Valorization of different fractions from butiá pomace by pyrolysis: H2 generation and use of the biochars for CO2 capture
This work valorizes butiá pomace (Butia capitata) using pyrolysis to prepare CO2 adsorbents. Different fractions of the pomace, like fibers, endocarps, almonds, and deoiled almonds, were characterized and later pyrolyzed at 700 °C. Gas, bio-oil, and biochar fractions were collected and characterized...
- Autores:
-
dos Santos Nunes, Isaac
Schnorr, Carlos
Perondi, Daniele
Godinho, Marcelo
Diel, Julia C.
Machado, Lauren M. M.
Dalla Nora, Fabíola B.
Silva Oliveira, Luis Felipe
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10912
- Acceso en línea:
- https://hdl.handle.net/11323/10912
https://repositorio.cuc.edu.co/
- Palabra clave:
- Butiá wastes
Pyrolysis
Butiá biochar
H2 generation
CO2 adsorption
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_b0e79f7118bfe3744a7ae6ecc1aa585e |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10912 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Valorization of different fractions from butiá pomace by pyrolysis: H2 generation and use of the biochars for CO2 capture |
title |
Valorization of different fractions from butiá pomace by pyrolysis: H2 generation and use of the biochars for CO2 capture |
spellingShingle |
Valorization of different fractions from butiá pomace by pyrolysis: H2 generation and use of the biochars for CO2 capture Butiá wastes Pyrolysis Butiá biochar H2 generation CO2 adsorption |
title_short |
Valorization of different fractions from butiá pomace by pyrolysis: H2 generation and use of the biochars for CO2 capture |
title_full |
Valorization of different fractions from butiá pomace by pyrolysis: H2 generation and use of the biochars for CO2 capture |
title_fullStr |
Valorization of different fractions from butiá pomace by pyrolysis: H2 generation and use of the biochars for CO2 capture |
title_full_unstemmed |
Valorization of different fractions from butiá pomace by pyrolysis: H2 generation and use of the biochars for CO2 capture |
title_sort |
Valorization of different fractions from butiá pomace by pyrolysis: H2 generation and use of the biochars for CO2 capture |
dc.creator.fl_str_mv |
dos Santos Nunes, Isaac Schnorr, Carlos Perondi, Daniele Godinho, Marcelo Diel, Julia C. Machado, Lauren M. M. Dalla Nora, Fabíola B. Silva Oliveira, Luis Felipe Dotto, Guilherme Luiz |
dc.contributor.author.none.fl_str_mv |
dos Santos Nunes, Isaac Schnorr, Carlos Perondi, Daniele Godinho, Marcelo Diel, Julia C. Machado, Lauren M. M. Dalla Nora, Fabíola B. Silva Oliveira, Luis Felipe Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Butiá wastes Pyrolysis Butiá biochar H2 generation CO2 adsorption |
topic |
Butiá wastes Pyrolysis Butiá biochar H2 generation CO2 adsorption |
description |
This work valorizes butiá pomace (Butia capitata) using pyrolysis to prepare CO2 adsorbents. Different fractions of the pomace, like fibers, endocarps, almonds, and deoiled almonds, were characterized and later pyrolyzed at 700 °C. Gas, bio-oil, and biochar fractions were collected and characterized. The results revealed that biochar, bio-oil, and gas yields depended on the type of pomace fraction (fibers, endocarps, almonds, and deoiled almonds). The higher biochar yield was obtained by endocarps (31.9%wt.). Furthermore, the gas fraction generated at 700 °C presented an H2 content higher than 80%vol regardless of the butiá fraction used as raw material. The biochars presented specific surface areas reaching 220.4 m2 g−1. Additionally, the endocarp-derived biochar presented a CO2 adsorption capacity of 66.43 mg g−1 at 25 °C and 1 bar, showing that this material could be an effective adsorbent to capture this greenhouse gas. Moreover, this capacity was maintained for 5 cycles. Biochars produced from butiá precursors without activation resulted in a higher surface area and better performance than some activated carbons reported in the literature. The results highlighted that pyrolysis could provide a green solution for butiá agro-industrial wastes, generating H2 and an adsorbent for CO2. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-11-03 |
dc.date.accessioned.none.fl_str_mv |
2024-03-21T14:55:36Z |
dc.date.available.none.fl_str_mv |
2024-03-21T14:55:36Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Nunes, I.d.S.; Schnorr, C.; Perondi, D.; Godinho, M.; Diel, J.C.; Machado, L.M.M.; Dalla Nora, F.B.; Silva, L.F.O.; Dotto, G.L. Valorization of Different Fractions from Butiá Pomace by Pyrolysis: H2 Generation and Use of the Biochars for CO2 Capture. Molecules 2022, 27, 7515. https://doi.org/10.3390/ molecules27217515 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10912 |
dc.identifier.doi.none.fl_str_mv |
10.3390/ molecules27217515 |
dc.identifier.eissn.spa.fl_str_mv |
1420-3049 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC – Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Nunes, I.d.S.; Schnorr, C.; Perondi, D.; Godinho, M.; Diel, J.C.; Machado, L.M.M.; Dalla Nora, F.B.; Silva, L.F.O.; Dotto, G.L. Valorization of Different Fractions from Butiá Pomace by Pyrolysis: H2 Generation and Use of the Biochars for CO2 Capture. Molecules 2022, 27, 7515. https://doi.org/10.3390/ molecules27217515 10.3390/ molecules27217515 1420-3049 Corporación Universidad de la Costa REDICUC – Repositorio CUC |
url |
https://hdl.handle.net/11323/10912 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Molecules |
dc.relation.references.spa.fl_str_mv |
1. Ibrahim, M.; Vo, X.V. Exploring the Relationships among Innovation, Financial Sector Development and Environmental Pollution in Selected Industrialized Countries. J. Environ. Manage. 2021, 284, 112057. [CrossRef] [PubMed] 2. Ma, X.; Wu, Y.; Fang, M.; Liu, B.; Chen, R.; Shi, R.; Wu, Q.; Zeng, Z.; Li, L. In-Situ Activated Ultramicroporous Carbon Materials Derived from Waste Biomass for CO2 Capture and Benzene Adsorption. Biomass Bioenergy 2022, 158, 106353. [CrossRef] 3. Bergstra, A.D.; Brunekreef, B.; Burdorf, A. The Influence of Industry-Related Air Pollution on Birth Outcomes in an Industrialized Area. Environ. Pollut. 2021, 269, 115741. [CrossRef] 4. Bernstein, A.S.; Rice, M.B. Lungs in a Warming World: Climate Change and Respiratory Health. Chest 2013, 143, 1455–1459. [CrossRef] 5. Horemans, J.A.; Janssens, I.A.; Gielen, B.; Roland, M.; Deckmyn, G.; Verstraeten, A.; Neirynck, J.; Ceulemans, R. Weather, Pollution and Biotic Factors Drive Net Forest—Atmosphere Exchange of CO2 at Different Temporal Scales in a Temperate-Zone Mixed Forest. Agric. For. Meteorol. 2020, 291, 108059. [CrossRef] 6. Lelandais, L.; Xueref-Remy, I.; Riandet, A.; Blanc, P.E.; Armengaud, A.; Oppo, S.; Yohia, C.; Ramonet, M.; Delmotte, M. Analysis of 5.5 Years of Atmospheric CO2 , CH4 , CO Continuous Observations (2014–2020) and Their Correlations, at the Observatoire de Haute Provence, a Station of the ICOS-France National Greenhouse Gases Observation Network. Atmos. Environ. 2022, 277, 119020. [CrossRef] 7. Bao, J.; Lu, W.H.; Zhao, J.; Bi, X.T. Greenhouses for CO2 Sequestration from Atmosphere. Carbon Resour. Convers. 