Projections of iot applications in Colombia using 5G wireless networks

Wireless technologies are increasingly relevant in different activities and lines of the economy, as well as in the daily life of people and companies. The advent of fifth generation networks (5G) implies a promising synergy with the Internet of Things (IoT), allowing for more automations in product...

Full description

Autores:
Barrios-Ulloa, Alexis
Cama-Pinto, Dora
Mardini Bovea, johan David
Martínez-Díaz, Jorge
Cama-Pinto, Alejandro
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8925
Acceso en línea:
https://hdl.handle.net/11323/8925
https://doi.org/10.3390/s21217167
https://repositorio.cuc.edu.co/
Palabra clave:
5G
Frequency bands
Colombia
IoT
Radioelectric spectrum
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_b1040cb969b47f557a298c3705835cca
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8925
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Projections of iot applications in Colombia using 5G wireless networks
title Projections of iot applications in Colombia using 5G wireless networks
spellingShingle Projections of iot applications in Colombia using 5G wireless networks
5G
Frequency bands
Colombia
IoT
Radioelectric spectrum
title_short Projections of iot applications in Colombia using 5G wireless networks
title_full Projections of iot applications in Colombia using 5G wireless networks
title_fullStr Projections of iot applications in Colombia using 5G wireless networks
title_full_unstemmed Projections of iot applications in Colombia using 5G wireless networks
title_sort Projections of iot applications in Colombia using 5G wireless networks
dc.creator.fl_str_mv Barrios-Ulloa, Alexis
Cama-Pinto, Dora
Mardini Bovea, johan David
Martínez-Díaz, Jorge
Cama-Pinto, Alejandro
dc.contributor.author.spa.fl_str_mv Barrios-Ulloa, Alexis
Cama-Pinto, Dora
Mardini Bovea, johan David
Martínez-Díaz, Jorge
Cama-Pinto, Alejandro
dc.subject.spa.fl_str_mv 5G
Frequency bands
Colombia
IoT
Radioelectric spectrum
topic 5G
Frequency bands
Colombia
IoT
Radioelectric spectrum
description Wireless technologies are increasingly relevant in different activities and lines of the economy, as well as in the daily life of people and companies. The advent of fifth generation networks (5G) implies a promising synergy with the Internet of Things (IoT), allowing for more automations in production processes and an increase in the efficiency of information transmission, managing to improve the efficiency in decision-making through tools such as big data and artificial intelligence. This article presents a description of the 5G implementation process in Colombia, as well as a revision of opportunities when combining with IoT in featured sectors of the departmental development plans, such as agriculture, tourism, health, the environment, and industry. Results shows that the startup of 5G in Colombia has been a slow process, but there are comparisons with similar procedures in other developed countries. Additionally, we present examples of 5G and IoT applications which can be promoted in Colombia, aimed at improving the quality of life of their habitants and promoting economic development.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-25T19:09:27Z
dc.date.available.none.fl_str_mv 2021-11-25T19:09:27Z
dc.date.issued.none.fl_str_mv 2021-10-28
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1424-3210
1424-8220
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8925
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.3390/s21217167
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1424-3210
1424-8220
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8925
https://doi.org/10.3390/s21217167
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Ericsson. Ericsson Mobility Report. Available online: https://www.ericsson.com/4afa0c/assets/local/mobility-report/ documents/2020/november-2020-ericsson-mobility-report-spanish.pdf (accessed on 8 June 2021).
2. Harborth, D.; Pohl, M. Standardization of 5G mobile networks: A systematic literature review and current developments. Int. J. Stand. Res. 2017, 15, 1–24. [CrossRef]
3. Vera Lopez, A.; Chervyakov, A.; Chance, G.; Verma, S.; Tang, Y. Opportunities and challenges of mmWave NR. IEEE Wirel. Commun. 2019, 26, 4–6. [CrossRef]
4. Painuly, S.; Kohli, P.; Matta, P.; Sharma, S. Advance Applications and Future Challenges of 5G IoT. In Proceedings of the 3rd International Conference on Intelligent Sustainable Systems (ICISS 2020), Thoothukudi, India, 3–5 December 2020; pp. 1381–1384.
5. MinICT. Colombia Resolution Number 000638 Dated 1 April, 2020; Colombia, 2020; pp. 1–6. Available online: https://mintic.gov. co/portal/715/articles-126447_resolucion_pilotos_5G.pdf (accessed on 10 June 2021).
6. MinICT. MinICT Expects to Have a 5G Auction before the Government Ends. Available online: https://mintic.gov.co/portal/ inicio/Sala-de-prensa/MinTIC-en-los-medios/161584:Mintic-espera-tener-una-subasta-5G-antes-que-termine-el-Gobierno (accessed on 10 June 2021).
7. Lalit, C.; Rabindranath, B. A comprehensive survey on resource management in internet of things. J. Telecommun. Inf. Technol. 2020, 2020, 27–43. [CrossRef]
8. Hui, H.; Shi, Q.; Li, F.; Song, Y.; Yan, J. 5G network-based Internet of Things for demand response in smart grid: A survey on application potential. Appl. Energy 2020, 257, 113972. [CrossRef]
9. Akpakwu, G.A.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges. IEEE Access 2017, 6, 3619–3647. [CrossRef]
10. Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT Scenarios. IEEE Access 2020, 8, 23022–23040. [CrossRef]
11. Baek, S.; Kim, D.; Tesanovic, M.; Agiwal, A. 3GPP new radio release 16: Evolution of 5G for industrial internet of things. IEEE Commun. Mag. 2021, 59, 41–47. [CrossRef]
12. Li, S.; Xu, L.D.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [CrossRef]
13. ITU. World Radiocommunication Conference (WRC-19)—Final Acts. Available online: https://www.itu.int/dms_pub/itu-r/ opb/act/R-ACT-WRC.14-2019-PDF-S.pdf (accessed on 28 April 2021).
14. Ramesh, M.; Priya, C.G.; Ananthakirupa, V.P.M.B.A.A. Design of efficient massive MIMO for 5G systems—Present and past: A review. In Proceedings of the 2017 International Conference on Intelligent Computing and Control (I2C2), Coimbatore, India, 23–24 June 2017; pp. 1–4.
15. ETSI. Digital Cellular Telecommunications System (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; 5G, Release 15 (3GPP TR 21.915 version 15.0.0 Release 15); ETSI: Côte d’Azur, France, 2019; pp. 1–120.
16. ITU. Laying the Groundwork for 5G: Opportunities and Challenges; ITU: Geneva, Switzerland, 2018.
17. Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Gómez-Mula, F.; Calderín-Curtidor, A.C.; Martínez-Lao, J.A.; Cama-Pinto, A. 5G Mobile Phone Network Introduction in Colombia. Electronics 2021, 10, 922. [CrossRef]
18. Bechta, K.; Ziólkowski, C.; Kelner, J.M.; Nowosielski, L. Modeling of Downlink Interference in Massive MIMO 5G Macro-Cell. Sensors 2021, 21, 597. [CrossRef] [PubMed]
19. FCC. FCC Announces Winning Bidders in C-Band Auction. Available online: https://www.fcc.gov/document/fcc-announceswinning-bidders-c-band-auction (accessed on 6 April 2021).
20. FCC. America’s 5G Future. Available online: https://www.fcc.gov/5G (accessed on 6 April 2021).
21. Ministerio de Economía y Empresa. Nota Informativa sobre la Subasta de Espectro Banda 3600–3800 MHz. Available online: https://avancedigital.mineco.gob.es/5G/Documents/NOTA-INFORMATIVA-SUBASTA-3600-3800-MHz.pdf (accessed on 6 April 2021).
22. European 5G Observatory. The 5G Greek Auction Raised 372.3 Million EUR. Available online: https://5gobservatory.eu/the-5ggreek-auction-raised-372-3-million-eur/ (accessed on 6 April 2021).
23. PTS. The Auctions in the 3.5 GHz and 2.3 GHz Bands Are Concluded. Available online: https://www.pts.se/en/news/pressreleases/2021/the-auctions-in-the-3.5-ghz-and-2.3-ghz-bands-are-concluded/ (accessed on 6 April 2021).
24. Ofcom. Award of 700 MHz and 3.6–3.8 GHz Spectrum by Auction. Available online: https://www.ofcom.org.uk/spectrum/ spectrum-management/spectrum-awards/awards-in-progress/700-mhz-and-3.6-3.8-ghz-auction (accessed on 6 May 2021).
25. European 5G Observatory. Japan Assigns 5G Spectrum to Four Operators. Available online: https://5gobservatory.eu/japanassigns-5g-spectrum-to-four-operators/ (accessed on 6 May 2021).
26. MinICT. Colombia Plan 5G Colombia—The Digital Future Belongs to Everyone. 2019. Available online: https://mintic.gov.co/ micrositios/plan_5g//764/articles-162230_recurso_1.pdf (accessed on 6 May 2021).
27. National Spectrum Agency. National Frequency Band Allocation Table; National Spectrum Agency: Bogota, Colombia, 2021; p. 359.
28. MinICT. Colombia Framework Plan for the Allocation of Spectrum Use Permits 2020–2022; MinICT: Bogota, Colombia, 2020.
29. MinICT. Colombia Resolution Number 001322 of July 27, 2020; MINTIC Colombia: Bogota, Colombia, 2020; pp. 1–2.
30. Communications Industry Directorate of MinICT Allocation Report—Spectrum for 5G Technical Test Use. 2020. Available online: https://mintic.gov.co/portal/715/articles-151433_recurso_1.pdf (accessed on 6 May 2021).
31. Claro. Claro Starts New 5G Trials in Several Cities. Available online: https://www.claro.com.co/institucional/pruebas-5g/ (accessed on 18 March 2021).
32. Military Hospital HOMIL and Movistar Present Second 5G Pilot. Available online: https://www.hospitalmilitar.gov.co/index. php?idcategoria=69906 (accessed on 19 March 2021).
33. TigoUne 5G Tests: TigoUne Obtained the Highest Mobile Speed Ever Achieved in Colombia. Available online: http: //saladeprensa.une.com.co/index.php/1945-pruebas-5g-tigoune-obtuvo-la-mayor-velocidad-movil-jamas-alcanzada-encolombia (accessed on 18 March 2021).
34. Claro. 5G Technology in Colombia: We Are Already in Trials. Available online: https://www.claro.com.co/empresas/sectores/ noticias-interes/5g-colombia/ (accessed on 1 April 2021).
35. MinICT. Colombia Preliminary Analysis of the Objective Selection Process for the Allocation of Spectrum Use Permits in IMT Bands. 2020. Available online: https://mintic.gov.co/portal/715/articles-146624_resolucion_1322_20200727_soporte_tecnico.pdf (accessed on 2 April 2021).
36. MinICT. By May 2021, 954 Rural Localities Will Have 4G Mobile Service, Announces Minister Karen Abudinen. Available online: https://mintic.gov.co/portal/inicio/Sala-de-Prensa/Noticias/161329:En-mayo-de-2021-954-localidades-de-zonas-ruralestendran-servicio-movil-4G-anuncia-la-ministra-Karen-Abudinen (accessed on 3 October 2021).
37. MinICT. Colombia Transition to New Technologies Plan. 2020. Available online: https://mintic.gov.co/portal/715/articles-1455 50_plan_transicion_nuevas_tecnologias_20200624a.pdf (accessed on 3 October 2021).
38. GSMA. 5G Spectrum—GSMA Public Policy Position. 2021. Available online: https://www.gsma.com/spectrum/wp-content/ uploads/2021/04/5G-Spectrum-Positions.pdf (accessed on 15 June 2021).
39. 5G Americas. 5G Spectrum Vision. 2019. Available online: https://www.5gamericas.org/wp-content/uploads/2019/07/5G_ Americas_5G_Spectrum_Vision_Whitepaper-1.pdf (accessed on 4 April 2021).
40. Huawei 5G Spectrum—Public Policy Position; Huawei: Shenzhen, China, 2020.
41. Cisco. Cisco Annual Internet Report. 2020. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executiveperspectives/annual-internet-report/white-paper-c11-741490.pdf (accessed on 4 April 2021).
