Time series decomposition using automatic learning techniques for predictive models
This paper proposes an innovative way to address real cases of production prediction. This approach consists in the decomposition of original time series into time sub-series according to a group of factors in order to generate a predictive model from the partial predictive models of the sub-series....
- Autores:
-
Silva, Jesús
H, H
Niebles Núñez, William
Ovallos-Gazabon, David
Varela, Noel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6237
- Acceso en línea:
- https://hdl.handle.net/11323/6237
https://repositorio.cuc.edu.co/
- Palabra clave:
- Automatic learning
Predictive models
Production prediction
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_b174753dd02d67010f46882f0d2d8ebb |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6237 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Time series decomposition using automatic learning techniques for predictive models |
title |
Time series decomposition using automatic learning techniques for predictive models |
spellingShingle |
Time series decomposition using automatic learning techniques for predictive models Automatic learning Predictive models Production prediction |
title_short |
Time series decomposition using automatic learning techniques for predictive models |
title_full |
Time series decomposition using automatic learning techniques for predictive models |
title_fullStr |
Time series decomposition using automatic learning techniques for predictive models |
title_full_unstemmed |
Time series decomposition using automatic learning techniques for predictive models |
title_sort |
Time series decomposition using automatic learning techniques for predictive models |
dc.creator.fl_str_mv |
Silva, Jesús H, H Niebles Núñez, William Ovallos-Gazabon, David Varela, Noel |
dc.contributor.author.spa.fl_str_mv |
Silva, Jesús H, H Niebles Núñez, William Ovallos-Gazabon, David Varela, Noel |
dc.subject.spa.fl_str_mv |
Automatic learning Predictive models Production prediction |
topic |
Automatic learning Predictive models Production prediction |
description |
This paper proposes an innovative way to address real cases of production prediction. This approach consists in the decomposition of original time series into time sub-series according to a group of factors in order to generate a predictive model from the partial predictive models of the sub-series. The adjustment of the models is carried out by means of a set of statistic techniques and Automatic Learning. This method was compared to an intuitive method consisting of a direct prediction of time series. The results show that this approach achieves better predictive performance than the direct way, so applying a decomposition method is more appropriate for this problem than non-decomposition. The agricultural sector will be used as the study subject. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-23T16:32:32Z |
dc.date.available.none.fl_str_mv |
2020-04-23T16:32:32Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1742-6588 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6237 |
dc.identifier.doi.spa.fl_str_mv |
doi:10.1088/1742-6596/1432/1/012096 1742-6596 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1742-6588 doi:10.1088/1742-6596/1432/1/012096 1742-6596 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/6237 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Departamento Administrativo Nacional de Estadística -DANE-. (2019). Importaciones colombianas. https://www.dane.gov.co/index.php/ comercio-exterior/importaciones [2] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data." International Journal of Computer Applications 101.1 (2014): 19-24. [3] Comisión Económica para América Latina y el Caribe -CEPAL-. (2013). Visión agrícola del TLC entre Colombia y Estados Unidos: preparación, negociación, implementación y aprovechamiento. [4] Henao-Rodríguez, C., Lis-Gutiérrez, J. P., Gaitán-Angulo, M., Malagón, L. E., & Viloria, A. (2018, May). Econometric analysis of the industrial growth determinants in Colombia. In Australasian Database Conference (pp. 316-321). Springer, Cham. [5] Lis-Gutiérrez JP., Gaitán-Angulo M., Henao L.C., Viloria A., Aguilera-Hernández D., PortilloMedina R. (2018) Measures of Concentration and Stability: Two Pedagogical Tools for Industrial Organization Courses. In: Tan Y., Shi Y., Tang Q. (eds) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science, vol 10942. Springer, Cham [6] Viloria, A. "Commercial strategies providers pharmaceutical chains for logistics cost reduction." Indian Journal of Science and Technology 8, no. 1 (2016). [7] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371. [8] J. C. Sanclemente, “Las