2018, 1, 183–190. [CrossRef] 8. Khalidy, R.; Santos, R.M. The Fate of Atmospheric Carbon Sequestrated through Weathering in Mine Tailings. Miner. Eng. 2021, 163, 106767. [CrossRef] 9. Breuer, J.L.; Samsun, R.C.; Stolten, D.; Peters, R. How to Reduce the Greenhouse Gas Emissions and Air Pollution Caused by Light and Heavy Duty Vehicles with Battery-Electric, Fuel Cell-Electric and Catenary Trucks. Environ. Int. 2021, 152, 106474. [CrossRef] 10. Zhang, Y.; Zhu, C.; Chu, C.; Fu, T.; Ma, Y. Mass Transfer and Capture of Carbon Dioxide Using Amino Acids Sodium Aqueous Solution in Microchannel. Chem. Eng. Process.-Process Intensif. 2022, 173, 108831. [CrossRef] 11. Nasrifar, K.; Moshfeghian, M. Thermodynamics of Carbon Dioxide Mixtures at Cryogenic Conditions. Cryogenics 2022, 121, 103404. [CrossRef] 12. Singh, S.; Varghese, A.M.; Reinalda, D.; Karanikolos, G.N. Graphene—Based Membranes for Carbon Dioxide Separation. J. CO2 Util. 2021, 49, 101544. [CrossRef] 13. Pu, Q.; Zou, J.; Wang, J.; Lu, S.; Ning, P.; Huang, L.; Wang, Q. Systematic Study of Dynamic CO2 Adsorption on Activated Carbons Derived from Different Biomass. J. Alloys Compd. 2021, 887, 161406. [CrossRef] 14. Pires, J.; Ju´zków, J.; Pinto, M.L. Amino Acid Modified Montmorillonite Clays as Sustainable Materials for Carbon Dioxide Adsorption and Separation. Colloids Surf. A Physicochem. Eng. Asp. 2018, 544, 105–110. [CrossRef] 15. Surra, E.; Ribeiro, R.P.P.L.; Santos, T.; Bernardo, M.; Mota, J.P.B.; Lapa, N.; Esteves, I.A.A.C. Evaluation of Activated Carbons Produced from Maize Cob Waste for Adsorption-Based CO2 Separation and Biogas Upgrading. J. Environ. Chem. Eng. 2022, 10, 107065. [CrossRef] 16. Chen, J.; Jiang, L.; Wang, W.; Shen, Z.; Liu, S.; Li, X.; Wang, Y. Constructing Highly Porous Carbon Materials from Porous Organic Polymers for Superior CO2 Adsorption and Separation. J. Colloid Interface Sci. 2022, 609, 775–784. [CrossRef] 17. An, X.; Zhao, K.; Zhang, W.; Yang, J.; Liao, Y.; Wang, L.; Fu, D. Tailoring the Pore Structure Modified with Functional Groups for Superior CO2 Adsorption Capacity and the Selectivity of Separation. Fuel 2022, 309, 122175. [CrossRef] 18. Zhang, X.; Zhang, S.; Yang, H.; Feng, Y.; Chen, Y.; Wang, X.; Chen, H. Nitrogen Enriched Biochar Modified by High Temperature CO2 -Ammonia Treatment: Characterization and Adsorption of CO2 . Chem. Eng. J. 2014, 257, 20–27. [CrossRef] 19. Li, S.; Yuan, X.; Deng, S.; Zhao, L.; Lee, K.B. A Review on Biomass-Derived CO2 Adsorption Capture: Adsorbent, Adsorber, Adsorption, and Advice. Renew. Sustain. Energy Rev. 2021, 152, 111708. [CrossRef] 20. Goel, C.; Mohan, S.; Dinesha, P. CO2 Capture by Adsorption on Biomass-Derived Activated Char: A Review. Sci. Total Environ. 2021, 798, 149296. [CrossRef] 21. Hussin, F.; Aroua, M.K.; Yusoff, R. Adsorption of CO2 on Palm Shell Based Activated Carbon Modified by Deep Eutectic Solvent: Breakthrough Adsorption Study. J. Environ. Chem. Eng. 2021, 9, 105333. [CrossRef] 22. Bhatta, L.K.G.; Venkatesh, K.; N, K.; Gundanna, S.K.; Bhatta, U.M. Synthesis and Characterization of Activated Carbon from Delonix Regia Seeds for CO2 Adsorption. Energy Clim. Chang. 2021, 2, 100064. [CrossRef] 23. Mochizuki, Y.; Bud, J.; Byambajav, E.; Tsubouchi, N. Influence of Ammonia Treatment on the CO2 Adsorption of Activated Carbon. J. Environ. Chem. Eng. 2022, 10, 107273. [CrossRef] 24. Nazir, G.; Rehman, A.; Park, S.J. Valorization of Shrimp Shell Biowaste for Environmental Remediation: Efficient Contender for CO2 Adsorption and Separation. J. Environ. Manag. 2021, 299, 113661. [CrossRef] 25. Li, J.; Bao, A.; Chen, J.; Bao, Y. A Green Route to CO2 Adsorption on Biomass Chitosan Derived Nitrogen-Doped MicroporeDominated Carbon Nanosheets by Different Activators. J. Environ. Chem. Eng. 2022, 10, 107021. [CrossRef] 26. Kim, M.; Lee, J.W.; Kim, S.; Kang, Y.T. CO2 Adsorption on Zeolite 13X Modified with Hydrophobic Octadecyltrimethoxysilane for Indoor Application. J. Clean. Prod. 2022, 337, 130597. [CrossRef] 27. Gan, F.; Wang, B.; Jin, Z.; Xie, L.; Dai, Z.; Zhou, T.; Jiang, X. From Typical Silicon-Rich Biomass to Porous Carbon-Zeolite Composite: A Sustainable Approach for Efficient Adsorption of CO2 . Sci. Total Environ. 2021, 768, 144529. [CrossRef] 28. Aquatar, M.O.; Bhatia, U.; Rayalu, S.S.; Krupadam, R.J. Reduced Graphene Oxide -MnO2 Nanocomposite for CO2 Capture from Flue Gases at Elevated Temperatures. Sci. Total Environ. 2022, 816, 151522. [CrossRef] 29. Ghanbari, T.; Abnisa, F.; Wan Daud, W.M.A. A Review on Production of Metal Organic Frameworks (MOF) for CO2 Adsorption. Sci. Total Environ. 2020, 707, 135090. [CrossRef] 30. Daud, N.K.; Najib, N.H.I.M. Adsorption of CO2 on ZSM-5 and Cu-MOF at Room Temperature and Low Pressure Conditions for Carbon Capture and Storage (CCS) Application. Mater. Today Proc. 2022, 57, 1345–1355. [CrossRef] 31. Cao, L.; Zhang, X.; Xu, Y.; Xiang, W.; Wang, R.; Ding, F.; Hong, P.; Gao, B. Straw and Wood Based Biochar for CO2 Capture: Adsorption Performance and Governing Mechanisms. Sep. Purif. Technol. 2022, 287, 120592. [CrossRef] 32. Lampropoulos, A.; Kaklidis, N.; Athanasiou, C.; Montes-Morán, M.A.; Arenillas, A.; Menéndez, J.A.; Binas, V.D.; Konsolakis, M.; Marnellos, G.E. Effect of Olive Kernel Thermal Treatment (Torrefaction vs. Slow Pyrolysis) on the Physicochemical Characteristics and the CO2 or H2O Gasification Performance of as-Prepared Biochars. Int. J. Hydrogen Energy 2021, 46, 29126–29141. [CrossRef] 33. Xie, W.-H.; Li, H.; Yang, M.; He, L.-N.; Li, H.-R. CO2 Capture and Utilization with Solid Waste. Green Chem. Eng. 2022, 3, 199–209. [CrossRef] 34. Perondi, D.; Poletto, P.; Restelatto, D.; Manera, C.; Silva, J.P.; Junges, J.; Collazzo, G.C.; Dettmer, A.; Godinho, M.; Vilela, A.C.F. Steam Gasification of Poultry Litter Biochar for Bio-Syngas Production. Process Saf. Environ. Prot. 2017, 109, 478–488. [CrossRef] 35. Li, Z.; Xing, B.; Ding, Y.; Li, Y.; Wang, S. A High-Performance Biochar Produced from Bamboo Pyrolysis with in-Situ Nitrogen Doping and Activation for Adsorption of Phenol and Methylene Blue. Chinese J. Chem. Eng. 2020, 28, 2872–2880. [CrossRef] 36. Lawal, A.A.; Hassan, M.A.; Ahmad Farid, M.A.; Tengku Yasim-Anuar, T.A.; Samsudin, M.H.; Mohd Yusoff, M.Z.; Zakaria, M.R.; Mokhtar, M.N.; Shirai, Y. Adsorption Mechanism and Effectiveness of Phenol and Tannic Acid Removal by Biochar Produced from Oil Palm Frond Using Steam Pyrolysis. Environ. Pollut. 2021, 269, 116197. [CrossRef] 37. Karimi, M.; Shirzad, M.; Silva, J.A.C.; Rodrigues, A.E. Biomass/Biochar Carbon Materials for CO2 Capture and Sequestration by Cyclic Adsorption Processes: A Review and Prospects for Future Directions. J. CO2 Util. 2022, 57, 101890. [CrossRef] 38. Shafawi, A.N.; Mohamed, A.R.; Lahijani, P.; Mohammadi, M. Recent Advances in Developing Engineered Biochar for CO2 Capture: An Insight into the Biochar Modification Approaches. J. Environ. Chem. Eng. 2021, 9, 106869. [CrossRef] 39. Cuong, D.V.; Matsagar, B.M.; Lee, M.; Hossain, M.S.A.; Yamauchi, Y.; Vithanage, M.; Sarkar, B.; Ok, Y.S.; Wu, K.C.W.; Hou, C.H. A Critical Review on Biochar-Based Engineered Hierarchical Porous Carbon for Capacitive Charge Storage. Renew. Sustain. Energy Rev. 2021, 145, 111029. [CrossRef] 40. Wan, J.; Liu, L.; Ayub, K.S.; Zhang, W.; Shen, G.; Hu, S.; Qian, X. Characterization and Adsorption Performance of Biochars Derived from Three Key Biomass Constituents. Fuel 2020, 269, 117142. [CrossRef] 41. Amin, M.T.; Alazba, A.A.; Shafiq, M. Removal of Copper and Lead Using Banana Biochar in Batch Adsorption Systems: Isotherms and Kinetic Studies. Arab. J. Sci. Eng. 2018, 43, 5711–5722. [CrossRef] 42. Gallo-Cordova, A.; Silva-Gordillo, M.D.M.; Muñoz, G.A.; Arboleda-Faini, X.; Almeida Streitwieser, D. Comparison of the Adsorption Capacity of Organic Compounds Present in Produced Water with Commercially Obtained Walnut Shell and Residual Biomass. J. Environ. Chem. Eng. 2017, 5, 4041–4050. [CrossRef] 43. Hao, Z.; Wang, C.; Yan, Z.; Jiang, H.; Xu, H. Magnetic Particles Modification of Coconut Shell-Derived Activated Carbon and Biochar for Effective Removal of Phenol from Water. Chemosphere 2018, 211, 962–969. [CrossRef] [PubMed] 44. Georgin, J.; da Boit Martinello, K.; Franco, D.S.P.; Netto, M.S.; Piccilli, D.G.A.; Yilmaz, M.; Silva, L.F.O.; Dotto, G.L. Residual Peel of Pitaya Fruit (Hylocereus Undatus) as a Precursor to Obtaining an Efficient Carbon-Based Adsorbent for the Removal of Metanil Yellow Dye from Water. J. Environ. Chem. Eng. 2022, 10, 107006. [CrossRef] 45. Lang, J.; Matˇejová, L.; Cuentas-Gallegos, A.K.; Lobato-Peralta, D.R.; Ainassaari, K.; Gómez, M.M.; Solís, J.L.; Mondal, D.; Keiski, R.L.; Cruz, G.J.F. Evaluation and Selection of Biochars and Hydrochars Derived from Agricultural Wastes for the Use as Adsorbent and Energy Storage Materials. J. Environ. Chem. Eng. 2021, 9, 105979. [CrossRef] 46. El-gamal, E.H.; Saleh, M.; Elsokkary, I.; Rashad, M.; El-latif, M.M.A. Comparison between Properties of Biochar Produced by Traditional and Controlled Pyrolysis Comparison between Properties of Biochar Produced by Traditional and Controlled Pyrolysis. Alex. Sci. Exch. J. 2017, 38, 412–425. 47. Tomul, F.; Arslan, Y.; Kabak, B.; Trak, D.; Kendüzler, E.; Lima, E.C.; Tran, H.N. Peanut Shells-Derived Biochars Prepared from Different Carbonization Processes: Comparison of Characterization and Mechanism of Naproxen Adsorption in Water. Sci. Total Environ. 2020, 726, 137828. [CrossRef] 48. Zhang, S.; Ji, Y.; Dang, J.; Zhao, J.; Chen, S. Magnetic Apple Pomace Biochar: Simple Preparation, Characterization, and Application for Enriching Ag(I) in Effluents. Sci. Total Environ. 2019, 668, 115–123. [CrossRef] 49. Mohammed, N.A.S.; Abu-Zurayk, R.A.; Hamadneh, I.; Al-Dujaili, A.H. Phenol Adsorption on Biochar Prepared from the Pine Fruit Shells: Equilibrium, Kinetic and Thermodynamics Studies. J. Environ. Manag. 2018, 226, 377–385. [CrossRef] 50. Obey, G.; Adelaide, M.; Ramaraj, R. Biochar Derived from Non-Customized Matamba Fruit Shell as an Adsorbent for Wastewater Treatment. J. Bioresour. Bioprod. 2022, 7, 109–115. [CrossRef] 51. Lawal, A.A.; Hassan, M.A.; Zakaria, M.R.; Yusoff, M.Z.M.; Norrrahim, M.N.F.; Mokhtar, M.N.; Shirai, Y. Effect of Oil Palm Biomass Cellulosic Content on Nanopore Structure and Adsorption Capacity of Biochar. Bioresour. Technol. 2021, 332, 125070. [CrossRef] [PubMed] 52. Albalasmeh, A.; Gharaibeh, M.A.; Mohawesh, O.; Alajlouni, M.; Quzaih, M.; Masad, M.; El Hanandeh, A. Characterization and Artificial Neural Networks Modelling of Methylene Blue Adsorption of Biochar Derived from Agricultural Residues: Effect of Biomass Type, Pyrolysis Temperature, Particle Size. J. Saudi Chem. Soc. 2020, 24, 811–823. [CrossRef] 53. Giri, D.D.; Jha, J.M.; Srivastava, N.; Hashem, A.; Abd_Allah, E.F.; Shah, M.; Pal, D.B. Sustainable Removal of Arsenic from Simulated Wastewater Using Solid Waste Seed Pods Biosorbents of Cassia Fistula L. Chemosphere 2022, 287, 132308. [CrossRef] [PubMed] 54. Streit, A.F.M.; Côrtes, L.N.; Druzian, S.P.; Godinho, M.; Collazzo, G.C.; Perondi, D.; Dotto, G.L. Development of High Quality Activated Carbon from Biological Sludge and Its Application for Dyes Removal from Aqueous Solutions. Sci. Total Environ. 2019, 660, 277–287. [CrossRef] [PubMed] 55. Wu, C.; Fu, L.; Li, H.; Liu, X.; Wan, C. Using Biochar to Strengthen the Removal of Antibiotic Resistance Genes: Performance and Mechanism. Sci. Total Environ. 2022, 816, 151554. [CrossRef] 56. Yıldız, Z.; Kaya, N.; Topcu, Y.; Uzun, H. Pyrolysis and Optimization of Chicken Manure Wastes in Fluidized Bed Reactor: CO2 Capture in Activated Bio-Chars. Process Saf. Environ. Prot. 2019, 130, 297–305. [CrossRef] 57. Idrees, M.; Batool, S.; Kalsoom, T.; Yasmeen, S.; Kalsoom, A.; Raina, S.; Zhuang, Q.; Kong, J. Animal Manure-Derived Biochars Produced via Fast Pyrolysis for the Removal of Divalent Copper from Aqueous Media. J. Environ. Manag. 2018, 213, 109–118. [CrossRef] 58. Creamer, A.E.; Gao, B. Carbon-Based Adsorbents for Postcombustion CO2 Capture: A Critical Review. Environ. Sci. Technol. 2016, 50, 7276–7289. [CrossRef] 59. Hoffmann, J.F.; Barbieri, R.L.; Rombaldi, C.V.; Chaves, F.C. Butia Spp. (Arecaceae): An Overview. Sci. Hortic. 2014, 179, 122–131. [CrossRef] 60. Sosinski, Ê.E.; Urruth, L.M.; Barbieri, R.L.; Marchi, M.M.; Martens, S.G. On the Ecological Recognition of Butia Palm Groves as Integral Ecosystems: Why Do We Need to Widen the Legal Protection and the in Situ/on-Farm Conservation Approaches? Land Use Policy 2019, 81, 124–130. [CrossRef] 61. de Jesus Matias Ventura, L.; Pereira, G.S.L.; Mazzottini-dos-Santos, H.C.; de Lima, J.P.; Mercadante-Simões, M.O.; Lopes, P.S.N.; Ribeiro, L.M. Cytological Aspects of Butia Capitata (Arecaceae) Fruit Maturation and Senescence. Sci. Hortic. 2022, 297, 110938. [CrossRef] 62. dos Santos Cruxen, C.E.; Hoffmann, J.F.; Zandoná, G.P.; Fiorentini, Â.M.; Rombaldi, C.V.; Chaves, F.C. Probiotic Butiá (Butia Odorata) Ice Cream: Development, Characterization, Stability of Bioactive Compounds, and Viability of Bifidobacterium Lactis during Storage. LWT 2017, 75, 379–385. [CrossRef] 63. Camboim Rockett, F.; de Oliveira Schmidt, H.; Schmidt, L.; Rodrigues, E.; Tischer, B.; Ruffo de Oliveira, V.; Lima da Silva, V.; Rossini Augusti, P.; Hickmann Flôres, S.; Rios, A. Phenolic Compounds and Antioxidant Activity in Vitro and in Vivo of Butia and Opuntia Fruits. Food Res. Int. 2020, 137, 109740. [CrossRef] [PubMed] 64. Barbieri, R.L.; Gomes, J.C.C.; Alercia, A.; Padulosi, S. Agricultural Biodiversity in Southern Brazil: Integrating Efforts for Conservation and Use of Neglected and Underutilized Species. Sustainability 2014, 6, 741–757. [CrossRef] 65. Haubert, L.; Zehetmeyr, M.L.; Pereira, Y.M.N.; Kroning, I.S.; Maia, D.S.V.; Sehn, C.P.; Lopes, G.V.; de Lima, A.S.; da Silva, W.P. Tolerance to Benzalkonium Chloride and Antimicrobial Activity of Butia Odorata Barb. Rodr. Extract in Salmonella Spp. Isolates from Food and Food Environments. Food Res. Int. 2019, 116, 652–659. [CrossRef] 66. Maia, D.S.V.; Haubert, L.; Kroning, I.S.; Soares, K.; dos, S.; Oliveira, T.L.; da Silva, W.P. Biofilm Formation by Staphylococcus Aureus Isolated from Food Poisoning Outbreaks and Effect of Butia Odorata Barb. Rodr. Extract on Planktonic and Biofilm Cells. LWT 2020, 117, 108685. [CrossRef] 67. Vieira, B.M.; Elicker, C.; Nunes, C.F.P.; Bairros, A.V.; Becker, E.M.; de Oliveira, D.M.; Piva, E.; Fontoura, L.A.M.; Pereira, C.M.P. The Synthesis and Characterization of Butia Capitata Seed Oil as a FAME Feedstock. Fuel 2016, 184, 533–535. [CrossRef] 68. Zanuttini, M.S.; Pisarello, M.L.; Querini, C.A. Butia Yatay Coconut Oil: Process Development for Biodiesel Production and Kinetics of Esterification with Ethanol. Energy Convers. Manag. 2014, 85, 407–416. [CrossRef] 69. Peralta, S.L.; de Carvalho, P.H.A.; Ccahuana-Vásquez, R.A.; de Pereira, C.M.P.; Cury, J.A.; Piva, E.; Lund, R.G. Cytotoxicity, Genotoxicity and Antibiofilm Activity on Streptococcus Mutans of an Experimental Self-Etching Adhesive System Containing Natural Butia Capitata Oil. Int. J. Adhes. Adhes. 2017, 78, 95–101. [CrossRef] 70. Cruz, P.N.; Pereira, T.C.S.; Guindani, C.; Oliveira, D.A.; Rossi, M.J.; Ferreira, S.R.S. Antioxidant and Antibacterial Potential of Butia (Butia Catarinensis) Seed Extracts Obtained by Supercritical Fluid Extraction. J. Supercrit. Fluids 2017, 119, 229–237. [CrossRef] 71. Kerkhoff, C.M.; da Boit Martinello, K.; Franco, D.S.P.; Netto, M.S.; Georgin, J.; Foletto, E.L.; Piccilli, D.G.A.; Silva, L.F.O.; Dotto, G.L. Adsorption of Ketoprofen and Paracetamol and Treatment of a Synthetic Mixture by Novel Porous Carbon Derived from Butia Capitata Endocarp. J. Mol. Liq. 2021, 339, 117184. [CrossRef] 72. Cunha, M.R.; Lima, E.C.; Lima, D.R.; da Silva, R.S.; Thue, P.S.; Seliem, M.K.; Sher, F.; dos Reis, G.S.; Larsson, S.H. Removal of Captopril Pharmaceutical from Synthetic Pharmaceutical-Industry Wastewaters: Use of Activated Carbon Derived from Butia Catarinensis. J. Environ. Chem. Eng. 2020, 8, 104506. [CrossRef] 73. Mishra, R.K. Pyrolysis of Low-Value Waste Switchgrass: Physicochemical Characterization, Kinetic Investigation, and Online Characterization of Hot Pyrolysis Vapours. Bioresour. Technol. 2022, 347, 126720. [CrossRef] [PubMed] 74. Selvarajoo, A.; Oochit, D. Effect of Pyrolysis Temperature on Product Yields of Palm Fibre and Its Biochar Characteristics. Mater. Sci. Energy Technol. 2020, 3, 575–583. [CrossRef] 75. de Godois Baroni, É.; Tannous, K.; Rueda-Ordóñez, Y.J.; Tinoco-navarro, L.K. The Applicability of Isoconversional Models in Estimating the Kinetic Parameters of Biomass Pyrolysis. J. Ther. Anal. Calorim. 2015, 123, 909–917. [CrossRef] 76. Aygün, A.; Yenisoy-Karaka¸s, S.; Duman, I. Production of Granular Activated Carbon from Fruit Stones and Nutshells and Evaluation of Their Physical, Chemical and Adsorption Properties. Microporous Mesoporous Mater. 2003, 66, 189–195. [CrossRef] 77. Santos, V.O.; Queiroz, L.S.; Araujo, R.O.; Ribeiro, F.C.P.; Guimarães, M.N.; Carlos, E.F.; Chaar, J.S.; De Souza, L.K.C. Pyrolysis of Acai Seed Biomass: Kinetics and Thermodynamic Parameters Using Thermogravimetric Analysis. Bioresour. Technol. Reports 2020, 12, 100553. [CrossRef] 78. Ahmad, M.S.; Mehmood, M.A.; Al Ayed, O.S.; Ye, G.; Luo, H.; Ibrahim, M.; Rashid, U.; Arbi Nehdi, I.; Qadir, G. Kinetic Analyses and Pyrolytic Behavior of Para Grass (Urochloa Mutica) for Its Bioenergy Potential. Bioresour. Technol. 2017, 224, 708–713. [CrossRef] 79. Toribio-cuaya, H.; Pedraza-segura, L.; Macías-bravo, S. Biological and Physical Sciences Characterization of Lignocellulosic Biomass Using Five Simple Steps. J. Chem. Biol. Phys. Sci. 2014, 4, 28–49. 80. Siqueira, P.; Mabel, M.; Helena, R.; De Oliveira, J.; Prado, A.; Matias, S.; Alencar, D. Açaí Seeds: An Unexplored Agro-Industrial Residue as a Potential Source of Lipids, Fibers, and Antioxidant Phenolic Compounds. Ind. Crops Prod. 2021, 161, 113204. 81. Rasool, T.; Najar, I.; Chandra, V.; Pandey, A. Pyrolysis of Almond (Prunus Amygdalus) Shells: Kinetic Analysis, Modelling, Energy Assessment and Technical Feasibility Studies. Bioresour. Technol. 2021, 337, 125466. [CrossRef] [PubMed] 82. Hansted, A.L.S.; Cacuro, T.A.; Nakashima, G.T.; Costa, V.E.; Yamamoto, H.; Yamaji, F.M. Industrial Crops & Products Use of a Lignocellulosic Residue as Solid Fuel: The e Ff Ect of Ash Content in the Energy Potential. Ind. Crops Prod. 2018, 116, 209–214. [CrossRef] 83. Reshad, A.S.; Tiwari, P.; Goud, V.V. Thermo-Chemical Conversion of Waste Rubber Seed Shell to Produce Fuel and Value-Added Chemicals. J. Energy Inst. 2018, 91, 940–950. [CrossRef] 84. Sangaré, D.; Bostyn, S.; Santillán, M.M.; García-Alamilla, P.; Belandria, V.; Gökalp, I. Comparative Pyrolysis Studies of Lignocellulosic Biomasses: Online Gas Quantification, Kinetics Triplets, and Thermodynamic Parameters of the Process. Bioresour. Technol. 2022, 346, 126598. [CrossRef] [PubMed] 85. Rambo, M.K.D.; Alexandre, G.P.; Rambo, M.C.D.; Alves, A.R.; Garcia, W.T.; Baruque, E. Characterization of Biomasses from the North and Northeast Regions of Brazil for Processes in Biorefineries. Food Sci. Technol. 2015, 35, 605–611. [CrossRef] 86. Li, S.; Li, J.; Xu, J. Investigating the Release Behavior of Biomass and Coal during the Co-Pyrolysis Process. Int. J. Hydrog. Energy 2021, 46, 34652–34662. [CrossRef] 87. Cui, T.; Xu, J.; Fan, W.; Chang, Q.; Yu, G.; Wang, F. Experimental Study on Fragmental Behavior of Coals and Biomasses during Rapid Pyrolysis. Bioresour. Technol. 2016, 222, 439–447. [CrossRef] 88. Vasudev, V.; Ku, X.; Lin, J. Kinetic Study and Pyrolysis Characteristics of Algal and Lignocellulosic Biomasses. Bioresour. Technol. 2019, 288, 121496. [CrossRef] 89. Sahoo, A.; Kumar, S.; Kumar, J.; Bhaskar, T. A Detailed Assessment of Pyrolysis Kinetics of Invasive Lignocellulosic Biomasses (Prosopis Juliflora and Lantana Camara) by Thermogravimetric Analysis. Bioresour. Technol. 2021, 319, 124060. [CrossRef] 90. Aguiar, M.C.S.; Silvério, F.O.; de Pinho, G.P.; Lopes, P.S.N.; Fidêncio, P.H.; Ventura, S.J. Volatile Compounds from Fruits of Butia Capitata at Different Stages of Maturity and Storage. Food Res. Int. 2014, 62, 1095–1099. [CrossRef] 91. Kumar, M.; Kumar, S.; Upadhyay, S.N.; Mishra, P.K. Analysis of Thermal Degradation of Banana (Musa Balbisiana) Trunk Biomass Waste Using Iso-Conversional Models. Bioresour. Technol. 2020, 310, 123393. [CrossRef] [PubMed] 92. Hernowo, P.; Steven, S.; Restiawaty, E.; Irawan, A.; Borromeus, C.; Marno, S.; Meliana, Y.; Bindar, Y. Chemicals Component Yield Prediction and Kinetic Parameters Determination of Oil Palm Shell Pyrolysis through Volatile State Approach and Experimental Study. J. Anal. Appl. Pyrolysis 2022, 161, 105399. [CrossRef] 93. Raza, M.; Abu-jdayil, B.; Al-marzouqi, A.H.; Inayat, A. Kinetic and Thermodynamic Analyses of Date Palm Surface Fi Bers Pyrolysis Using Coats-Redfern Method. Renew. Energy 2022, 183, 67–77. [CrossRef] 94. Cai, J.; He, Y.; Yu, X.; Banks, S.W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A.V. Review of Physicochemical Properties and Analytical Characterization of Lignocellulosic Biomass. Renew. Sustain. Energy Rev. 2017, 76, 309–322. [CrossRef] 95. Ma, Z.; Chen, D.; Gu, J.; Bao, B.; Zhang, Q. Determination of Pyrolysis Characteristics and Kinetics of Palm Kernel Shell Using TGA—FTIR and Model-Free Integral Methods. Energy Convers. Manag. 2015, 89, 251–259. [CrossRef] 96. Salgado-ramos, M.; Martí-quijal, F.J.; Huertas-alonso, A.J.; Barba, F.J. Almond Hull Biomass: Preliminary Characterization and Development of Two Alternative Valorization Routes by Applying Innovative and Sustainable Technologies. Ind. Crops Prod. 2022, 179, 114697. [CrossRef] 97. Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [CrossRef] 98. Poletto, M.; Zattera, A.J.; Forte, M.M.C.; Santana, R.M.C. Thermal Decomposition of Wood: Influence of Wood Components and Cellulose Crystallite Size. Bioresour. Technol. 2012, 109, 148–153. [CrossRef] 99. Zazycki, M.A.; Godinho, M.; Perondi, D.; Foletto, E.L.; Collazzo, G.C.; Dotto, G.L. New Biochar from Pecan Nutshells as an Alternative Adsorbent for Removing Reactive Red 141 from Aqueous Solutions. J. Clean. Prod. 2018, 171, 57–65. [CrossRef] 100. Franciski, M.A.; Peres, E.C.; Godinho, M.; Perondi, D.; Foletto, E.L.; Collazzo, G.C.; Dotto, G.L. Development of CO2 Activated Biochar from Solid Wastes of a Beer Industry and Its Application for Methylene Blue Adsorption. Waste Manag. 2018, 78, 630–638. [CrossRef] 101. Rijo, B.; Paula, A.; Dias, S.; Ramos, M.; Ameixa, M. Valorization of Forest Waste Biomass by Catalyzed Pyrolysis. Energy 2022, 243, 122766. [CrossRef] 102. Mishra, R.K.; Lu, Q.; Mohanty, K. Thermal Behaviour, Kinetics and Fast Pyrolysis of Cynodon Dactylon Grass Using Py-GC/MS and Py-FTIR Analyser. J. Anal. Appl. Pyrolysis 2020, 150, 104887. [CrossRef] 103. Shi, J.; Xing, D.; Li, J. FTIR Studies of the Changes in Wood Chemistry from Wood Forming Tissue under Inclined Treatment. Energy Procedia 2012, 16, 758–762. [CrossRef] 104. Bentes, V.L.I.; Nobre, F.X.; Barros, I.C.L.; Couceiro, P.R.C. Composite of Iron Phosphate-Supported Carbon from the Açaí (Euterpe Oleracea) as a Solid Catalyst for Photo-Fenton Reactions. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100520. [CrossRef] 105. Li, C.; Sun, Y.; Yi, Z.; Zhang, L.; Zhang, S.; Hu, X. Co-Pyrolysis of Coke Bottle Wastes with Cellulose, Lignin and Sawdust: Impacts of the Mixed Feedstock on Char Properties. Renew. Energy 2022, 181, 1126–1139. [CrossRef] 106. Faria, J.P.; Arellano, D.B.; Grimaldi, R.; Silva, L.D.C.R.; Vieira, R.F.; Silva, D.D.B.; Agostini-costa, T.D.S. Chemical Characterization of Nut of Butia Capitata Var Capitata. Rev. Bras. Frutic. 2008, 30, 549–552. [CrossRef] 107. Kobelnik, M.; Fontanari, G.G.; Marques, M.R.; Ribeiro, C.A.; Crespi, M.S. Thermal Behavior and Chromatographic Characterization of Oil Extracted from the Nut of the Butia (Butia Capitata). J. Therm. Anal. Calorim. 2016, 123, 2517–2522. [CrossRef] 108. Peralta, S.L.; Carvalho, P.H.A.; van de Sande, F.H.; Pereira, C.M.P.; Piva, E.; Lund, R.G. Self-Etching Dental Adhesive Containing a Natural Essential Oil: Anti-Biofouling Performance and Mechanical Properties. Biofouling 2013, 29, 345–355. [CrossRef] 109. De Conto, D.; Silvestre, W.P.; Baldasso, C.; Godinho, M. Performance of Rotary Kiln Reactor for the Elephant Grass Pyrolysis. Bioresour. Technol. 2016, 218, 153–160. [CrossRef] 110. Chang, G.; Huang, Y.; Xie, J.; Yang, H.; Liu, H.; Yin, X.; Wu, C. The Lignin Pyrolysis Composition and Pyrolysis Products of Palm Kernel Shell, Wheat Straw, and Pine Sawdust. Energy Convers. Manag. 2016, 124, 587–597. [CrossRef] 111. Soltani, N.; Bahrami, A.; González, L.A. Review on the Physicochemical Treatments of Rice Husk for Production of Advanced Materials. Chem. Eng. J. 2015, 264, 899–935. [CrossRef] 112. Teixeira, V.G.; Coutinho, F.M.B.; Gomes, A.S. Principais Métodos de Caracterização Da Porosidade de Resinas à Base de Divinilbenzeno. Quim. Nova 2001, 24, 808–818. [CrossRef] 113. IUPAC. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure Appl. Chem. 1972, 31, 577–638. [CrossRef] 114. Ambroz, F.; Macdonald, T.J.; Martis, V.; Parkin, I.P. Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small Methods 2018, 2, 1800173. [CrossRef] 115. Darmawan, S.; Wistara, N.J.; Pari, G.; Maddu, A.; Syafii, W. Characterization of Lignocellulosic Biomass as Raw Material for the Production of Porous Carbon-Based Materials. BioResources 2016, 11, 3561–3574. [CrossRef] 116. Cagnon, B.; Py, X.; Guillot, A.; Stoeckli, F.; Chambat, G. Contributions of Hemicellulose, Cellulose and Lignin to the Mass and the Porous Properties of Chars and Steam Activated Carbons from Various Lignocellulosic Precursors. Bioresour. Technol. 2009, 100, 292–298. [CrossRef] 117. Daud, W.M.A.W.; Ali, W.S.W. Comparison on Pore Development of Activated Carbon Produced from Palm Shell and Coconut Shell. Bioresour. Technol. 2004, 93, 63–69. [CrossRef] 118. Danish, M.; Hashim, R.; Ibrahim, M.N.M. Optimized Preparation for Large Surface Area Activated Carbon from Date (Phoenix dactylifera L.) Stone Biomass. Biomass Bioenergy 2014, 61, 167–178. [CrossRef] 119. Peterson, S.C.; Jackson, M.A.; Kim, S.; Palmquist, D.E. Increasing Biochar Surface Area: Optimization of Ball Milling Parameters. Powder Technol. 2012, 228, 115–120. [CrossRef] 120. Zhang, Y.; Qin, J.; Yi, Y. Biochar and Hydrochar Derived from Freshwater Sludge: Characterization and Possible Applications. Sci. Total Environ. 2021, 763, 144550. [CrossRef] 121. Manera, C.; Perondi, D.; Godinho, M. Production of Micro-Mesoporous Activated Carbons from Various Citrus Waste. In Proceedings of the IV Congresso Internacional de Biomassa, Curitiba, Brazil, 25–27 June 2019. 122. Mohan, D.; Rajput, S.; Singh, V.K.; Steele, P.H.; Pittman, C.U. Modeling and Evaluation of Chromium Remediation from Water Using Low Cost Bio-Char, a Green Adsorbent. J. Hazard. Mater. 2011, 188, 319–333. [CrossRef] [PubMed] 123. Li, S.-Q.; Yao, Q.; Wen, S.-E.; Chi, Y.; Yan, J.-H. Properties of Pyrolytic Chars and Activated Carbons Derived from Pilot-Scale Pyrolysis of Used Tires. J. Air Waste Manag. Assoc. 2005, 55, 1315–1326. [CrossRef] [PubMed] 124. Botomé, M.L.; Poletto, P.; Junges, J.; Perondi, D.; Dettmer, A.; Godinho, M. Preparation and Characterization of a Metal-Rich Activated Carbon from CCA-Treated Wood for CO2 Capture. Chem. Eng. J. 2017, 321, 614–621. [CrossRef] 125. Sabri, M.A.; Al Jitan, S.; Bahamon, D.; Vega, L.F.; Palmisano, G. Current and Future Perspectives on Catalytic-Based Integrated Carbon Capture and Utilization. Sci. Total Environ. 2021, 790, 148081. [CrossRef] 126. Zhang, X.; Cao, L.; Xiang, W.; Xu, Y.; Gao, B. Preparation and Evaluation of Fine-Tuned Micropore Biochar by Lignin Impregnation for CO2 and VOCs Adsorption. Sep. Purif. Technol. 2022, 295, 121295. [CrossRef] 127. Wjihi, S.; Aouaini, F.; Erto, A.; Balsamo, M.; Lamine, A. Ben Advanced Interpretation of CO2 Adsorption Thermodynamics onto Porous Solids by Statistical Physics Formalism. Chem. Eng. J. 2021, 406, 126669. [CrossRef] 128. Heidari, A.; Younesi, H.; Rashidi, A.; Ghoreyshi, A.A. Adsorptive Removal of CO2 on Highly Microporous Activated Carbons Prepared from Eucalyptus Camaldulensis Wood: Effect of Chemical Activation. J. Taiwan Inst. Chem. Eng. 2014, 45, 579–588. [CrossRef] 129. Du, X.; Cheng, Y.; Liu, Z.; Hou, Z.; Wu, T.; Lei, R.; Shu, C. Study on the Adsorption of CH4, CO2 and Various CH4/CO2 Mixture Gases on Shale. Alex. Eng. J. 2020, 59, 5165–5178. [CrossRef] 130. Singh, J.; Basu, S.; Bhunia, H. CO2 Capture by Modified Porous Carbon Adsorbents: Effect of Various Activating Agents. J. Taiwan Inst. Chem. Eng. 2019, 102, 438–447. [CrossRef] 131. Li, M.; Xiao, R. Preparation of a Dual Pore Structure Activated Carbon from Rice Husk Char as an Adsorbent for CO2 Capture. Fuel Process. Technol. 2019, 186, 35–39. [CrossRef] 132. TAPPI T 204 Cm-97; Solvent Extractives of Wood and Pulp. Tappi Press: Atlanta, GA, USA, 1997. 133. ASTM. Standard Practice for Proximate Analysis of Coal and Coke. In Annual Book of ASTM Standards; ASTM International: West Conshohoken, PA, USA, 1993; pp. D3172–D3189. 