42. DG Communications Networks, Content & Thecnology. Identification and Quantification of Key Socio-Economic Data to Support Strategic Planning for the Introduction of 5G in Europe. 2016. Available online: https://op.europa.eu/en/publication-detail/-/ publication/2baf523f-edcc-11e6-ad7c-01aa75ed71a1/language-en (accessed on 29 March 2021).
43. Zhang, L.; Liang, Y.; Xiao, M. Spectrum Sharing for Internet of Things: A Survey. IEEE Wirel. Commun. 2019, 26, 132–139. [CrossRef]
44. National Planning Department. What Is the National Development Plan? Available online: https://www.dnp.gov.co/DNPN/ Paginas/Que-es-el-Plan-Nacional-de-Desarrollo.aspx (accessed on 13 June 2021).
45. National Planning Department. National Development Plan—Pact for Colombia, Pact for Equity; Colombia. 2019. Available online: https://colaboracion.dnp.gov.co/CDT/Prensa/Resumen-PND2018-2022-final.pdf (accessed on 8 August 2021).
46. National Planning Department. Territorial Development Plans. Available online: https://pazvictimas.dnp.gov.co/Paz-conenfoque-territorial/Paginas/pdt.aspx (accessed on 13 June 2021).
47. Government of the Atlántico. Development Plan 2020–2023 “Atlántico for the People”. Available online: https://www.atlantico. gov.co/images/stories/plan_desarrollo/PlanDesarrollo_2020-2023-Definitivo-A1.pdf (accessed on 5 May 2021).
48. AGRONET Atlántico. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ ATL%C3%81NTICO_2017.pdf (accessed on 3 August 2021).
49. SITUR Atlántico. Main Reason for Travel to the Department of Atlántico. Available online: https://www.situratlantico.com/ indicadores/receptor (accessed on 25 June 2021).
50. Directorate of Fishery and Aquaculture Chain Management. Bovine—Meat Chain. 2020. Available online: https://sioc. minagricultura.gov.co/Bovina/Documentos/2020-12-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).
51. Directorate of Fishery and Aquaculture Chain Management. Pork Meat Chain. 2019. Available online: https://sioc. minagricultura.gov.co/Porcina/Documentos/2020-06-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).
52. Directorate of Fishery and Aquaculture Chain Management. Poultry Chain. 2019. Available online: https://sioc.minagricultura. gov.co/Avicola/Documentos/2020-03-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).
53. Directorate of Fishery and Aquaculture Chain Management. Aquaculture Chain. 2020. Available online: https://sioc. minagricultura.gov.co/Acuicultura/Documentos/2020-12-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).
54. Directorate of Fishery and Aquaculture Chain Management. Ovino-Caprina Chain. 2019. Available online: https://sioc. minagricultura.gov.co/OvinoCaprina/Documentos/2019-03-31%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).
55. ACOLGEN. Map of Electricity Generation in Colombia. Available online: https://www.acolgen.org.co/mapa-generacion/ (accessed on 3 August 2021).
56. Superintendence of Transportation Port Traffic in Colombia. 2021. Available online: https://www.supertransporte.gov.co/ documentos/2021/Febrero/Puertos_04/BOLETIN-TRAFICO-PORTUARIO-2020.pdf (accessed on 3 August 2021).
57. Office of Economic Studies Manufacturing Sector Report. 2021. Available online: https://www.mincit.gov.co/getattachment/ estudios-economicos/estadisticas-e-informes/informes-de-industria/2021/enero/oee-dp-industria-manufacturera-enero-20 21.pdf.aspx (accessed on 3 August 2021).
58. Government of La Guajira. Departmental Development Plan of La Guajira “United for Change 2020–2023”. Available online: https://www.laguajira.gov.co/NuestraGestion/PlaneacionGestionyControl/PDM%202020.pdf (accessed on 3 August 2021).
59. AGRONET La Guajira. Main Crops by Area Planted in 2017. 2017. Available online: https://www.agronet.gov.co/Documents/ LA%20GUAJIRA_2017.pdf (accessed on 3 August 2021).
60. Colombia Tourist Information Center National Statistics—National Natural Parks. 2021. Available online: https://citur.gov.co/ estadisticas/df_parques_naturales/detalle/18?t=1#gsc.tab=0 (accessed on 3 August 2021).
61. Directorate of Fishery and Aquaculture Chain Management. Equine, Donkey and Mule Chain. 2019. Available online: https: //sioc.minagricultura.gov.co/Equino/Documentos/2019-03-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).
62. Government of Bolívar. Development Plan for the Department of Bolivar 2020–2023 “Bolivar First”. Available online: https: //www.asambleadebolivar.gov.co/servicios/2020/proyecto-de-ordenanza-plan-de-desarrollo-bolivar-2020-2023 (accessed on 18 June 2021).
63. AGRONET Bolivar. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ BOL%C3%8DVAR_2017.pdf (accessed on 3 August 2021).
64. SITUR Bolívar. Sites of Interest. Available online: http://www.siturbolivar.com/studies (accessed on 24 June 2021).
65. Directorate of Fishery and Aquaculture Chain Management. Bee and Beekeeping Chain. 2019. Available online: https: //sioc.minagricultura.gov.co/Apicola/Documentos/2019-03-30%20Cifras%20sectoriales.pdf (accessed on 3 August 2021).
66. Government of Cesar. Departmental Development Plan 2020–2023 “We Do It Better”. Available online: http://cesar.gov.co/d/ filesmain/plan_desarrollo/plan_de_desarrollo_2020_2023_lo_hacemos_mejor_act.pdf (accessed on 16 June 2021).
67. AGRONET Cesar. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ CESAR_2017.pdf (accessed on 3 August 2021).
68. Government of Cesar. Tourist Guide of the Department of Cesar. Available online: http://cesar.gov.co/d/index.php/es/ mainmeneldpto/mengobtur (accessed on 23 June 2021).
69. Government of Córdoba. Departmental Development Plan “Now It’s Córdoba’s Turn 2020–2023”. Available online: https://gobcordoba.micolombiadigital.gov.co/sites/gobcordoba/content/files/000057/2828_ordenanza-0009-plan-dedesarrollo-departamental--20202023--ahora-le-toca-a-cordoba--web.pdf (accessed on 21 June 2021).
70. AGRONET Córdoba. Main Crops by Planted Area in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/C% C3%93RDOBA_2017.pdf (accessed on 3 August 2021).
71. Government of Magdalena. Departmental Development Plan “Magdalena Renace 2020–2023”. Available online: https: //magdalena.micolombiadigital.gov.co/sites/magdalena/content/files/000782/39075_plan-de-desarrollo-departamentalmagdalena-renace-2020--2023-1.pdf (accessed on 21 June 2021).
72. AGRONET Magdalena. Main Crops by Planted Area in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ MAGDALENA_2017.pdf (accessed on 3 August 2021).
73. SITUR Magdalena. Attractions. Available online: https://www.siturmagdalena.com/quehacer/index?tipo=2 (accessed on 22 June 2021).
74. Government of Sucre. Departmental Development Plan Sucre 2020–2023 “Sucre Diferente”. Available online: https: //sucre.micolombiadigital.gov.co/sites/sucre/content/files/000833/41615_proyecto-de-ordenanza-por-la-cual-se-adopta-elplan-departamental.pdf (accessed on 20 June 2021).
75. AGRONET Sucre. Main Crops by Sembled Area. 2018. Available online: https://www.agronet.gov.co/Documents/SUCRE_2017 .pdf (accessed on 3 August 2021).
76. Government of Antioquia. Development Plan “United for Life 2020–2023”. Available online: https://plandesarrollo.antioquia. gov.co/archivo/PlanDesarrolloUNIDOS_VF-comprimido-min.pdf (accessed on 1 June 2021).
77. Agricultural and Forestry Chain Directorate. Flower Chain. 2020. Available online: https://sioc.minagricultura.gov.co/Flores/ Documentos/2019-12-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).
78. AGRONET Antioquia. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ ANTIOQUIA_2017.pdf (accessed on 3 August 2021).
79. Government of Boyacá. Development Plan 2020–2023 “Social Pact for Boyacá: Land That Continues to Advance”. Available online: https://www.boyaca.gov.co/wp-content/uploads/2020/06/pdd2020-2023boy.pdf (accessed on 23 May 2021).
80. Boyacá Tourism Information System. Tourist Map of Boyacá. Available online: https://situr.boyaca.gov.co/boyaca-es-paravivirla/# (accessed on 25 June 2021).
81. Government of Caldas. Development Plan 2020–2023 “United Is Possible”. Available online: https://docs.google.com/viewer? url=https://caldas.gov.co/index.php/inicio/mecanismos-de-control/transparencia-1/1494-plan-de-desarrollo-de-caldas-20 20-2023/download?p=1 (accessed on 20 May 2021).
82. AGRONET Caldas. Main Crops by Area Planted in 2017. Available online: https://www.agronet.gov.co/Documents/CALDAS_ 2017.pdf (accessed on 24 June 2021).
83. Government of Cundinamarca. Departmental Development Plan 2020–2024 “Cundinamarca, Region That Progresses”. Available online: http://www.cundinamarca.gov.co/wcm/connect/37b90ffc-f445-462b-8faa-8a16f4427fe8/PLAN+DE+DESARROLLO+PLIEGOS1_compressed.pdf?MOD=AJPERES&CVID=njCfayi&CVID=njCfayi&CVID=njCfayi&CVID=njCfayi&CVID=njCfayi (accessed on 19 May 2021).
84. Government of Huila. Departmental Development Plan 2020–2023 “Huila Crece”. Available online: https://www.huila.gov.co/ documentos/1336/plan-de-desarrollo-2020-2023/ (accessed on 26 June 2021).
85. AGRONET Huila. Main Crops by Sembled Area 2017. Available online: https://www.agronet.gov.co/Documents/HUILA_2017 .pdf (accessed on 3 August 2021).
86. Government of Norte de Santander. Development Plan for Norte de Santander 2020–2023. Available online: http://www. nortedesantander.gov.co/Portals/0/PDDNdS2020-2023(Ordenanza006de2020).pdf (accessed on 25 June 2021).
87. Government of Norte de Santander. Tourism. Available online: http://www.nortedesantander.gov.co/Gobernacion/NuestroDepartamento/Turismo (accessed on 24 June 2021).
88. Government of Quindio. Departmental Development Plan 2020–2023. Available online: https://www.quindio.gov.co/home/ docs/items/item_100/PDD_2020_2023_TU_Y_YO_SOMOS_QUINDIO/PDD_QUINDIO_2020_2023_ORDENANZA_002_ .pdf (accessed on 24 June 2021).
89. AGRONET Quindio. Main Crops by Sembled Area 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ QUIND%C3%8DO_2017.pdf (accessed on 3 August 2021).
90. Government of Quindio. Tourism in the Department of Quindio. Available online: https://www.quindio.gov.co/inicio-turismo (accessed on 25 June 2021).
91. Government of Risaralda. Departmental Development Plan 2020–2023 “Risaralda, Feeling of All”. Available online: https: //www.risaralda.gov.co/documentos/150205/documento-plan-de-desarrollo/ (accessed on 27 June 2021).
92. AGRONET Risaralda. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ RISARALDA_2017.pdf (accessed on 3 August 2021).
93. Government of Santander. Departmental Development Plan “Santander Always with You and for the World” 2020–2023. Available online: https://www.santander.gov.co/index.php/documentos-planeacion/send/2200-plan-de-desarrollo-2020-2 023/18585-pdd-2020-2023-completo-pts-nna-aprobado (accessed on 27 June 2021).
94. AGRONET Santander. Main Crops by Area Planted in 2017. Available online: https://www.agronet.gov.co/Documents/ SANTANDER_2017.pdf (accessed on 25 June 2021).
95. SITUR Santander. Main Reason for Travel. Available online: http://www.sitursantander.co/Estadisticas/Graficos (accessed on 25 June 2021).
96. Government of Tolima. Development Plan “El Tolima Unites Us” 2020–2023. Available online: https://regioncentralrape.gov.co/ wp-content/uploads/2020/05/Ordenanza-Plan-de-desarrollo-version-8.pdf (accessed on 27 June 2021).
97. AGRONET Tolima. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ TOLIMA_2017.pdf (accessed on 3 August 2021).
98. Government of Tolima. Tourism. Available online: https://www.tolima.gov.co/tolima/informacion-general/turismo (accessed on 26 June 2021).
99. Government of Amazonas. Departmental Development Plan 2020–2023 “Progressing with Development”. Available online: http://www.amazonas.gov.co/noticias/plan-de-desarrollo-departamental-del-amazonas-20202023 (accessed on 22 June 2021).
100. AGRONET Amazonas. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ AMAZONAS_2017.pdf (accessed on 3 August 2021).
101. Government of Caquetá. Caquetá Departmental Development Plan. Available online: https://caqueta.micolombiadigital.gov.co/ sites/caqueta/content/files/001016/50760_pdd-caqueta-20202023.pdf (accessed on 22 June 2021).
102. Government of Guainía. Departmental Development Plan 2020–2023 “Guainía Opportunity for All”. Available online: https: //guainia.micolombiadigital.gov.co/sites/guainia/content/files/000550/27454_documento-final-guainia-va1.pdf (accessed on 28 June 2021).
103. Government of Guaviare. Departmental Development Plan 2020–2023 “Solutions at Your Service”. Available online: https: //guaviare.micolombiadigital.gov.co/sites/guaviare/content/files/000705/35240_ordenanza-no-410-de-2020.pdf (accessed on 24 June 2021).
104. AGRONET Guaviare. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ GUAVIARE_2017.pdf (accessed on 3 August 2021).
105. Government of Guaviare. Tourism. Available online: http://www.guaviare.gov.co/tema/turismo/sitios-para-visitar (accessed on 26 June 2021).
106. Government of Putumayo. Putumayo Departmental Development Plan 2020–2023 “Thirteen Municipalities, One Heart”. Available online: https://www.putumayo.gov.co/index.php?option=com_content&view=article&id=37 (accessed on 23 June 2021).
107. AGRONET Putumayo. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ PUTUMAYO_2017.pdf (accessed on 3 August 2021).
108. Government of Vaupés. Departmental Development Plan “Vaupés, Together We Can” 2020–2023. Available online: https: //vaupes.micolombiadigital.gov.co/sites/vaupes/content/files/000483/24103_pdd-vaupes-juntos-podemos-20202023.pdf (accessed on 24 June 2021).
109. Government of San Andres. Providencia and Santa Catalina Departmental Development Plan San Andres, Providencia and Santa Catalina Islands 2020–2023 “All for a New Beginning”. Available online: https://www.sanandres.gov.co/index.php/gestion/ planeacion/plan-de-desarollo/plan-de-desarrollo-anuales/11524-plan-de-desarrollo-todos-por-un-nuevo-comienzo-2020-2 023/file (accessed on 23 June 2021).
110. Government of Cauca. Departmental Development Plan 2020–2023 “42 Motives to Advance”. Available online: https://www.cauca. gov.co/NuestraGestion/PlaneacionGestionyControl/PlandeDesarrolloDepartamental2020-2023.pdf (accessed on 1 May 2021).
111. AGRONET Cauca. Main Crops by Area Planted in 2017. Available online: https://www.agronet.gov.co/Documents/CAUCA_ 2017.pdf (accessed on 28 April 2021).
112. Government of Chocó. Departmental Development Plan “Chocó Generating Confidence” 2020–2023. Available online: https://choco.micolombiadigital.gov.co/sites/choco/content/files/000440/21975_plan-de-desarrollo-departamental-delchoco-20202023--version-final.pdf (accessed on 27 April 2021).
113. Government of Nariño. Departmental Development Plan “My Nariño, in Defense of What Is Ours” 2020–2023. Available online: https://sitio.narino.gov.co/wp-content/uploads/2020/11/Plan_de_Desarrollo_Mi_Narino_en_Defensa_de_lo_Nuestro_ 2020-2023.pdf (accessed on 6 May 2021).
114. AGRONET Nariño. Main Crops by Areas Planted in 2017. Available online: https://www.agronet.gov.co/Documents/NARI~ NO_2017.pdf (accessed on 1 May 2021).
115. SITUR Nariño. Tourist Attractions. Available online: https://situr.narino.gov.co/atractivos-turisticos (accessed on 26 June 2021).
116. Government of Valle del Cauca. Development Plan “Invincible Valle” 2020–2023. Available online: https://www.valledelcauca. gov.co/loader.php?lServicio=Tools2&lTipo=viewpdf&id=48214 (accessed on 29 April 2021).
117. AGRONET Valle del Cauca. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/ Documents/VALLE%20DEL%20CAUCA_2017.pdf (accessed on 3 August 2021).
118. Government of Arauca. Arauca Departmental Participative Development Plan “Building the Future” 2020–2023. Available online: https://www.arauca.gov.co/mapa-red-hospitalaria-del-departamento-de-arauca/62-plan-de-desarrollo/2825-plande-desarrollo-departamental-2020-2023 (accessed on 7 May 2021).
119. AGRONET Arauca. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ ARAUCA_2017.pdf (accessed on 3 August 2021).
120. Government of Casanare. Development Plan 2020–2023. It Is Time for Productive, Equitable and Sustainable Casanare. Available online: https://www.casanare.gov.co/NuestraGestion/PlaneacionGestionyControl/ORDENANZA%20002-2020%20PLAN% 20DE%20DESARROLLO.pdf (accessed on 5 May 2021).
121. AGRONET Casanare. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ CASANARE_2017.pdf (accessed on 3 August 2021).
122. Government of Meta. Departmental Economic and Social Development Plan “Let’s Make Meta Great” 2020–2023. Available online: https://asambleameta.micolombiadigital.gov.co/sites/asambleameta/content/files/000189/9449_ordenanza-1069-demayo-30-de-2020.pdf (accessed on 24 April 2021).
123. AGRONET Meta. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ META_2017.pdf (accessed on 3 August 2021).
124. Government of Vichada. Departmental Development Plan “Work for All of Vichada” 2020–2023. Available online: https:// vichada.micolombiadigital.gov.co/sites/vichada/content/files/000331/16528_plan-de-desarrollo-aprobado-ordenanza.pdf (accessed on 30 April 2021).
125. AGRONET Vichada. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ VICHADA_2017.pdf (accessed on 3 August 2021).
126. DANE Technical Bulletin GDP IV Quarter 2020; Bogota. 2021. Available online: https://www.dane.gov.co/files/investigaciones/ boletines/pib/bol_PIB_IVtrim20_producion_y_gasto.pdf (accessed on 3 August 2021).
127. Maroto-Molina, F.; Navarro-García, J.; Príncipe-Aguirre, K.; Gómez-Maqueda, I.; Guerrero-Ginel, J.; Garrido-Varo, A.; PérezMarín, D. A Low-Cost IoT-Based System to Monitor the Location of a Whole Herd. Sensors 2019, 19, 2298. [CrossRef] [PubMed]
128. Gattani, A.; Singh, S.V.; Agrawal, A.; Khan, M.; Singh, P. Recent progress in electrochemical biosensors as point of care diagnostics in livestock health. Anal. Biochem. 2019, 579, 25–34. [CrossRef]
129. Yang, S.J.; Xiao, N.; Li, J.Z.; Feng, Y.; Ma, J.Y.; Quzhen, G.S.; Yu, Q. A remote management system for control and surveillance of echinococcosis: Design and implementation based on internet of things. Infect. Dis. Poverty 2021, 10, 50. [CrossRef]
130. Raj, R.; Kola, K.; Bojja, P.; Raja, P. Optimal Technique of Tumor Detection and Prediction of Livestock by Deep Neural Network with TensorFlow and Keras. In Proceedings of the International Conference of Modern Applications on Information and Communication Technology (ICMAICT), Baghdad, Iraq, 8–9 December 2021; Volume 1804.
131. Akhigbe, B.I.; Munir, K.; Akinade, O.; Akanbi, L.; Oyedele, L.O. IoT Technologies for Livestock Management: A Review of Present Status, Opportunities, and Future Trends. Big Data Cogn. Comput. 2021, 5, 10. [CrossRef]
132. Quintero, J. IoT Device for the Control of Livestock Identification and Mobility; National University of Colombia: Bogota, Colombia, 2020.
133. Ariza-Colpas, P.; Morales-Ortega, R.; Piñeres-Melo, M.; Melendez-Pertuz, F.; Serrano-Torne, G.; Hernandez-Sanches, G.; MartínezOsorio, H. Teleagro: IOT Applications for the Georeferencing and Detection of Zeal in Cattle. In Proceedings of the 18th International Conference, CISIM 2019, Belgrade, Serbia, 19–21 September 2019; pp. 232–239.
134. Ministry of Commerce. 2019 Tourism in Colombia Breaks Records. Available online: https://www.mincit.gov.co/prensa/ noticias/turismo/en-2019-el-turismo-en-colombia-rompio-records (accessed on 28 June 2021).
135. Alcaldía de Santiago de Cali. Turismo de Salud. Available online: https://www.cali.gov.co/turismo/publicaciones/139222 /turismo-de-salud-/ (accessed on 2 May 2021).
136. ANDI. Colombia: Regional Leader in the Export of Healthcare Services. Available online: http://www.andi.com.co/Home/ Noticia/7356-colombia-lider-regional-en-la-exportacio (accessed on 28 June 2021).
137. Mayor’s Office of Barranquilla. The Health Cluster, a New Reality That Potentiates Barranquilla’s Image to the World. Available online: https://www.barranquilla.gov.co/salud/el-cluster-en-salud-nueva-realidad-que-potencializa-al-mundo-la-imagende-barranquilla (accessed on 28 June 2021).
138. Wang, W.; Kumar, N.; Chen, J.; Gong, Z.; Kong, X.; Wei, W.; Gao, H. Realizing the Potential of the Internet of Things for Smart Tourism with 5G and AI Smart Tourism. IEEE Netw. 2020, 34, 295–301. [CrossRef]
139. Sharma, S.; Rishi, O.; Sharma, A. IoTeST: IoT-Enabled Smart Tourism—Shaping the Future of Tourism. In Rising Threats in Expert Applications and Solutions; Springer: Singapore, 2020; pp. 569–576, ISBN 978-981-15-6014-9.
140. Lerario, A.; Varasano, A. An IoT Smart Infrastructure for S. Domenico Church in Matera’s “Sassi”: A Multiscale Perspective to Built Heritage Conservation. Sustainability 2020, 12, 6553. [CrossRef]
141. Peng, R.; Lou, Y.; Kadoch, M.; Cheriet, M. A human-guided machine learning approach for 5g smart tourism iot. Electronics 2020, 9, 947. [CrossRef]
142. Gao, H. Big Data Development of Tourism Resources Based on 5G Network and Internet of Things System. Microprocess. Microsyst. 2021, 80, 103567. [CrossRef]
143. Kachniewska, M. Smart Tourism: Towards the Concept of a Data-Based Travel Experience. In Handbook of Sustainable Development and Leisure Services; Springer: Cham, Switzerland, 2021; pp. 289–302, ISBN 978-3-030-59819-8.
144. Davoli, L.; Paraskevopoulos, I.; Campanella, C.; Bauro, S.; Vio, T.; Abrardo, A.; Ferrari, G. Ultrasonic-based environmental perception for mobile 5g-oriented xr applications. Sensors 2021, 21, 1329. [CrossRef]
145. Siriwardhana, Y.; De Alwis, C.; Gur, G.; Ylianttila, M.; Liyanage, M. The Fight against the COVID-19 Pandemic with 5G Technologies. IEEE Eng. Manag. Rev. 2020, 48, 72–84. [CrossRef]
146. Al-Maroof, R.S.; Akour, I.; Aljanada, R.; Alfaisal, A.M.; Alfaisal, R.M.; Aburayya, A.; Salloum, S.A. Acceptance determinants of 5G services. Int. J. Data Netw. Sci. 2021, 5, 613–628. [CrossRef]
147. Mendoza, R.; Cabarcas, A.; Arnedo, B. Mixed Reality to Promote Cultural Tourism in La Merced Cloister in Cartagena Colombia. In Advances in Tourism, Technology and Systems; Smart Innovation, Systems and Technologies Series; Springer: Cartagena, Colombia, 2021; Volume 209.
148. Pereira, J.; Díaz, J. Prototype of a Tourist Mobile Application for the City of Bucaramanga Implementing Augmented Reality; Universidad Autónoma de Bucaramanga: Bucaramanga, Colombia, 2020.
149. Psiha, M.; Vlamos, P. IoT Applications with 5G Connectivity in Medical Tourism Sector Management: Third-Party Service Scenarios. Adv. Exp. Med. Biol. 2017, 989, 141–154. [CrossRef]
150. AGRONET. Low Productivity in the Land and Appearance of Pests May Be Effects of El Niño. 2018. Available online: https://www.agronet.gov.co/Noticias/Paginas/Baja-productividad-en-la-tierra-y-aparici%C3%B3n-de-plagas-pueden-serefectos-del-ni%C3%B1o.aspx (accessed on 2 May 2021).
151. Mateos Matilla, D.; Lozano Murciego, Á.; Jimenez Bravo, D.M.; Sales Mendes, A.; Quietinho Leithardt, V.R. Low cost center pivot irrigation monitoring systems based on IoT and LoRaWAN technologies. In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor 2020), Trento, Italy, 4–6 November 2020; pp. 262–267.
152. Nawandar, N.K.; Satpute, V.R. IoT based low cost and intelligent module for smart irrigation system. Comput. Electron. Agric. 2019, 162, 979–990. [CrossRef]
153. Lin, N.; Wang, X.; Zhang, Y.; Hu, X.; Ruan, J. Fertigation management for sustainable precision agriculture based on Internet of Things. J. Clean. Prod. 2020, 277, 124119. [CrossRef]
154. Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Irrigation of greenhouse crops. Horticulturae 2019, 5, 7. [CrossRef]
155. Benyezza, H.; Bouhedda, M.; Rebouh, S. Zoning irrigation smart system based on fuzzy control technology and IoT for water and energy saving. J. Clean. Prod. 2021, 302, 127001. [CrossRef]
156. Guo, X. Application of agricultural IoT technology based on 5 G network and FPGA. Microprocess. Microsyst. 2021, 80, 103597. [CrossRef]
157. Hu, H.; Vocational, Y.; Chen, Z.; Science, I.; Wu, P.W.; Science, I. Internet of Things-Enabled Crop Growth Monitoring System for Smart Agriculture. Int. J. Agric. Environ. Inf. Syst. 2021, 12, 30–48. [CrossRef]
158. Said Mohamed, E.; Belal, A.A.; Kotb Abd-Elmabod, S.; El-Shirbeny, M.A.; Gad, A.; Zahran, M.B. Smart farming for improving agricultural management. Egypt. J. Remote Sens. Space Sci. 2021, in press. [CrossRef]
159. Wan-Soo, K.; Won-Suk, W.; Yong-Joo, K. A Review of the Applications of the Internet of Things (IoT) for Agricultural Automation. J. Biosyst. Eng. 2020, 45, 385–400. [CrossRef]
160. Hincapie, E.; Sánchez, J.; Carbonell, J. IoT Network Applied to Agriculture: Monitoring Stations for Irrigation Management in Soils Cultivated with Sugarcane. In Proceedings of the Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II, AACC 2018, Cali, Colombia, 21–23 November 2018; Springer: Cham, Switzerland, 2018; pp. 249–260.
161. Cohen-Manrique, C.; Burbano-Bustos, A.; Salgado-Ordosgoitia, R.; Merlano-Porto, R. Irrigation control in ahuyama crops in Sincelejo, Sucre (Colombia) managed through the Internet of Things (IoT). Inf. Tecnol. 2020, 31, 79–88. [CrossRef]
162. Nuñez, J.; Fonthal, F.; Quezada, Y. Design and Implementation of WSN and IoT for Precision Agriculture in Tomato Crops. In Proceedings of the 2018 IEEE ANDESCON, Santiago de Cali, Colombia, 22–24 August 2018; pp. 1–5.
163. Tang, Y.; Dananjayan, S.; Hou, C.; Guo, Q.; Luo, S.; He, Y. A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Comput. Electron. Agric. 2021, 180, 105895. [CrossRef]
164. Cama-Pinto, D.; Holgado-Terriza, J.A.; Damas-Hermoso, M.; Gómez-Mula, F.; Cama-Pinto, A. RadioWave Attenuation Measurement System Based on RSSI for Precision Agriculture: Application to Tomato Greenhouses. Inventions 2021, 6, 66. [CrossRef]
165. Selem, E.; Fatehy, M. E-Health applications over 5G networks: Challenges and state of the art. In Proceedings of the 2019 6th International Conference on Advanced Control Circuits and Systems (ACCS) & 2019 5th International Conference on New Paradigms in Electronics & information Technology (PEIT), Hurgada, Egypt, 17–20 November 2019; pp. 111–118.
166. Casquero Jiménez, A.; Pérez Martínez, J. 5G networks in eHealth services in Spain: Remote patient monitoring system. In Proceedings of the 2020 IEEE Engineering International Research Conference (EIRCON), Lima, Peru, 21–23 October 2020; pp. 20–23.
167. Emokpae, L.; Emokpae, R.; Lalouani, W.; Younis, M. Smart Multimodal Telehealth-IoT System for COVID-19 Patients. IEEE Pervasive Comput. 2021, 20, 73–80. [CrossRef]
168. Rokonuzzaman, M.; Hossain, I.M.; Islam, T.; Sarkar, P.P.; Islam, R.M.; Amin, N. Design and Implementation of Telehealth Device: Linking IoT Sensors to Cloud Networks. In Proceedings of the 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Langkawi Island, Malaysia, 1–3 March 2021; pp. 281–285.
169. Gupta, N.; Juneja, P.K.; Sharma, S.; Garg, U. Future aspect of 5G-IoT architecture in smart healthcare system. In Proceedings of the 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 406–411. [CrossRef]
170. Braeken, A.; Liyanage, M. Highly efficient key agreement for remote patient monitoring in MEC-enabled 5G networks. J. Supercomput. 2021, 77, 5562–5585. [CrossRef]
171. López, F.; Bonfante, M.C.; Gonzalez, I.; Muñoz, R. IoT and big data in public health: A case study in Colombia. In Protocols and Applications for the Industrial Internet of Things; IGI Global: Hershey, PA, USA, 2018; pp. 309–321.
172. Bolívar, N.; Cangrejo, L.; Salcedo, O. eHeart-BP, Prototype of the Internet of Things to Monitor Blood Pressure. In Proceedings of the 2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Arlington, VA, USA, 25–27 September 2019; pp. 58–63.
173. Hernández-Hernández, G.; Romero-Garavito, M.; Rodríguez-Manrique, J. The prototype of IoT Technological Infrastructure for Monitoring Vital Signs in Patients in an Emergency Department. In Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, Lima, Peru, 18–20 July 2018.
174. Huertas, T. Biomedical IoT Device for Self-Monitoring Applications. In Proceedings of the 7th Latin American Congress on Biomedical Engineering, CLAIB 2016, Bucaramanga, Colombia, 26–28 October 2016; pp. 357–360.
175. Haider, D.; Yang, X.; Hussain, Q. Post-surgical fall detection by exploiting the 5G C-Band technology for eHealth paradigm. Appl. Soft Comput. J. 2019, 81, 105537. [CrossRef]
176. Zhang, Y.; Chen, G.; Du, H.; Yuan, X.; Kadoch, M. Real-Time Remote Health Monitoring System Driven by 5G MEC-IoT. Electronics 2020, 9, 1753. [CrossRef]
177. Chowdhury, M.Z.; Hossan, T.; Shanjalal, M.; Hasan, K.; Jang, Y.M. A New 5G eHealth Architecture Based on Optical Camera Communication: An Overview, Prospects, and Applications. IEEE Consum. Electron. Mag. 2020, 9, 23–33. [CrossRef]
178. Artemenko, A.; Gmbh, R.B. Keynote: Advances and Challenges of Industrial IoT. In Proceedings of the PerIoT 2021, 5th International Workshop on Mobile and Pervasive Internet of Things, Kassel, Germany, 26 March 2021; p. 526.
179. Khatib, E.J.; Barco, R. Optimization of 5G Networks for Smart Logistics. Energies 2021, 14, 1758. [CrossRef]
180. Varsier, N.; Dufrène, L.; Dumay, M.; Lampin, Q.; Schwoerer, J. A 5G New Radio for Balanced and Mixed IoT Use Cases: Challenges and Key Enablers in FR1 Band. IEEE Commun. Mag. 2021, 59, 82–87. [CrossRef]
181. Varga, P.; Peto, J.; Franko, A.; Balla, D.; Haja, D.; Janky, F.; Soos, G.; Ficzere, D.; Maliosz, M.; Toka, L. 5G Support for Industrial Iot Applications—Challenges, Solutions, and Research Gaps. Sensors 2020, 20, 828. [CrossRef] [PubMed]
182. Eit Digital. Ericsson Define the Future of the Industrial IoT. Available online: https://www.eitdigital.eu/fileadmin/files/2017 /events/innovationdays/netherlands/Etienne_Scholl_-_Beyond_communication__the_digital_business_potential_of_5G.pdf (accessed on 15 October 2021).
183. Superintendencia de Industria y Comercio. The Internet of Things (IoT) Impacting the Logistics Sector. Available online: https://www.sic.gov.co/sites/default/files/files/pdf/Boletin_IoT(1).pdf (accessed on 9 March 2019).
184. Segura, D.; Khatib, E.; Munilla, J.; Barco, R. 5G Numerologies Assessment for URLLC in Industrial Communications. Sensors 2021, 21, 2489. [CrossRef] [PubMed]
185. You, X.; Zhang, C.; Tan, X.; Jin, S.; Wu, H. AI for 5G: Research directions and paradigms. Sci. China 2019, 62, 21301. [CrossRef]
186. Ministry of Environment. Deforestation in Meta, Caquetá and Guaviare Decreases by 30% during the First Quarter of 2021. Available online: https://www.minambiente.gov.co/index.php/noticias/5189-disminuye-en-un-30-porciento-la-deforestacionen-el-meta-caqueta-y-guaviare-durante-primer-trimestre-del-ano (accessed on 8 June 2021).
187. AWS. Tackling Deforestation in Colombia with IoT at the 2019 Zoo Hackathon. Available online: https://aws.amazon.com/es/ blogs/publicsector/tackling-deforestation-colombia-zoo-hackathon/ (accessed on 2 May 2021).
188. Naveenraj, M.; Jeevabarathi, C.T.; Srinivasan, R. Iot based anti-poaching alarm system for trees in forest. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 193–195.
189. Medellín, P. Deforestation by Fires in the Orinoquia and Amazonia Affect Air Quality in Bogota and Other Major Cities. Available online: http://ieu.unal.edu.co/en/medios/noticias-del-ieu/item/la-deforestacion-por-incendios-en-la-orinoquiay-la-amazonia-afectan-la-calidad-del-aire-de-bogota-y-otras-grandes-ciudades (accessed on 8 June 2021).
190. Sahal, R.; Alsamhi, S.; Breslin, J.; Intizar Ali, M. Industry 4.0 towards Forestry 4.0: Fire Detection Use Case. Sensors 2021, 21, 694. [CrossRef]
191. Khan, I.; Ahmad, S.; Kim, D.H. A Task Orchestration Approach for Efficient Mountain Fire Detection Based on Microservice and Predictive Analysis in IoT Environment. J. Intell. Fuzzy Syst. 2021, 40, 5681–5696. [CrossRef]
192. Nguyen-Anh, T.; Le-Trung, Q. Prediction of Forest Fire Risk to Trigger IoTs Reconfiguration Action. In Proceedings of the 2020 7th NAFOSTED Conference on Information and Computer Science (NICS), Ho Chi Minh, Vietnam, 26–27 November 2020; pp. 19–24.