ventas y el mercadeo, actividades indisociables y de gran impacto social y económico.: El aporte de Tosdal”, Innovar, vol. 17, núm. 30, pp. 160–162, jul. 2007. [9] N. Sapankevych y R. Sankar, “Time Series Prediction Using Support Vector Machines: A Survey”, IEEE Computational Intelligence Magazine, vol. 4, núm. 2, pp. 24–38, may 2009. [10] N. Swanson y H. White, “Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models”, International Journal of Forecasting, vol. 13, núm. 4, pp. 439–461, 1997. [11] E. M. Toro, D. A. Mejia, y H. Salazar, “Pronóstico de ventas usando redes neuronales”, Scientia et technica, vol. 10, núm. 26, 2004. [12] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012. [13] Akram, M., Bhatti, I., Ashfaq, M., Khan, A.A. Hierarchical Forecasts of Agronomy-Based Data, American Journal of Mathematical and Ma- nagement Sciences, 36(1), 49-65, 2017. [14] Brdar S., Culibrk D., Marinkovic B., Crnobarac J., Crnojevic V. Support Vector Machines with Features Contribution Analysis for Agricultural Yield Prediction, Second International Workshop on Sensing Technolo- gies in Agriculture, Forestry and Environment, 43-47, 2011 [15] Choudhury, A. and Jones, J. Crop yield prediction using time series models, Journal of Economics and Economic Education Research., 15, 53-68, 2014. [16] Fukuda S., Spreer W., Yasunaga E., Yuge K., Sardsud V. and Muller J. Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes, Agricultural Water Management, 116(1), 142-150,2013. [16] Ruß G. Data Mining of Agricultural Yield Data: A Comparison of Regression Models, In: Perner P. (eds) Advances in Data Mining. Applications and Theoretical Aspects, ICDM 2009. Lecture Notes in Computer Science, vol 5633. [17] Taylor S. and Letham B. prophet: Automatic Forecasting Procedure. R package version 0.1. 2017 [18] Wuo W., Xue H. An incorporative statistic and neural approach for crop yield modelling and forecasting, Neural Computing and Applications, 21(1): 109–117, 2012. [19] Ji, B., Sun Y., Yang S. and Wan J. Artificial neural networks for rice yield prediction in mountainous regions, Journal of Agricultural Science, 145: 249-26, 2007. [20] Karatzoglou A., Smola A., Hornik K. and Zeileis A. kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11(9), 1-20, 2004 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Journal of Physics: Conference Series |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/3794e594-dc07-4a54-844e-d7ba253f5bcc/download https://repositorio.cuc.edu.co/bitstreams/0ed20161-85e7-4bef-a861-74e5ea21682e/download https://repositorio.cuc.edu.co/bitstreams/3bbe5911-b17b-4499-a584-4da7755d1b12/download https://repositorio.cuc.edu.co/bitstreams/23f9a2d3-2936-4887-8456-ff19976310ac/download https://repositorio.cuc.edu.co/bitstreams/65bfa3d0-0ada-460b-a54d-1958368fdff4/download |
bitstream.checksum.fl_str_mv |
a0f4a4c668b5bab9dcd75804c1770836 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 c71f292be7c0a627e09cbf035edf691b 09be015b273788484d74b9c3c025dac6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166851046146048 |
spelling |
Silva, JesúsH, HNiebles Núñez, WilliamOvallos-Gazabon, DavidVarela, Noel2020-04-23T16:32:32Z2020-04-23T16:32:32Z20201742-6588https://hdl.handle.net/11323/6237doi:10.1088/1742-6596/1432/1/0120961742-6596Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper proposes an innovative way to address real cases of production prediction. This approach consists in the decomposition of original time series into time sub-series according to a group of factors in order to generate a predictive model from the partial predictive models of the sub-series. The adjustment of the models is carried out by means of a set of statistic techniques and Automatic Learning. This method was compared to an intuitive method consisting of a direct prediction of time series. The results show that this approach achieves better predictive performance than the direct way, so applying a decomposition method is more appropriate for this problem than non-decomposition. The agricultural sector will be used as the study subject.Silva, JesúsHernandez Palma, Hugo Gaspar-will be generated-orcid-0000-0002-3873-0530-600Niebles Núñez, WilliamOvallos-Gazabon, DavidVarela, NoelengJournal of Physics: Conference SeriesCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Automatic learningPredictive modelsProduction predictionTime series decomposition using automatic learning techniques for predictive modelsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Departamento Administrativo Nacional de Estadística -DANE-. (2019). Importaciones colombianas. https://www.dane.gov.co/index.php/ comercio-exterior/importaciones[2] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data." International Journal of Computer Applications 101.1 (2014): 19-24.