134. Van Soest, P.J.; Wine, R.H. Determination of Lignin and Cellulose in Acid-Detergent Fiber with Permanganate. J. AOAC Int. 1968, 51, 780–785. [CrossRef] 135. Singh, G.; Kim, I.Y.; Lakhi, K.S.; Srivastava, P.; Naidu, R.; Vinu, A. Single Step Synthesis of Activated Bio-Carbons with a High Surface Area and Their Excellent CO2 Adsorption Capacity. Carbon N. Y. 2017, 116, 448–455. [CrossRef] 136. Nasri, N.S.; Hamza, U.D.; Ismail, S.N.; Ahmed, M.M.; Mohsin, R. Assessment of Porous Carbons Derived from Sustainable Palm Solid Waste for Carbon Dioxide Capture. J. Clean. Prod. 2014, 71, 148–157. [CrossRef] 137. Wedler, C.; Span, R. A Pore-Structure Dependent Kinetic Adsorption Model for Consideration in Char Conversion—Adsorption Kinetics of CO2 on Biomass Chars. Chem. Eng. Sci. 2021, 231, 116281. [CrossRef] 138. Ello, A.S.; De Souza, L.K.C.; Trokourey, A.; Jaroniec, M. Coconut Shell-Based Microporous Carbons for CO2 Capture. Microporous Mesoporous Mater. 2013, 180, 280–283. [CrossRef] 139. Conte, G.; Stelitano, S.; Policicchio, A.; Minuto, F.D.; Lazzaroli, V.; Galiano, F.; Agostino, R.G. Assessment of Activated Carbon Fibers from Commercial Kevlar® as Nanostructured Material for Gas Storage: Effect of Activation Procedure and Adsorption of CO2 and CH4. J. Anal. Appl. Pyrolysis 2020, 152, 104974. [CrossRef] 140. Singh, G.; Kim, I.Y.; Lakhi, K.S.; Joseph, S.; Srivastava, P.; Naidu, R.; Vinu, A. Heteroatom Functionalized Activated Porous Biocarbons and Their Excellent Performance for CO2 Capture at High Pressure. J. Mater. Chem. A 2017, 5, 21196–21204. [CrossRef] 141. Choi, S.W.; Tang, J.; Pol, V.G.; Lee, K.B. Pollen-Derived Porous Carbon by KOH Activation: Effect of Physicochemical Structure on CO2 Adsorption. J. CO2 Util. 2019, 29, 146–155. [CrossRef] 142. Serafin, J.; Narkiewicz, U.; Morawski, A.W.; Wróbel, R.J.; Michalkiewicz, B. Highly Microporous Activated Carbons from Biomass for CO2 Capture and Effective Micropores at Different Conditions. J. CO2 Util. 2017, 18, 73–79. [CrossRef] 143. Bae, J.S.; Su, S. Macadamia Nut Shell-Derived Carbon Composites for Post Combustion CO2 Capture. Int. J. Greenh. Gas Control 2013, 19, 174–182. [CrossRef] 144. Zhu, X.L.; Wang, P.Y.; Peng, C.; Yang, J.; Yan, X. Bin Activated Carbon Produced from Paulownia Sawdust for High-Performance CO2 Sorbents. Chin. Chem. Lett. 2014, 25, 929–932. [CrossRef] 145. Labus, K.; Gryglewicz, S.; Machnikowski, J. Granular KOH-Activated Carbons from Coal-Based Cokes and Their CO2 Adsorption Capacity. Fuel 2014, 118, 9–15. [CrossRef] 146. Quan, C.; Wang, H.; Jia, X.; Gao, N. Effect of Carbonization Temperature on CO2 Adsorption Behavior of Activated Coal Char. J. Energy Inst. 2021, 97, 92–99. [CrossRef] 147. Ello, A.S.; De Souza, L.K.C.; Trokourey, A.; Jaroniec, M. Development of Microporous Carbons for CO2 Capture by KOH Activation of African Palm Shells. J. CO2 Util. 2013, 2, 35–38. [CrossRef] 148. Cong, H.; Zhang, M.; Chen, Y.; Chen, K.; Hao, Y.; Zhao, Y.; Feng, L. Highly Selective CO2 Capture by Nitrogen Enriched Porous Carbons. Carbon N. Y. 2015, 92, 297–304. [CrossRef] 149. Hao, W.; Björkman, E.; Lilliestråle, M.; Hedin, N. Activated Carbons Prepared from Hydrothermally Carbonized Waste Biomass Used as Adsorbents for CO2 . Appl. Energy 2013, 112, 526–532. [CrossRef] 150. Pramanik, P.; Patel, H.; Charola, S.; Neogi, S.; Maiti, S. High Surface Area Porous Carbon from Cotton Stalk Agro-Residue for CO2 adsorption and Study of Techno-Economic Viability of Commercial Production. J. CO2 Util. 2021, 45, 101450. [CrossRef] 151. Parshetti, G.K.; Chowdhury, S.; Balasubramanian, R. Biomass Derived Low-Cost Microporous Adsorbents for Efficient CO2 Capture. Fuel 2015, 148, 246–254. [CrossRef] 152. Song, J.; Shen, W.; Wang, J.; Fan, W. Superior Carbon-Based CO2 Adsorbents Prepared from Poplar Anthers. Carbon N. Y. 2014, 69, 255–263. [CrossRef] |
dc.relation.citationendpage.spa.fl_str_mv |
18 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
21 |
dc.relation.citationvolume.spa.fl_str_mv |
27 |
dc.rights.eng.fl_str_mv |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
dc.rights.license.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 by the authors. Licensee MDPI, Basel, Switzerland. https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
18 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.publisher.place.spa.fl_str_mv |
Switzerland |
dc.source.spa.fl_str_mv |
https://www.mdpi.com/1420-3049/27/21/7515 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/6869c707-924c-4ec3-80e6-ad15439b7331/download https://repositorio.cuc.edu.co/bitstreams/01f6ae28-160f-49f5-a00b-44c02da36385/download https://repositorio.cuc.edu.co/bitstreams/ea9ee2bb-f85d-43fa-86b1-026bbc7184dd/download https://repositorio.cuc.edu.co/bitstreams/f37c7b20-b19c-482a-ade2-67c427184b97/download |
bitstream.checksum.fl_str_mv |
5e32c334a4a317fd8125d80229b3a178 2f9959eaf5b71fae44bbf9ec84150c7a 61fbe6fae165296eeaf7ce1b087fa638 63e00aa8d33e8006a46d1e219e0fffa7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760752803971072 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)© 2022 by the authors. Licensee MDPI, Basel, Switzerland.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2dos Santos Nunes, IsaacSchnorr, CarlosPerondi, DanieleGodinho, MarceloDiel, Julia C.Machado, Lauren M. M.Dalla Nora, Fabíola B.Silva Oliveira, Luis FelipeDotto, Guilherme Luiz2024-03-21T14:55:36Z2024-03-21T14:55:36Z2022-11-03Nunes, I.d.S.; Schnorr, C.; Perondi, D.; Godinho, M.; Diel, J.C.; Machado, L.M.M.; Dalla Nora, F.B.; Silva, L.F.O.; Dotto, G.L. Valorization of Different Fractions from Butiá Pomace by Pyrolysis: H2 Generation and Use of the Biochars for CO2 Capture. Molecules 2022, 27, 7515. https://doi.org/10.3390/ molecules27217515https://hdl.handle.net/11323/1091210.3390/ molecules272175151420-3049Corporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/This work valorizes butiá pomace (Butia capitata) using pyrolysis to prepare CO2 adsorbents. Different fractions of the pomace, like fibers, endocarps, almonds, and deoiled almonds, were characterized and later pyrolyzed at 700 °C. Gas, bio-oil, and biochar fractions were collected and characterized. The results revealed that biochar, bio-oil, and gas yields depended on the type of pomace fraction (fibers, endocarps, almonds, and deoiled almonds). The higher biochar yield was obtained by endocarps (31.9%wt.). Furthermore, the gas fraction generated at 700 °C presented an H2 content higher than 80%vol regardless of the butiá fraction used as raw material. The biochars presented specific surface areas reaching 220.4 m2 g−1. Additionally, the endocarp-derived biochar presented a CO2 adsorption capacity of 66.43 mg g−1 at 25 °C and 1 bar, showing that this material could be an effective adsorbent to capture this greenhouse gas. Moreover, this capacity was maintained for 5 cycles. Biochars produced from butiá precursors without activation resulted in a higher surface area and better performance than some activated carbons reported in the literature. The results highlighted that pyrolysis could provide a green solution for butiá agro-industrial wastes, generating H2 and an adsorbent for CO2.18 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)Switzerlandhttps://www.mdpi.com/1420-3049/27/21/7515Valorization of different fractions from butiá pomace by pyrolysis: H2 generation and use of the biochars for CO2 captureArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Molecules1. Ibrahim, M.; Vo, X.V. Exploring the Relationships among Innovation, Financial Sector Development and Environmental Pollution in Selected Industrialized Countries. J. Environ. Manage. 