193. Das, P.; Ghosh, S.; Chatterjee, S.; De, S. Energy Harvesting-enabled 5G Advanced Air Pollution Monitoring Device. In Proceedings of the 2020 IEEE 3rd 5G World Forum, (5GWF 2020), Bangalore, India, 10–12 September 2020; pp. 218–223. [CrossRef]
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Sensors
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.mdpi.com/1424-8220/21/21/7167
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/cc97bfe7-92e4-49e5-8e3e-3b48dd06e346/download
https://repositorio.cuc.edu.co/bitstreams/e6a17efe-499f-45a9-b0b0-503851953dca/download
https://repositorio.cuc.edu.co/bitstreams/2733659e-4aef-4f9a-a068-3bd369feb951/download
https://repositorio.cuc.edu.co/bitstreams/1fbf8170-892f-411b-89cc-2e8fab097cb0/download
https://repositorio.cuc.edu.co/bitstreams/3af476b4-bced-419f-98aa-e79093c24ae7/download
bitstream.checksum.fl_str_mv 42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
13bcac5620437d8764c1a95ce0c7947e
42c36d36ce2904a36c42306eb15bbffd
84c247038a8bb5c3d2e8a3290e71cf27
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760818805538816
spelling Barrios-Ulloa, AlexisCama-Pinto, DoraMardini Bovea, johan DavidMartínez-Díaz, JorgeCama-Pinto, Alejandro2021-11-25T19:09:27Z2021-11-25T19:09:27Z2021-10-281424-32101424-8220https://hdl.handle.net/11323/8925https://doi.org/10.3390/s21217167Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Wireless technologies are increasingly relevant in different activities and lines of the economy, as well as in the daily life of people and companies. The advent of fifth generation networks (5G) implies a promising synergy with the Internet of Things (IoT), allowing for more automations in production processes and an increase in the efficiency of information transmission, managing to improve the efficiency in decision-making through tools such as big data and artificial intelligence. This article presents a description of the 5G implementation process in Colombia, as well as a revision of opportunities when combining with IoT in featured sectors of the departmental development plans, such as agriculture, tourism, health, the environment, and industry. Results shows that the startup of 5G in Colombia has been a slow process, but there are comparisons with similar procedures in other developed countries. Additionally, we present examples of 5G and IoT applications which can be promoted in Colombia, aimed at improving the quality of life of their habitants and promoting economic development.Barrios-Ulloa, AlexisCama-Pinto, Dora-will be generated-orcid-0000-0003-0726-196X-600Mardini Bovea, johan David-will be generated-orcid-0000-0001-6609-1687-600Díaz-Martínez, Jorge-will be generated-orcid-0000-0002-7161-0389-600Cama-Pinto, Alejandro-will be generated-orcid-0000-0002-1364-7394-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sensorshttps://www.mdpi.com/1424-8220/21/21/71675GFrequency bandsColombiaIoTRadioelectric spectrumProjections of iot applications in Colombia using 5G wireless networksArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Ericsson. Ericsson Mobility Report. Available online: https://www.ericsson.com/4afa0c/assets/local/mobility-report/ documents/2020/november-2020-ericsson-mobility-report-spanish.pdf (accessed on 8 June 2021).2. Harborth, D.; Pohl, M. Standardization of 5G mobile networks: A systematic literature review and current developments. Int. J. Stand. Res. 2017, 15, 1–24. [CrossRef]3. Vera Lopez, A.; Chervyakov, A.; Chance, G.; Verma, S.; Tang, Y. Opportunities and challenges of mmWave NR. IEEE Wirel. Commun. 2019, 26, 4–6. [CrossRef]4. Painuly, S.; Kohli, P.; Matta, P.; Sharma, S. Advance Applications and Future Challenges of 5G IoT. In Proceedings of the 3rd International Conference on Intelligent Sustainable Systems (ICISS 2020), Thoothukudi, India, 3–5 December 2020; pp. 1381–1384.5. MinICT. Colombia Resolution Number 000638 Dated 1 April, 2020; Colombia, 2020; pp. 1–6. Available online: https://mintic.gov. co/portal/715/articles-126447_resolucion_pilotos_5G.pdf (accessed on 10 June 2021).6. MinICT. MinICT Expects to Have a 5G Auction before the Government Ends. Available online: https://mintic.gov.co/portal/ inicio/Sala-de-prensa/MinTIC-en-los-medios/161584:Mintic-espera-tener-una-subasta-5G-antes-que-termine-el-Gobierno (accessed on 10 June 2021).7. Lalit, C.; Rabindranath, B. A comprehensive survey on resource management in internet of things. J. Telecommun. Inf. Technol. 2020, 2020, 27–43. [CrossRef]8. Hui, H.; Shi, Q.; Li, F.; Song, Y.; Yan, J. 5G network-based Internet of Things for demand response in smart grid: A survey on application potential. Appl. Energy 2020, 257, 113972. [CrossRef]9. Akpakwu, G.A.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges. IEEE Access 2017, 6, 3619–3647. [CrossRef]10. Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT Scenarios. IEEE Access 2020, 8, 23022–23040. [CrossRef]11. Baek, S.; Kim, D.; Tesanovic, M.; Agiwal, A. 3GPP new radio release 16: Evolution of 5G for industrial internet of things. IEEE Commun. Mag. 2021, 59, 41–47. [CrossRef]12. Li, S.; Xu, L.D.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [CrossRef]13. ITU. World Radiocommunication Conference (WRC-19)—Final Acts. Available online: https://www.itu.int/dms_pub/itu-r/ opb/act/R-ACT-WRC.14-2019-PDF-S.pdf (accessed on 28 April 2021).14. Ramesh, M.; Priya, C.G.; Ananthakirupa, V.P.M.B.A.A. Design of efficient massive MIMO for 5G systems—Present and past: A review. In Proceedings of the 2017 International Conference on Intelligent Computing and Control (I2C2), Coimbatore, India, 23–24 June 2017; pp. 1–4.15. ETSI. Digital Cellular Telecommunications System (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; 5G, Release 15 (3GPP TR 21.915 version 15.0.0 Release 15); ETSI: Côte d’Azur, France, 2019; pp. 1–120.16. ITU. Laying the Groundwork for 5G: Opportunities and Challenges; ITU: Geneva, Switzerland, 2018.17. Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Gómez-Mula, F.; Calderín-Curtidor, A.C.; Martínez-Lao, J.A.; Cama-Pinto, A. 5G Mobile Phone Network Introduction in Colombia. Electronics 2021, 10, 922. [CrossRef]18. Bechta, K.; Ziólkowski, C.; Kelner, J.M.; Nowosielski, L. Modeling of Downlink Interference in Massive MIMO 5G Macro-Cell. Sensors 2021, 21, 597. [CrossRef] [PubMed]19. FCC. FCC Announces Winning Bidders in C-Band Auction. Available online: https://www.fcc.gov/document/fcc-announceswinning-bidders-c-band-auction (accessed on 6 April 2021).20. FCC. America’s 5G Future. Available online: https://www.fcc.gov/5G (accessed on 6 April 2021).21. Ministerio de Economía y Empresa. Nota Informativa sobre la Subasta de Espectro Banda 3600–3800 MHz. Available online: https://avancedigital.mineco.gob.es/5G/Documents/NOTA-INFORMATIVA-SUBASTA-3600-3800-MHz.pdf (accessed on 6 April 2021).22. European 5G Observatory. The 5G Greek Auction Raised 372.3 Million EUR. Available online: https://5gobservatory.eu/the-5ggreek-auction-raised-372-3-million-eur/ (accessed on 6 April 2021).23. PTS. The Auctions in the 3.5 GHz and 2.3 GHz Bands Are Concluded. Available online: https://www.pts.se/en/news/pressreleases/2021/the-auctions-in-the-3.5-ghz-and-2.3-ghz-bands-are-concluded/ (accessed on 6 April 2021).24. Ofcom. Award of 700 MHz and 3.6–3.8 GHz Spectrum by Auction. Available online: https://www.ofcom.org.uk/spectrum/ spectrum-management/spectrum-awards/awards-in-progress/700-mhz-and-3.6-3.8-ghz-auction (accessed on 6 May 2021).25. European 5G Observatory. Japan Assigns 5G Spectrum to Four Operators. Available online: https://5gobservatory.eu/japanassigns-5g-spectrum-to-four-operators/ (accessed on 6 May 2021).26. MinICT. Colombia Plan 5G Colombia—The Digital Future Belongs to Everyone. 2019. Available online: https://mintic.gov.co/ micrositios/plan_5g//764/articles-162230_recurso_1.pdf (accessed on 6 May 2021).27. National Spectrum Agency. National Frequency Band Allocation Table; National Spectrum Agency: Bogota, Colombia, 2021; p. 359.28. MinICT. Colombia Framework Plan for the Allocation of Spectrum Use Permits 2020–2022; MinICT: Bogota, Colombia, 2020.29. MinICT. Colombia Resolution Number 001322 of July 27, 2020; MINTIC Colombia: Bogota, Colombia, 2020; pp. 1–2.30. Communications Industry Directorate of MinICT Allocation Report—Spectrum for 5G Technical Test Use. 2020. Available online: https://mintic.gov.co/portal/715/articles-151433_recurso_1.pdf (accessed on 6 May 2021).31. Claro. Claro Starts New 5G Trials in Several Cities. Available online: https://www.claro.com.co/institucional/pruebas-5g/ (accessed on 18 March 2021).32. Military Hospital HOMIL and Movistar Present Second 5G Pilot. Available online: https://www.hospitalmilitar.gov.co/index. php?idcategoria=69906 (accessed on 19 March 2021).33. TigoUne 5G Tests: TigoUne Obtained the Highest Mobile Speed Ever Achieved in Colombia. Available online: http: //saladeprensa.une.com.co/index.php/1945-pruebas-5g-tigoune-obtuvo-la-mayor-velocidad-movil-jamas-alcanzada-encolombia (accessed on 18 March 2021).34. Claro. 5G Technology in Colombia: We Are Already in Trials. Available online: https://www.claro.com.co/empresas/sectores/ noticias-interes/5g-colombia/ (accessed on 1 April 2021).35. MinICT. Colombia Preliminary Analysis of the Objective Selection Process for the Allocation of Spectrum Use Permits in IMT Bands. 2020. Available online: https://mintic.gov.co/portal/715/articles-146624_resolucion_1322_20200727_soporte_tecnico.pdf (accessed on 2 April 2021).36. MinICT. By May 2021, 954 Rural Localities Will Have 4G Mobile Service, Announces Minister Karen Abudinen. Available online: https://mintic.gov.co/portal/inicio/Sala-de-Prensa/Noticias/161329:En-mayo-de-2021-954-localidades-de-zonas-ruralestendran-servicio-movil-4G-anuncia-la-ministra-Karen-Abudinen (accessed on 3 October 2021).37. MinICT. Colombia Transition to New Technologies Plan. 2020. Available online: https://mintic.gov.co/portal/715/articles-1455 50_plan_transicion_nuevas_tecnologias_20200624a.pdf (accessed on 3 October 2021).38. GSMA. 5G Spectrum—GSMA Public Policy Position. 2021. Available online: https://www.gsma.com/spectrum/wp-content/ uploads/2021/04/5G-Spectrum-Positions.pdf (accessed on 15 June 2021).39. 5G Americas. 5G Spectrum Vision. 2019. Available online: https://www.5gamericas.org/wp-content/uploads/2019/07/5G_ Americas_5G_Spectrum_Vision_Whitepaper-1.pdf (accessed on 4 April 2021).40. Huawei 5G Spectrum—Public Policy Position; Huawei: Shenzhen, China, 2020.41. Cisco. Cisco Annual Internet Report. 2020. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executiveperspectives/annual-internet-report/white-paper-c11-741490.pdf (accessed on 4 April 2021).42. DG Communications Networks, Content & Thecnology. Identification and Quantification of Key Socio-Economic Data to Support Strategic Planning for the Introduction of 5G in Europe. 