[3] Comisión Económica para América Latina y el Caribe -CEPAL-. (2013). Visión agrícola del TLC entre Colombia y Estados Unidos: preparación, negociación, implementación y aprovechamiento.[4] Henao-Rodríguez, C., Lis-Gutiérrez, J. P., Gaitán-Angulo, M., Malagón, L. E., & Viloria, A. (2018, May). Econometric analysis of the industrial growth determinants in Colombia. In Australasian Database Conference (pp. 316-321). Springer, Cham.[5] Lis-Gutiérrez JP., Gaitán-Angulo M., Henao L.C., Viloria A., Aguilera-Hernández D., PortilloMedina R. (2018) Measures of Concentration and Stability: Two Pedagogical Tools for Industrial Organization Courses. In: Tan Y., Shi Y., Tang Q. (eds) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science, vol 10942. Springer, Cham[6] Viloria, A. "Commercial strategies providers pharmaceutical chains for logistics cost reduction." Indian Journal of Science and Technology 8, no. 1 (2016).[7] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371.[8] J. C. Sanclemente, “Las ventas y el mercadeo, actividades indisociables y de gran impacto social y económico.: El aporte de Tosdal”, Innovar, vol. 17, núm. 30, pp. 160–162, jul. 2007.[9] N. Sapankevych y R. Sankar, “Time Series Prediction Using Support Vector Machines: A Survey”, IEEE Computational Intelligence Magazine, vol. 4, núm. 2, pp. 24–38, may 2009.[10] N. Swanson y H. White, “Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models”, International Journal of Forecasting, vol. 13, núm. 4, pp. 439–461, 1997.[11] E. M. Toro, D. A. Mejia, y H. Salazar, “Pronóstico de ventas usando redes neuronales”, Scientia et technica, vol. 10, núm. 26, 2004.[12] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012.[13] Akram, M., Bhatti, I., Ashfaq, M., Khan, A.A. Hierarchical Forecasts of Agronomy-Based Data, American Journal of Mathematical and Ma- nagement Sciences, 36(1), 49-65, 2017.[14] Brdar S., Culibrk D., Marinkovic B., Crnobarac J., Crnojevic V. Support Vector Machines with Features Contribution Analysis for Agricultural Yield Prediction, Second International Workshop on Sensing Technolo- gies in Agriculture, Forestry and Environment, 43-47, 2011[15] Choudhury, A. and Jones, J. Crop yield prediction using time series models, Journal of Economics and Economic Education Research., 15, 53-68, 2014. [16] Fukuda S., Spreer W., Yasunaga E., Yuge K., Sardsud V. and Muller J. Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes, Agricultural Water Management, 116(1), 142-150,2013.[16] Ruß G. Data Mining of Agricultural Yield Data: A Comparison of Regression Models, In: Perner P. (eds) Advances in Data Mining. Applications and Theoretical Aspects, ICDM 2009. Lecture Notes in Computer Science, vol 5633.[17] Taylor S. and Letham B. prophet: Automatic Forecasting Procedure. R package version 0.1. 2017[18] Wuo W., Xue H. An incorporative statistic and neural approach for crop yield modelling and forecasting, Neural Computing and Applications, 21(1): 109–117, 2012.[19] Ji, B., Sun Y., Yang S. and Wan J. Artificial neural networks for rice yield prediction in mountainous regions, Journal of Agricultural Science, 145: 249-26, 2007.[20] Karatzoglou A., Smola A., Hornik K. and Zeileis A. kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11(9), 1-20, 2004PublicationORIGINALTime Series Decomposition using Automatic Learning Techniques for Predictive Models.pdfTime Series Decomposition using Automatic Learning Techniques for Predictive Models.pdfapplication/pdf696092https://repositorio.cuc.edu.co/bitstreams/3794e594-dc07-4a54-844e-d7ba253f5bcc/downloada0f4a4c668b5bab9dcd75804c1770836MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/0ed20161-85e7-4bef-a861-74e5ea21682e/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/3bbe5911-b17b-4499-a584-4da7755d1b12/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILTime Series Decomposition using Automatic Learning Techniques for Predictive Models.pdf.jpgTime Series Decomposition using Automatic Learning Techniques for Predictive Models.pdf.jpgimage/jpeg33178https://repositorio.cuc.edu.co/bitstreams/23f9a2d3-2936-4887-8456-ff19976310ac/downloadc71f292be7c0a627e09cbf035edf691bMD54TEXTTime Series Decomposition using Automatic Learning Techniques for Predictive Models.pdf.txtTime Series Decomposition using Automatic Learning Techniques for Predictive Models.pdf.txttext/plain23591https://repositorio.cuc.edu.co/bitstreams/65bfa3d0-0ada-460b-a54d-1958368fdff4/download09be015b273788484d74b9c3c025dac6MD5511323/6237oai:repositorio.cuc.edu.co:11323/62372024-09-17 14:18:05.24http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |