 10:56:45.876http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==