2016. Available online: https://op.europa.eu/en/publication-detail/-/ publication/2baf523f-edcc-11e6-ad7c-01aa75ed71a1/language-en (accessed on 29 March 2021).43. Zhang, L.; Liang, Y.; Xiao, M. Spectrum Sharing for Internet of Things: A Survey. IEEE Wirel. Commun. 2019, 26, 132–139. [CrossRef]44. National Planning Department. What Is the National Development Plan? Available online: https://www.dnp.gov.co/DNPN/ Paginas/Que-es-el-Plan-Nacional-de-Desarrollo.aspx (accessed on 13 June 2021).45. National Planning Department. National Development Plan—Pact for Colombia, Pact for Equity; Colombia. 2019. Available online: https://colaboracion.dnp.gov.co/CDT/Prensa/Resumen-PND2018-2022-final.pdf (accessed on 8 August 2021).46. National Planning Department. Territorial Development Plans. Available online: https://pazvictimas.dnp.gov.co/Paz-conenfoque-territorial/Paginas/pdt.aspx (accessed on 13 June 2021).47. Government of the Atlántico. Development Plan 2020–2023 “Atlántico for the People”. Available online: https://www.atlantico. gov.co/images/stories/plan_desarrollo/PlanDesarrollo_2020-2023-Definitivo-A1.pdf (accessed on 5 May 2021).48. AGRONET Atlántico. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ ATL%C3%81NTICO_2017.pdf (accessed on 3 August 2021).49. SITUR Atlántico. Main Reason for Travel to the Department of Atlántico. Available online: https://www.situratlantico.com/ indicadores/receptor (accessed on 25 June 2021).50. Directorate of Fishery and Aquaculture Chain Management. Bovine—Meat Chain. 2020. Available online: https://sioc. minagricultura.gov.co/Bovina/Documentos/2020-12-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).51. Directorate of Fishery and Aquaculture Chain Management. Pork Meat Chain. 2019. Available online: https://sioc. minagricultura.gov.co/Porcina/Documentos/2020-06-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).52. Directorate of Fishery and Aquaculture Chain Management. Poultry Chain. 2019. Available online: https://sioc.minagricultura. gov.co/Avicola/Documentos/2020-03-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).53. Directorate of Fishery and Aquaculture Chain Management. Aquaculture Chain. 2020. Available online: https://sioc. minagricultura.gov.co/Acuicultura/Documentos/2020-12-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).54. Directorate of Fishery and Aquaculture Chain Management. Ovino-Caprina Chain. 2019. Available online: https://sioc. minagricultura.gov.co/OvinoCaprina/Documentos/2019-03-31%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).55. ACOLGEN. Map of Electricity Generation in Colombia. Available online: https://www.acolgen.org.co/mapa-generacion/ (accessed on 3 August 2021).56. Superintendence of Transportation Port Traffic in Colombia. 2021. Available online: https://www.supertransporte.gov.co/ documentos/2021/Febrero/Puertos_04/BOLETIN-TRAFICO-PORTUARIO-2020.pdf (accessed on 3 August 2021).57. Office of Economic Studies Manufacturing Sector Report. 2021. Available online: https://www.mincit.gov.co/getattachment/ estudios-economicos/estadisticas-e-informes/informes-de-industria/2021/enero/oee-dp-industria-manufacturera-enero-20 21.pdf.aspx (accessed on 3 August 2021).58. Government of La Guajira. Departmental Development Plan of La Guajira “United for Change 2020–2023”. Available online: https://www.laguajira.gov.co/NuestraGestion/PlaneacionGestionyControl/PDM%202020.pdf (accessed on 3 August 2021).59. AGRONET La Guajira. Main Crops by Area Planted in 2017. 2017. Available online: https://www.agronet.gov.co/Documents/ LA%20GUAJIRA_2017.pdf (accessed on 3 August 2021).60. Colombia Tourist Information Center National Statistics—National Natural Parks. 2021. Available online: https://citur.gov.co/ estadisticas/df_parques_naturales/detalle/18?t=1#gsc.tab=0 (accessed on 3 August 2021).61. Directorate of Fishery and Aquaculture Chain Management. Equine, Donkey and Mule Chain. 2019. Available online: https: //sioc.minagricultura.gov.co/Equino/Documentos/2019-03-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).62. Government of Bolívar. Development Plan for the Department of Bolivar 2020–2023 “Bolivar First”. Available online: https: //www.asambleadebolivar.gov.co/servicios/2020/proyecto-de-ordenanza-plan-de-desarrollo-bolivar-2020-2023 (accessed on 18 June 2021).63. AGRONET Bolivar. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ BOL%C3%8DVAR_2017.pdf (accessed on 3 August 2021).64. SITUR Bolívar. Sites of Interest. Available online: http://www.siturbolivar.com/studies (accessed on 24 June 2021).65. Directorate of Fishery and Aquaculture Chain Management. Bee and Beekeeping Chain. 2019. Available online: https: //sioc.minagricultura.gov.co/Apicola/Documentos/2019-03-30%20Cifras%20sectoriales.pdf (accessed on 3 August 2021).66. Government of Cesar. Departmental Development Plan 2020–2023 “We Do It Better”. Available online: http://cesar.gov.co/d/ filesmain/plan_desarrollo/plan_de_desarrollo_2020_2023_lo_hacemos_mejor_act.pdf (accessed on 16 June 2021).67. AGRONET Cesar. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ CESAR_2017.pdf (accessed on 3 August 2021).68. Government of Cesar. Tourist Guide of the Department of Cesar. Available online: http://cesar.gov.co/d/index.php/es/ mainmeneldpto/mengobtur (accessed on 23 June 2021).69. Government of Córdoba. Departmental Development Plan “Now It’s Córdoba’s Turn 2020–2023”. Available online: https://gobcordoba.micolombiadigital.gov.co/sites/gobcordoba/content/files/000057/2828_ordenanza-0009-plan-dedesarrollo-departamental--20202023--ahora-le-toca-a-cordoba--web.pdf (accessed on 21 June 2021).70. AGRONET Córdoba. Main Crops by Planted Area in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/C% C3%93RDOBA_2017.pdf (accessed on 3 August 2021).71. Government of Magdalena. Departmental Development Plan “Magdalena Renace 2020–2023”. Available online: https: //magdalena.micolombiadigital.gov.co/sites/magdalena/content/files/000782/39075_plan-de-desarrollo-departamentalmagdalena-renace-2020--2023-1.pdf (accessed on 21 June 2021).72. AGRONET Magdalena. Main Crops by Planted Area in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ MAGDALENA_2017.pdf (accessed on 3 August 2021).73. SITUR Magdalena. Attractions. Available online: https://www.siturmagdalena.com/quehacer/index?tipo=2 (accessed on 22 June 2021).74. Government of Sucre. Departmental Development Plan Sucre 2020–2023 “Sucre Diferente”. Available online: https: //sucre.micolombiadigital.gov.co/sites/sucre/content/files/000833/41615_proyecto-de-ordenanza-por-la-cual-se-adopta-elplan-departamental.pdf (accessed on 20 June 2021).75. AGRONET Sucre. Main Crops by Sembled Area. 2018. Available online: https://www.agronet.gov.co/Documents/SUCRE_2017 .pdf (accessed on 3 August 2021).76. Government of Antioquia. Development Plan “United for Life 2020–2023”. Available online: https://plandesarrollo.antioquia. gov.co/archivo/PlanDesarrolloUNIDOS_VF-comprimido-min.pdf (accessed on 1 June 2021).77. Agricultural and Forestry Chain Directorate. Flower Chain. 2020. Available online: https://sioc.minagricultura.gov.co/Flores/ Documentos/2019-12-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).78. AGRONET Antioquia. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ ANTIOQUIA_2017.pdf (accessed on 3 August 2021).79. Government of Boyacá. Development Plan 2020–2023 “Social Pact for Boyacá: Land That Continues to Advance”. Available online: https://www.boyaca.gov.co/wp-content/uploads/2020/06/pdd2020-2023boy.pdf (accessed on 23 May 2021).80. Boyacá Tourism Information System. Tourist Map of Boyacá. Available online: https://situr.boyaca.gov.co/boyaca-es-paravivirla/# (accessed on 25 June 2021).81. Government of Caldas. Development Plan 2020–2023 “United Is Possible”. Available online: https://docs.google.com/viewer? url=https://caldas.gov.co/index.php/inicio/mecanismos-de-control/transparencia-1/1494-plan-de-desarrollo-de-caldas-20 20-2023/download?p=1 (accessed on 20 May 2021).82. AGRONET Caldas. Main Crops by Area Planted in 2017. Available online: https://www.agronet.gov.co/Documents/CALDAS_ 2017.pdf (accessed on 24 June 2021).83. Government of Cundinamarca. Departmental Development Plan 2020–2024 “Cundinamarca, Region That Progresses”. Available online: http://www.cundinamarca.gov.co/wcm/connect/37b90ffc-f445-462b-8faa-8a16f4427fe8/PLAN+DE+DESARROLLO+PLIEGOS1_compressed.pdf?MOD=AJPERES&CVID=njCfayi&CVID=njCfayi&CVID=njCfayi&CVID=njCfayi&CVID=njCfayi (accessed on 19 May 2021).84. Government of Huila. Departmental Development Plan 2020–2023 “Huila Crece”. Available online: https://www.huila.gov.co/ documentos/1336/plan-de-desarrollo-2020-2023/ (accessed on 26 June 2021).85. AGRONET Huila. Main Crops by Sembled Area 2017. Available online: https://www.agronet.gov.co/Documents/HUILA_2017 .pdf (accessed on 3 August 2021).86. Government of Norte de Santander. Development Plan for Norte de Santander 2020–2023. Available online: http://www. nortedesantander.gov.co/Portals/0/PDDNdS2020-2023(Ordenanza006de2020).pdf (accessed on 25 June 2021).87. Government of Norte de Santander. Tourism. Available online: http://www.nortedesantander.gov.co/Gobernacion/NuestroDepartamento/Turismo (accessed on 24 June 2021).88. Government of Quindio. Departmental Development Plan 2020–2023. Available online: https://www.quindio.gov.co/home/ docs/items/item_100/PDD_2020_2023_TU_Y_YO_SOMOS_QUINDIO/PDD_QUINDIO_2020_2023_ORDENANZA_002_ .pdf (accessed on 24 June 2021).89. AGRONET Quindio. Main Crops by Sembled Area 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ QUIND%C3%8DO_2017.pdf (accessed on 3 August 2021).90. Government of Quindio. Tourism in the Department of Quindio. Available online: https://www.quindio.gov.co/inicio-turismo (accessed on 25 June 2021).91. Government of Risaralda. Departmental Development Plan 2020–2023 “Risaralda, Feeling of All”. Available online: https: //www.risaralda.gov.co/documentos/150205/documento-plan-de-desarrollo/ (accessed on 27 June 2021).92. AGRONET Risaralda. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ RISARALDA_2017.pdf (accessed on 3 August 2021).93. Government of Santander. Departmental Development Plan “Santander Always with You and for the World” 2020–2023. Available online: https://www.santander.gov.co/index.php/documentos-planeacion/send/2200-plan-de-desarrollo-2020-2 023/18585-pdd-2020-2023-completo-pts-nna-aprobado (accessed on 27 June 2021).94. AGRONET Santander. Main Crops by Area Planted in 2017. Available online: https://www.agronet.gov.co/Documents/ SANTANDER_2017.pdf (accessed on 25 June 2021).95. SITUR Santander. Main Reason for Travel. Available online: http://www.sitursantander.co/Estadisticas/Graficos (accessed on 25 June 2021).96. Government of Tolima. Development Plan “El Tolima Unites Us” 2020–2023. Available online: https://regioncentralrape.gov.co/ wp-content/uploads/2020/05/Ordenanza-Plan-de-desarrollo-version-8.pdf (accessed on 27 June 2021).97. AGRONET Tolima. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ TOLIMA_2017.pdf (accessed on 3 August 2021).98. Government of Tolima. Tourism. Available online: https://www.tolima.gov.co/tolima/informacion-general/turismo (accessed on 26 June 2021).99. Government of Amazonas. Departmental Development Plan 2020–2023 “Progressing with Development”. Available online: http://www.amazonas.gov.co/noticias/plan-de-desarrollo-departamental-del-amazonas-20202023 (accessed on 22 June 2021).100. AGRONET Amazonas. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ AMAZONAS_2017.pdf (accessed on 3 August 2021).101. Government of Caquetá. Caquetá Departmental Development Plan. Available online: https://caqueta.micolombiadigital.gov.co/ sites/caqueta/content/files/001016/50760_pdd-caqueta-20202023.pdf (accessed on 22 June 2021).102. Government of Guainía. Departmental Development Plan 2020–2023 “Guainía Opportunity for All”. Available online: https: //guainia.micolombiadigital.gov.co/sites/guainia/content/files/000550/27454_documento-final-guainia-va1.pdf (accessed on 28 June 2021).103. Government of Guaviare. Departmental Development Plan 2020–2023 “Solutions at Your Service”. Available online: https: //guaviare.micolombiadigital.gov.co/sites/guaviare/content/files/000705/35240_ordenanza-no-410-de-2020.pdf (accessed on 24 June 2021).104. AGRONET Guaviare. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ GUAVIARE_2017.pdf (accessed on 3 August 2021).105. Government of Guaviare. Tourism. Available online: http://www.guaviare.gov.co/tema/turismo/sitios-para-visitar (accessed on 26 June 2021).106. Government of Putumayo. Putumayo Departmental Development Plan 2020–2023 “Thirteen Municipalities, One Heart”. Available online: https://www.putumayo.gov.co/index.php?option=com_content&view=article&id=37 (accessed on 23 June 2021).107. AGRONET Putumayo. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ PUTUMAYO_2017.pdf (accessed on 3 August 2021).108. Government of Vaupés. Departmental Development Plan “Vaupés, Together We Can” 2020–2023. Available online: https: //vaupes.micolombiadigital.gov.co/sites/vaupes/content/files/000483/24103_pdd-vaupes-juntos-podemos-20202023.pdf (accessed on 24 June 2021).109. Government of San Andres. Providencia and Santa Catalina Departmental Development Plan San Andres, Providencia and Santa Catalina Islands 2020–2023 “All for a New Beginning”. Available online: https://www.sanandres.gov.co/index.php/gestion/ planeacion/plan-de-desarollo/plan-de-desarrollo-anuales/11524-plan-de-desarrollo-todos-por-un-nuevo-comienzo-2020-2 023/file (accessed on 23 June 2021).110. Government of Cauca. Departmental Development Plan 2020–2023 “42 Motives to Advance”. Available online: https://www.cauca. gov.co/NuestraGestion/PlaneacionGestionyControl/PlandeDesarrolloDepartamental2020-2023.pdf (accessed on 1 May 2021).111. AGRONET Cauca. Main Crops by Area Planted in 2017. Available online: https://www.agronet.gov.co/Documents/CAUCA_ 2017.pdf (accessed on 28 April 2021).112. Government of Chocó. Departmental Development Plan “Chocó Generating Confidence” 2020–2023. Available online: https://choco.micolombiadigital.gov.co/sites/choco/content/files/000440/21975_plan-de-desarrollo-departamental-delchoco-20202023--version-final.pdf (accessed on 27 April 2021).113. Government of Nariño. Departmental Development Plan “My Nariño, in Defense of What Is Ours” 2020–2023. Available online: https://sitio.narino.gov.co/wp-content/uploads/2020/11/Plan_de_Desarrollo_Mi_Narino_en_Defensa_de_lo_Nuestro_ 2020-2023.pdf (accessed on 6 May 2021).114. AGRONET Nariño. Main Crops by Areas Planted in 2017. Available online: https://www.agronet.gov.co/Documents/NARI~ NO_2017.pdf (accessed on 1 May 2021).115. SITUR Nariño. Tourist Attractions. Available online: https://situr.narino.gov.co/atractivos-turisticos (accessed on 26 June 2021).116. Government of Valle del Cauca. Development Plan “Invincible Valle” 2020–2023. Available online: https://www.valledelcauca. gov.co/loader.php?lServicio=Tools2&lTipo=viewpdf&id=48214 (accessed on 29 April 2021).117. AGRONET Valle del Cauca. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/ Documents/VALLE%20DEL%20CAUCA_2017.pdf (accessed on 3 August 2021).118. Government of Arauca. Arauca Departmental Participative Development Plan “Building the Future” 2020–2023. Available online: https://www.arauca.gov.co/mapa-red-hospitalaria-del-departamento-de-arauca/62-plan-de-desarrollo/2825-plande-desarrollo-departamental-2020-2023 (accessed on 7 May 2021).119. AGRONET Arauca. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ ARAUCA_2017.pdf (accessed on 3 August 2021).120. Government of Casanare. Development Plan 2020–2023. It Is Time for Productive, Equitable and Sustainable Casanare. Available online: https://www.casanare.gov.co/NuestraGestion/PlaneacionGestionyControl/ORDENANZA%20002-2020%20PLAN% 20DE%20DESARROLLO.pdf (accessed on 5 May 2021).121. AGRONET Casanare. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ CASANARE_2017.pdf (accessed on 3 August 2021).122. Government of Meta. Departmental Economic and Social Development Plan “Let’s Make Meta Great” 2020–2023. Available online: https://asambleameta.micolombiadigital.gov.co/sites/asambleameta/content/files/000189/9449_ordenanza-1069-demayo-30-de-2020.pdf (accessed on 24 April 2021).123. AGRONET Meta. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ META_2017.pdf (accessed on 3 August 2021).124. Government of Vichada. Departmental Development Plan “Work for All of Vichada” 2020–2023. Available online: https:// vichada.micolombiadigital.gov.co/sites/vichada/content/files/000331/16528_plan-de-desarrollo-aprobado-ordenanza.pdf (accessed on 30 April 2021).125. AGRONET Vichada. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ VICHADA_2017.pdf (accessed on 3 August 2021).126. DANE Technical Bulletin GDP IV Quarter 2020; Bogota. 2021. Available online: https://www.dane.gov.co/files/investigaciones/ boletines/pib/bol_PIB_IVtrim20_producion_y_gasto.pdf (accessed on 3 August 2021).127. Maroto-Molina, F.; Navarro-García, J.; Príncipe-Aguirre, K.; Gómez-Maqueda, I.; Guerrero-Ginel, J.; Garrido-Varo, A.; PérezMarín, D. A Low-Cost IoT-Based System to Monitor the Location of a Whole Herd. Sensors 2019, 19, 2298. [CrossRef] [PubMed]128. Gattani, A.; Singh, S.V.; Agrawal, A.; Khan, M.; Singh, P. Recent progress in electrochemical biosensors as point of care diagnostics in livestock health. Anal. Biochem. 2019, 579, 25–34. [CrossRef]129. Yang, S.J.; Xiao, N.; Li, J.Z.; Feng, Y.; Ma, J.Y.; Quzhen, G.S.; Yu, Q. A remote management system for control and surveillance of echinococcosis: Design and implementation based on internet of things. Infect. Dis. Poverty 2021, 10, 50. [CrossRef]130. Raj, R.; Kola, K.; Bojja, P.; Raja, P. Optimal Technique of Tumor Detection and Prediction of Livestock by Deep Neural Network with TensorFlow and Keras. In Proceedings of the International Conference of Modern Applications on Information and Communication Technology (ICMAICT), Baghdad, Iraq, 8–9 December 2021; Volume 1804.131. Akhigbe, B.I.; Munir, K.; Akinade, O.; Akanbi, L.; Oyedele, L.O. IoT Technologies for Livestock Management: A Review of Present Status, Opportunities, and Future Trends. Big Data Cogn. Comput. 2021, 5, 10. [CrossRef]132. Quintero, J. IoT Device for the Control of Livestock Identification and Mobility; National University of Colombia: Bogota, Colombia, 2020.133. Ariza-Colpas, P.; Morales-Ortega, R.; Piñeres-Melo, M.; Melendez-Pertuz, F.; Serrano-Torne, G.; Hernandez-Sanches, G.; MartínezOsorio, H. Teleagro: IOT Applications for the Georeferencing and Detection of Zeal in Cattle. In Proceedings of the 18th International Conference, CISIM 2019, Belgrade, Serbia, 19–21 September 2019; pp. 232–239.134. Ministry of Commerce. 2019 Tourism in Colombia Breaks Records. Available online: https://www.mincit.gov.co/prensa/ noticias/turismo/en-2019-el-turismo-en-colombia-rompio-records (accessed on 28 June 2021).135. Alcaldía de Santiago de Cali. Turismo de Salud. Available online: https://www.cali.gov.co/turismo/publicaciones/139222 /turismo-de-salud-/ (accessed on 2 May 2021).136. ANDI. Colombia: Regional Leader in the Export of Healthcare Services. Available online: http://www.andi.com.co/Home/ Noticia/7356-colombia-lider-regional-en-la-exportacio (accessed on 28 June 2021).137. Mayor’s Office of Barranquilla. The Health Cluster, a New Reality That Potentiates Barranquilla’s Image to the World. Available online: https://www.barranquilla.gov.co/salud/el-cluster-en-salud-nueva-realidad-que-potencializa-al-mundo-la-imagende-barranquilla (accessed on 28 June 2021).138. Wang, W.; Kumar, N.; Chen, J.; Gong, Z.; Kong, X.; Wei, W.; Gao, H. Realizing the Potential of the Internet of Things for Smart Tourism with 5G and AI Smart Tourism. IEEE Netw. 2020, 34, 295–301. [CrossRef]139. Sharma, S.; Rishi, O.; Sharma, A. IoTeST: IoT-Enabled Smart Tourism—Shaping the Future of Tourism. In Rising Threats in Expert Applications and Solutions; Springer: Singapore, 2020; pp. 569–576, ISBN 978-981-15-6014-9.140. Lerario, A.; Varasano, A. An IoT Smart Infrastructure for S. Domenico Church in Matera’s “Sassi”: A Multiscale Perspective to Built Heritage Conservation. Sustainability 2020, 12, 6553. [CrossRef]141. Peng, R.; Lou, Y.; Kadoch, M.; Cheriet, M. A human-guided machine learning approach for 5g smart tourism iot. Electronics 2020, 9, 947. [CrossRef]142. Gao, H. Big Data Development of Tourism Resources Based on 5G Network and Internet of Things System. Microprocess. Microsyst. 2021, 80, 103567. [CrossRef]143. Kachniewska, M. Smart Tourism: Towards the Concept of a Data-Based Travel Experience. In Handbook of Sustainable Development and Leisure Services; Springer: Cham, Switzerland, 2021; pp. 289–302, ISBN 978-3-030-59819-8.144. Davoli, L.; Paraskevopoulos, I.; Campanella, C.; Bauro, S.; Vio, T.; Abrardo, A.; Ferrari, G. Ultrasonic-based environmental perception for mobile 5g-oriented xr applications. Sensors 2021, 21, 1329. [CrossRef]145. Siriwardhana, Y.; De Alwis, C.; Gur, G.; Ylianttila, M.; Liyanage, M. The Fight against the COVID-19 Pandemic with 5G Technologies. IEEE Eng. Manag. Rev. 2020, 48, 72–84. [CrossRef]146. Al-Maroof, R.S.; Akour, I.; Aljanada, R.; Alfaisal, A.M.; Alfaisal, R.M.; Aburayya, A.; Salloum, S.A. Acceptance determinants of 5G services. Int. J. Data Netw. Sci. 2021, 5, 613–628. [CrossRef]147. Mendoza, R.; Cabarcas, A.; Arnedo, B. Mixed Reality to Promote Cultural Tourism in La Merced Cloister in Cartagena Colombia. In Advances in Tourism, Technology and Systems; Smart Innovation, Systems and Technologies Series; Springer: Cartagena, Colombia, 2021; Volume 209.148. Pereira, J.; Díaz, J. Prototype of a Tourist Mobile Application for the City of Bucaramanga Implementing Augmented Reality; Universidad Autónoma de Bucaramanga: Bucaramanga, Colombia, 2020.149. Psiha, M.; Vlamos, P. IoT Applications with 5G Connectivity in Medical Tourism Sector Management: Third-Party Service Scenarios. Adv. Exp. Med. Biol. 2017, 989, 141–154. [CrossRef]150. AGRONET. Low Productivity in the Land and Appearance of Pests May Be Effects of El Niño. 2018. Available online: https://www.agronet.gov.co/Noticias/Paginas/Baja-productividad-en-la-tierra-y-aparici%C3%B3n-de-plagas-pueden-serefectos-del-ni%C3%B1o.aspx (accessed on 2 May 2021).151. Mateos Matilla, D.; Lozano Murciego, Á.; Jimenez Bravo, D.M.; Sales Mendes, A.; Quietinho Leithardt, V.R. Low cost center pivot irrigation monitoring systems based on IoT and LoRaWAN technologies. In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor 2020), Trento, Italy, 4–6 November 2020; pp. 262–267.152. Nawandar, N.K.; Satpute, V.R. IoT based low cost and intelligent module for smart irrigation system. Comput. Electron. Agric. 