2021, 284, 112057. [CrossRef] [PubMed]2. Ma, X.; Wu, Y.; Fang, M.; Liu, B.; Chen, R.; Shi, R.; Wu, Q.; Zeng, Z.; Li, L. In-Situ Activated Ultramicroporous Carbon Materials Derived from Waste Biomass for CO2 Capture and Benzene Adsorption. Biomass Bioenergy 2022, 158, 106353. [CrossRef]3. Bergstra, A.D.; Brunekreef, B.; Burdorf, A. The Influence of Industry-Related Air Pollution on Birth Outcomes in an Industrialized Area. Environ. Pollut. 2021, 269, 115741. [CrossRef]4. Bernstein, A.S.; Rice, M.B. Lungs in a Warming World: Climate Change and Respiratory Health. Chest 2013, 143, 1455–1459. [CrossRef]5. Horemans, J.A.; Janssens, I.A.; Gielen, B.; Roland, M.; Deckmyn, G.; Verstraeten, A.; Neirynck, J.; Ceulemans, R. Weather, Pollution and Biotic Factors Drive Net Forest—Atmosphere Exchange of CO2 at Different Temporal Scales in a Temperate-Zone Mixed Forest. Agric. For. Meteorol. 2020, 291, 108059. [CrossRef]6. Lelandais, L.; Xueref-Remy, I.; Riandet, A.; Blanc, P.E.; Armengaud, A.; Oppo, S.; Yohia, C.; Ramonet, M.; Delmotte, M. Analysis of 5.5 Years of Atmospheric CO2 , CH4 , CO Continuous Observations (2014–2020) and Their Correlations, at the Observatoire de Haute Provence, a Station of the ICOS-France National Greenhouse Gases Observation Network. Atmos. Environ. 2022, 277, 119020. [CrossRef]7. Bao, J.; Lu, W.H.; Zhao, J.; Bi, X.T. Greenhouses for CO2 Sequestration from Atmosphere. Carbon Resour. Convers. 2018, 1, 183–190. [CrossRef]8. Khalidy, R.; Santos, R.M. The Fate of Atmospheric Carbon Sequestrated through Weathering in Mine Tailings. Miner. Eng. 2021, 163, 106767. [CrossRef]9. Breuer, J.L.; Samsun, R.C.; Stolten, D.; Peters, R. How to Reduce the Greenhouse Gas Emissions and Air Pollution Caused by Light and Heavy Duty Vehicles with Battery-Electric, Fuel Cell-Electric and Catenary Trucks. Environ. Int. 2021, 152, 106474. [CrossRef]10. Zhang, Y.; Zhu, C.; Chu, C.; Fu, T.; Ma, Y. Mass Transfer and Capture of Carbon Dioxide Using Amino Acids Sodium Aqueous Solution in Microchannel. Chem. Eng. Process.-Process Intensif. 2022, 173, 108831. [CrossRef]11. Nasrifar, K.; Moshfeghian, M. Thermodynamics of Carbon Dioxide Mixtures at Cryogenic Conditions. Cryogenics 2022, 121, 103404. [CrossRef]12. Singh, S.; Varghese, A.M.; Reinalda, D.; Karanikolos, G.N. Graphene—Based Membranes for Carbon Dioxide Separation. J. CO2 Util. 2021, 49, 101544. [CrossRef]13. Pu, Q.; Zou, J.; Wang, J.; Lu, S.; Ning, P.; Huang, L.; Wang, Q. Systematic Study of Dynamic CO2 Adsorption on Activated Carbons Derived from Different Biomass. J. Alloys Compd. 2021, 887, 161406. [CrossRef]14. Pires, J.; Ju´zków, J.; Pinto, M.L. Amino Acid Modified Montmorillonite Clays as Sustainable Materials for Carbon Dioxide Adsorption and Separation. Colloids Surf. A Physicochem. Eng. Asp. 2018, 544, 105–110. [CrossRef]15. Surra, E.; Ribeiro, R.P.P.L.; Santos, T.; Bernardo, M.; Mota, J.P.B.; Lapa, N.; Esteves, I.A.A.C. Evaluation of Activated Carbons Produced from Maize Cob Waste for Adsorption-Based CO2 Separation and Biogas Upgrading. J. Environ. Chem. Eng. 2022, 10, 107065. [CrossRef]16. Chen, J.; Jiang, L.; Wang, W.; Shen, Z.; Liu, S.; Li, X.; Wang, Y. Constructing Highly Porous Carbon Materials from Porous Organic Polymers for Superior CO2 Adsorption and Separation. J. Colloid Interface Sci. 2022, 609, 775–784. [CrossRef]17. An, X.; Zhao, K.; Zhang, W.; Yang, J.; Liao, Y.; Wang, L.; Fu, D. Tailoring the Pore Structure Modified with Functional Groups for Superior CO2 Adsorption Capacity and the Selectivity of Separation. Fuel 2022, 309, 122175. [CrossRef]18. Zhang, X.; Zhang, S.; Yang, H.; Feng, Y.; Chen, Y.; Wang, X.; Chen, H. Nitrogen Enriched Biochar Modified by High Temperature CO2 -Ammonia Treatment: Characterization and Adsorption of CO2 . Chem. Eng. J. 2014, 257, 20–27. [CrossRef]19. Li, S.; Yuan, X.; Deng, S.; Zhao, L.; Lee, K.B. A Review on Biomass-Derived CO2 Adsorption Capture: Adsorbent, Adsorber, Adsorption, and Advice. Renew. Sustain. Energy Rev. 2021, 152, 111708. [CrossRef]20. Goel, C.; Mohan, S.; Dinesha, P. CO2 Capture by Adsorption on Biomass-Derived Activated Char: A Review. Sci. Total Environ. 2021, 798, 149296. [CrossRef]21. Hussin, F.; Aroua, M.K.; Yusoff, R. Adsorption of CO2 on Palm Shell Based Activated Carbon Modified by Deep Eutectic Solvent: Breakthrough Adsorption Study. J. Environ. Chem. Eng. 2021, 9, 105333. [CrossRef]22. Bhatta, L.K.G.; Venkatesh, K.; N, K.; Gundanna, S.K.; Bhatta, U.M. Synthesis and Characterization of Activated Carbon from Delonix Regia Seeds for CO2 Adsorption. Energy Clim. Chang. 2021, 2, 100064. [CrossRef]23. Mochizuki, Y.; Bud, J.; Byambajav, E.; Tsubouchi, N. Influence of Ammonia Treatment on the CO2 Adsorption of Activated Carbon. J. Environ. Chem. Eng. 2022, 10, 107273. [CrossRef]24. Nazir, G.; Rehman, A.; Park, S.J. Valorization of Shrimp Shell Biowaste for Environmental Remediation: Efficient Contender for CO2 Adsorption and Separation. J. Environ. Manag. 2021, 299, 113661. [CrossRef]25. Li, J.; Bao, A.; Chen, J.; Bao, Y. A Green Route to CO2 Adsorption on Biomass Chitosan Derived Nitrogen-Doped MicroporeDominated Carbon Nanosheets by Different Activators. J. Environ. Chem. Eng. 2022, 10, 107021. [CrossRef]26. Kim, M.; Lee, J.W.; Kim, S.; Kang, Y.T. CO2 Adsorption on Zeolite 13X Modified with Hydrophobic Octadecyltrimethoxysilane for Indoor Application. J. Clean. Prod. 2022, 337, 130597. [CrossRef]27. Gan, F.; Wang, B.; Jin, Z.; Xie, L.; Dai, Z.; Zhou, T.; Jiang, X. From Typical Silicon-Rich Biomass to Porous Carbon-Zeolite Composite: A Sustainable Approach for Efficient Adsorption of CO2 . Sci. Total Environ. 2021, 768, 144529. [CrossRef]28. Aquatar, M.O.; Bhatia, U.; Rayalu, S.S.; Krupadam, R.J. Reduced Graphene Oxide -MnO2 Nanocomposite for CO2 Capture from Flue Gases at Elevated Temperatures. Sci. Total Environ. 2022, 816, 151522. [CrossRef]29. Ghanbari, T.; Abnisa, F.; Wan Daud, W.M.A. A Review on Production of Metal Organic Frameworks (MOF) for CO2 Adsorption. Sci. Total Environ. 2020, 707, 135090. [CrossRef]30. Daud, N.K.; Najib, N.H.I.M. Adsorption of CO2 on ZSM-5 and Cu-MOF at Room Temperature and Low Pressure Conditions for Carbon Capture and Storage (CCS) Application. Mater. Today Proc. 2022, 57, 1345–1355. [CrossRef]31. Cao, L.; Zhang, X.; Xu, Y.; Xiang, W.; Wang, R.; Ding, F.; Hong, P.; Gao, B. Straw and Wood Based Biochar for CO2 Capture: Adsorption Performance and Governing Mechanisms. Sep. Purif. Technol. 2022, 287, 120592. [CrossRef]32. Lampropoulos, A.; Kaklidis, N.; Athanasiou, C.; Montes-Morán, M.A.; Arenillas, A.; Menéndez, J.A.; Binas, V.D.; Konsolakis, M.; Marnellos, G.E. Effect of Olive Kernel Thermal Treatment (Torrefaction vs. Slow Pyrolysis) on the Physicochemical Characteristics and the CO2 or H2O Gasification Performance of as-Prepared Biochars. Int. J. Hydrogen Energy 2021, 46, 29126–29141. [CrossRef]33. Xie, W.-H.; Li, H.; Yang, M.; He, L.-N.; Li, H.-R. CO2 Capture and Utilization with Solid Waste. Green Chem. Eng. 2022, 3, 199–209. [CrossRef]34. Perondi, D.; Poletto, P.; Restelatto, D.; Manera, C.; Silva, J.P.; Junges, J.; Collazzo, G.C.; Dettmer, A.; Godinho, M.; Vilela, A.C.F. Steam Gasification of Poultry Litter Biochar for Bio-Syngas Production. Process Saf. Environ. Prot. 2017, 109, 478–488. [CrossRef]35. Li, Z.; Xing, B.; Ding, Y.; Li, Y.; Wang, S. A High-Performance Biochar Produced from Bamboo Pyrolysis with in-Situ Nitrogen Doping and Activation for Adsorption of Phenol and Methylene Blue. Chinese J. Chem. Eng. 2020, 28, 2872–2880. [CrossRef]36. Lawal, A.A.; Hassan, M.A.; Ahmad Farid, M.A.; Tengku Yasim-Anuar, T.A.; Samsudin, M.H.; Mohd Yusoff, M.Z.; Zakaria, M.R.; Mokhtar, M.N.; Shirai, Y. Adsorption Mechanism and Effectiveness of Phenol and Tannic Acid Removal by Biochar Produced from Oil Palm Frond Using Steam Pyrolysis. Environ. Pollut. 