2019, 162, 979–990. [CrossRef]153. Lin, N.; Wang, X.; Zhang, Y.; Hu, X.; Ruan, J. Fertigation management for sustainable precision agriculture based on Internet of Things. J. Clean. Prod. 2020, 277, 124119. [CrossRef]154. Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Irrigation of greenhouse crops. Horticulturae 2019, 5, 7. [CrossRef]155. Benyezza, H.; Bouhedda, M.; Rebouh, S. Zoning irrigation smart system based on fuzzy control technology and IoT for water and energy saving. J. Clean. Prod. 2021, 302, 127001. [CrossRef]156. Guo, X. Application of agricultural IoT technology based on 5 G network and FPGA. Microprocess. Microsyst. 2021, 80, 103597. [CrossRef]157. Hu, H.; Vocational, Y.; Chen, Z.; Science, I.; Wu, P.W.; Science, I. Internet of Things-Enabled Crop Growth Monitoring System for Smart Agriculture. Int. J. Agric. Environ. Inf. Syst. 2021, 12, 30–48. [CrossRef]158. Said Mohamed, E.; Belal, A.A.; Kotb Abd-Elmabod, S.; El-Shirbeny, M.A.; Gad, A.; Zahran, M.B. Smart farming for improving agricultural management. Egypt. J. Remote Sens. Space Sci. 2021, in press. [CrossRef]159. Wan-Soo, K.; Won-Suk, W.; Yong-Joo, K. A Review of the Applications of the Internet of Things (IoT) for Agricultural Automation. J. Biosyst. Eng. 2020, 45, 385–400. [CrossRef]160. Hincapie, E.; Sánchez, J.; Carbonell, J. IoT Network Applied to Agriculture: Monitoring Stations for Irrigation Management in Soils Cultivated with Sugarcane. In Proceedings of the Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II, AACC 2018, Cali, Colombia, 21–23 November 2018; Springer: Cham, Switzerland, 2018; pp. 249–260.161. Cohen-Manrique, C.; Burbano-Bustos, A.; Salgado-Ordosgoitia, R.; Merlano-Porto, R. Irrigation control in ahuyama crops in Sincelejo, Sucre (Colombia) managed through the Internet of Things (IoT). Inf. Tecnol. 2020, 31, 79–88. [CrossRef]162. Nuñez, J.; Fonthal, F.; Quezada, Y. Design and Implementation of WSN and IoT for Precision Agriculture in Tomato Crops. In Proceedings of the 2018 IEEE ANDESCON, Santiago de Cali, Colombia, 22–24 August 2018; pp. 1–5.163. Tang, Y.; Dananjayan, S.; Hou, C.; Guo, Q.; Luo, S.; He, Y. A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Comput. Electron. Agric. 2021, 180, 105895. [CrossRef]164. Cama-Pinto, D.; Holgado-Terriza, J.A.; Damas-Hermoso, M.; Gómez-Mula, F.; Cama-Pinto, A. RadioWave Attenuation Measurement System Based on RSSI for Precision Agriculture: Application to Tomato Greenhouses. Inventions 2021, 6, 66. [CrossRef]165. Selem, E.; Fatehy, M. E-Health applications over 5G networks: Challenges and state of the art. In Proceedings of the 2019 6th International Conference on Advanced Control Circuits and Systems (ACCS) & 2019 5th International Conference on New Paradigms in Electronics & information Technology (PEIT), Hurgada, Egypt, 17–20 November 2019; pp. 111–118.166. Casquero Jiménez, A.; Pérez Martínez, J. 5G networks in eHealth services in Spain: Remote patient monitoring system. In Proceedings of the 2020 IEEE Engineering International Research Conference (EIRCON), Lima, Peru, 21–23 October 2020; pp. 20–23.167. Emokpae, L.; Emokpae, R.; Lalouani, W.; Younis, M. Smart Multimodal Telehealth-IoT System for COVID-19 Patients. IEEE Pervasive Comput. 2021, 20, 73–80. [CrossRef]168. Rokonuzzaman, M.; Hossain, I.M.; Islam, T.; Sarkar, P.P.; Islam, R.M.; Amin, N. Design and Implementation of Telehealth Device: Linking IoT Sensors to Cloud Networks. In Proceedings of the 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Langkawi Island, Malaysia, 1–3 March 2021; pp. 281–285.169. Gupta, N.; Juneja, P.K.; Sharma, S.; Garg, U. Future aspect of 5G-IoT architecture in smart healthcare system. In Proceedings of the 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 406–411. [CrossRef]170. Braeken, A.; Liyanage, M. Highly efficient key agreement for remote patient monitoring in MEC-enabled 5G networks. J. Supercomput. 2021, 77, 5562–5585. [CrossRef]171. López, F.; Bonfante, M.C.; Gonzalez, I.; Muñoz, R. IoT and big data in public health: A case study in Colombia. In Protocols and Applications for the Industrial Internet of Things; IGI Global: Hershey, PA, USA, 2018; pp. 309–321.172. Bolívar, N.; Cangrejo, L.; Salcedo, O. eHeart-BP, Prototype of the Internet of Things to Monitor Blood Pressure. In Proceedings of the 2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Arlington, VA, USA, 25–27 September 2019; pp. 58–63.173. Hernández-Hernández, G.; Romero-Garavito, M.; Rodríguez-Manrique, J. The prototype of IoT Technological Infrastructure for Monitoring Vital Signs in Patients in an Emergency Department. In Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, Lima, Peru, 18–20 July 2018.174. Huertas, T. Biomedical IoT Device for Self-Monitoring Applications. In Proceedings of the 7th Latin American Congress on Biomedical Engineering, CLAIB 2016, Bucaramanga, Colombia, 26–28 October 2016; pp. 357–360.175. Haider, D.; Yang, X.; Hussain, Q. Post-surgical fall detection by exploiting the 5G C-Band technology for eHealth paradigm. Appl. Soft Comput. J. 2019, 81, 105537. [CrossRef]176. Zhang, Y.; Chen, G.; Du, H.; Yuan, X.; Kadoch, M. Real-Time Remote Health Monitoring System Driven by 5G MEC-IoT. Electronics 2020, 9, 1753. [CrossRef]177. Chowdhury, M.Z.; Hossan, T.; Shanjalal, M.; Hasan, K.; Jang, Y.M. A New 5G eHealth Architecture Based on Optical Camera Communication: An Overview, Prospects, and Applications. IEEE Consum. Electron. Mag. 2020, 9, 23–33. [CrossRef]178. Artemenko, A.; Gmbh, R.B. Keynote: Advances and Challenges of Industrial IoT. In Proceedings of the PerIoT 2021, 5th International Workshop on Mobile and Pervasive Internet of Things, Kassel, Germany, 26 March 2021; p. 526.179. Khatib, E.J.; Barco, R. Optimization of 5G Networks for Smart Logistics. Energies 2021, 14, 1758. [CrossRef]180. Varsier, N.; Dufrène, L.; Dumay, M.; Lampin, Q.; Schwoerer, J. A 5G New Radio for Balanced and Mixed IoT Use Cases: Challenges and Key Enablers in FR1 Band. IEEE Commun. Mag. 2021, 59, 82–87. [CrossRef]181. Varga, P.; Peto, J.; Franko, A.; Balla, D.; Haja, D.; Janky, F.; Soos, G.; Ficzere, D.; Maliosz, M.; Toka, L. 5G Support for Industrial Iot Applications—Challenges, Solutions, and Research Gaps. Sensors 2020, 20, 828. [CrossRef] [PubMed]182. Eit Digital. Ericsson Define the Future of the Industrial IoT. Available online: https://www.eitdigital.eu/fileadmin/files/2017 /events/innovationdays/netherlands/Etienne_Scholl_-_Beyond_communication__the_digital_business_potential_of_5G.pdf (accessed on 15 October 2021).183. Superintendencia de Industria y Comercio. The Internet of Things (IoT) Impacting the Logistics Sector. Available online: https://www.sic.gov.co/sites/default/files/files/pdf/Boletin_IoT(1).pdf (accessed on 9 March 2019).184. Segura, D.; Khatib, E.; Munilla, J.; Barco, R. 5G Numerologies Assessment for URLLC in Industrial Communications. Sensors 2021, 21, 2489. [CrossRef] [PubMed]185. You, X.; Zhang, C.; Tan, X.; Jin, S.; Wu, H. AI for 5G: Research directions and paradigms. Sci. China 2019, 62, 21301. [CrossRef]186. Ministry of Environment. Deforestation in Meta, Caquetá and Guaviare Decreases by 30% during the First Quarter of 2021. Available online: https://www.minambiente.gov.co/index.php/noticias/5189-disminuye-en-un-30-porciento-la-deforestacionen-el-meta-caqueta-y-guaviare-durante-primer-trimestre-del-ano (accessed on 8 June 2021).187. AWS. Tackling Deforestation in Colombia with IoT at the 2019 Zoo Hackathon. Available online: https://aws.amazon.com/es/ blogs/publicsector/tackling-deforestation-colombia-zoo-hackathon/ (accessed on 2 May 2021).188. Naveenraj, M.; Jeevabarathi, C.T.; Srinivasan, R. Iot based anti-poaching alarm system for trees in forest. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 193–195.189. Medellín, P. Deforestation by Fires in the Orinoquia and Amazonia Affect Air Quality in Bogota and Other Major Cities. Available online: http://ieu.unal.edu.co/en/medios/noticias-del-ieu/item/la-deforestacion-por-incendios-en-la-orinoquiay-la-amazonia-afectan-la-calidad-del-aire-de-bogota-y-otras-grandes-ciudades (accessed on 8 June 2021).190. Sahal, R.; Alsamhi, S.; Breslin, J.; Intizar Ali, M. Industry 4.0 towards Forestry 4.0: Fire Detection Use Case. Sensors 2021, 21, 694. [CrossRef]191. Khan, I.; Ahmad, S.; Kim, D.H. A Task Orchestration Approach for Efficient Mountain Fire Detection Based on Microservice and Predictive Analysis in IoT Environment. J. Intell. Fuzzy Syst. 2021, 40, 5681–5696. [CrossRef]192. Nguyen-Anh, T.; Le-Trung, Q. Prediction of Forest Fire Risk to Trigger IoTs Reconfiguration Action. In Proceedings of the 2020 7th NAFOSTED Conference on Information and Computer Science (NICS), Ho Chi Minh, Vietnam, 26–27 November 2020; pp. 19–24.193. Das, P.; Ghosh, S.; Chatterjee, S.; De, S. Energy Harvesting-enabled 5G Advanced Air Pollution Monitoring Device. In Proceedings of the 2020 IEEE 3rd 5G World Forum, (5GWF 2020), Bangalore, India, 10–12 September 2020; pp. 218–223. [CrossRef]PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/cc97bfe7-92e4-49e5-8e3e-3b48dd06e346/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/e6a17efe-499f-45a9-b0b0-503851953dca/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALProjections of iot applications in Colombia using 5G wireless networks.pdfProjections of iot applications in Colombia using 5G wireless networks.pdfapplication/pdf2685271https://repositorio.cuc.edu.co/bitstreams/2733659e-4aef-4f9a-a068-3bd369feb951/download13bcac5620437d8764c1a95ce0c7947eMD51THUMBNAILProjections of iot applications in Colombia using 5G wireless networks.pdf.jpgProjections of iot applications in Colombia using 5G wireless networks.pdf.jpgimage/jpeg73279https://repositorio.cuc.edu.co/bitstreams/1fbf8170-892f-411b-89cc-2e8fab097cb0/download42c36d36ce2904a36c42306eb15bbffdMD54TEXTProjections of iot applications in Colombia using 5G wireless networks.pdf.txtProjections of iot applications in Colombia using 5G wireless networks.pdf.txttext/plain104225https://repositorio.cuc.edu.co/bitstreams/3af476b4-bced-419f-98aa-e79093c24ae7/download84c247038a8bb5c3d2e8a3290e71cf27MD5511323/8925oai:repositorio.cuc.edu.co:11323/89252024-09-17 12:50:05.542http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==