2021, 269, 116197. [CrossRef]37. Karimi, M.; Shirzad, M.; Silva, J.A.C.; Rodrigues, A.E. Biomass/Biochar Carbon Materials for CO2 Capture and Sequestration by Cyclic Adsorption Processes: A Review and Prospects for Future Directions. J. CO2 Util. 2022, 57, 101890. [CrossRef]38. Shafawi, A.N.; Mohamed, A.R.; Lahijani, P.; Mohammadi, M. Recent Advances in Developing Engineered Biochar for CO2 Capture: An Insight into the Biochar Modification Approaches. J. Environ. Chem. Eng. 2021, 9, 106869. [CrossRef]39. Cuong, D.V.; Matsagar, B.M.; Lee, M.; Hossain, M.S.A.; Yamauchi, Y.; Vithanage, M.; Sarkar, B.; Ok, Y.S.; Wu, K.C.W.; Hou, C.H. A Critical Review on Biochar-Based Engineered Hierarchical Porous Carbon for Capacitive Charge Storage. Renew. Sustain. Energy Rev. 2021, 145, 111029. [CrossRef]40. Wan, J.; Liu, L.; Ayub, K.S.; Zhang, W.; Shen, G.; Hu, S.; Qian, X. Characterization and Adsorption Performance of Biochars Derived from Three Key Biomass Constituents. Fuel 2020, 269, 117142. [CrossRef]41. Amin, M.T.; Alazba, A.A.; Shafiq, M. Removal of Copper and Lead Using Banana Biochar in Batch Adsorption Systems: Isotherms and Kinetic Studies. Arab. J. Sci. Eng. 2018, 43, 5711–5722. [CrossRef]42. Gallo-Cordova, A.; Silva-Gordillo, M.D.M.; Muñoz, G.A.; Arboleda-Faini, X.; Almeida Streitwieser, D. Comparison of the Adsorption Capacity of Organic Compounds Present in Produced Water with Commercially Obtained Walnut Shell and Residual Biomass. J. Environ. Chem. Eng. 2017, 5, 4041–4050. [CrossRef]43. Hao, Z.; Wang, C.; Yan, Z.; Jiang, H.; Xu, H. Magnetic Particles Modification of Coconut Shell-Derived Activated Carbon and Biochar for Effective Removal of Phenol from Water. Chemosphere 2018, 211, 962–969. [CrossRef] [PubMed]44. Georgin, J.; da Boit Martinello, K.; Franco, D.S.P.; Netto, M.S.; Piccilli, D.G.A.; Yilmaz, M.; Silva, L.F.O.; Dotto, G.L. Residual Peel of Pitaya Fruit (Hylocereus Undatus) as a Precursor to Obtaining an Efficient Carbon-Based Adsorbent for the Removal of Metanil Yellow Dye from Water. J. Environ. Chem. Eng. 2022, 10, 107006. [CrossRef]45. Lang, J.; Matˇejová, L.; Cuentas-Gallegos, A.K.; Lobato-Peralta, D.R.; Ainassaari, K.; Gómez, M.M.; Solís, J.L.; Mondal, D.; Keiski, R.L.; Cruz, G.J.F. Evaluation and Selection of Biochars and Hydrochars Derived from Agricultural Wastes for the Use as Adsorbent and Energy Storage Materials. J. Environ. Chem. Eng. 2021, 9, 105979. [CrossRef]46. El-gamal, E.H.; Saleh, M.; Elsokkary, I.; Rashad, M.; El-latif, M.M.A. Comparison between Properties of Biochar Produced by Traditional and Controlled Pyrolysis Comparison between Properties of Biochar Produced by Traditional and Controlled Pyrolysis. Alex. Sci. Exch. J. 2017, 38, 412–425.47. Tomul, F.; Arslan, Y.; Kabak, B.; Trak, D.; Kendüzler, E.; Lima, E.C.; Tran, H.N. Peanut Shells-Derived Biochars Prepared from Different Carbonization Processes: Comparison of Characterization and Mechanism of Naproxen Adsorption in Water. Sci. Total Environ. 2020, 726, 137828. [CrossRef]48. Zhang, S.; Ji, Y.; Dang, J.; Zhao, J.; Chen, S. Magnetic Apple Pomace Biochar: Simple Preparation, Characterization, and Application for Enriching Ag(I) in Effluents. Sci. Total Environ. 2019, 668, 115–123. [CrossRef]49. Mohammed, N.A.S.; Abu-Zurayk, R.A.; Hamadneh, I.; Al-Dujaili, A.H. Phenol Adsorption on Biochar Prepared from the Pine Fruit Shells: Equilibrium, Kinetic and Thermodynamics Studies. J. Environ. Manag. 2018, 226, 377–385. [CrossRef]50. Obey, G.; Adelaide, M.; Ramaraj, R. Biochar Derived from Non-Customized Matamba Fruit Shell as an Adsorbent for Wastewater Treatment. J. Bioresour. Bioprod. 2022, 7, 109–115. [CrossRef]51. Lawal, A.A.; Hassan, M.A.; Zakaria, M.R.; Yusoff, M.Z.M.; Norrrahim, M.N.F.; Mokhtar, M.N.; Shirai, Y. Effect of Oil Palm Biomass Cellulosic Content on Nanopore Structure and Adsorption Capacity of Biochar. Bioresour. Technol. 2021, 332, 125070. [CrossRef] [PubMed]52. Albalasmeh, A.; Gharaibeh, M.A.; Mohawesh, O.; Alajlouni, M.; Quzaih, M.; Masad, M.; El Hanandeh, A. Characterization and Artificial Neural Networks Modelling of Methylene Blue Adsorption of Biochar Derived from Agricultural Residues: Effect of Biomass Type, Pyrolysis Temperature, Particle Size. J. Saudi Chem. Soc. 2020, 24, 811–823. [CrossRef]53. Giri, D.D.; Jha, J.M.; Srivastava, N.; Hashem, A.; Abd_Allah, E.F.; Shah, M.; Pal, D.B. Sustainable Removal of Arsenic from Simulated Wastewater Using Solid Waste Seed Pods Biosorbents of Cassia Fistula L. Chemosphere 2022, 287, 132308. [CrossRef] [PubMed]54. Streit, A.F.M.; Côrtes, L.N.; Druzian, S.P.; Godinho, M.; Collazzo, G.C.; Perondi, D.; Dotto, G.L. Development of High Quality Activated Carbon from Biological Sludge and Its Application for Dyes Removal from Aqueous Solutions. Sci. Total Environ. 2019, 660, 277–287. [CrossRef] [PubMed]55. Wu, C.; Fu, L.; Li, H.; Liu, X.; Wan, C. Using Biochar to Strengthen the Removal of Antibiotic Resistance Genes: Performance and Mechanism. Sci. Total Environ. 2022, 816, 151554. [CrossRef]56. Yıldız, Z.; Kaya, N.; Topcu, Y.; Uzun, H. Pyrolysis and Optimization of Chicken Manure Wastes in Fluidized Bed Reactor: CO2 Capture in Activated Bio-Chars. Process Saf. Environ. Prot. 2019, 130, 297–305. [CrossRef]57. Idrees, M.; Batool, S.; Kalsoom, T.; Yasmeen, S.; Kalsoom, A.; Raina, S.; Zhuang, Q.; Kong, J. Animal Manure-Derived Biochars Produced via Fast Pyrolysis for the Removal of Divalent Copper from Aqueous Media. J. Environ. Manag. 2018, 213, 109–118. [CrossRef]58. Creamer, A.E.; Gao, B. Carbon-Based Adsorbents for Postcombustion CO2 Capture: A Critical Review. Environ. Sci. Technol. 2016, 50, 7276–7289. [CrossRef]59. Hoffmann, J.F.; Barbieri, R.L.; Rombaldi, C.V.; Chaves, F.C. Butia Spp. (Arecaceae): An Overview. Sci. Hortic. 2014, 179, 122–131. [CrossRef]60. Sosinski, Ê.E.; Urruth, L.M.; Barbieri, R.L.; Marchi, M.M.; Martens, S.G. On the Ecological Recognition of Butia Palm Groves as Integral Ecosystems: Why Do We Need to Widen the Legal Protection and the in Situ/on-Farm Conservation Approaches? Land Use Policy 2019, 81, 124–130. [CrossRef]61. de Jesus Matias Ventura, L.; Pereira, G.S.L.; Mazzottini-dos-Santos, H.C.; de Lima, J.P.; Mercadante-Simões, M.O.; Lopes, P.S.N.; Ribeiro, L.M. Cytological Aspects of Butia Capitata (Arecaceae) Fruit Maturation and Senescence. Sci. Hortic. 2022, 297, 110938. [CrossRef]62. dos Santos Cruxen, C.E.; Hoffmann, J.F.; Zandoná, G.P.; Fiorentini, Â.M.; Rombaldi, C.V.; Chaves, F.C. Probiotic Butiá (Butia Odorata) Ice Cream: Development, Characterization, Stability of Bioactive Compounds, and Viability of Bifidobacterium Lactis during Storage. LWT 2017, 75, 379–385. [CrossRef]63. Camboim Rockett, F.; de Oliveira Schmidt, H.; Schmidt, L.; Rodrigues, E.; Tischer, B.; Ruffo de Oliveira, V.; Lima da Silva, V.; Rossini Augusti, P.; Hickmann Flôres, S.; Rios, A. Phenolic Compounds and Antioxidant Activity in Vitro and in Vivo of Butia and Opuntia Fruits. Food Res. Int. 2020, 137, 109740. [CrossRef] [PubMed]64. Barbieri, R.L.; Gomes, J.C.C.; Alercia, A.; Padulosi, S. Agricultural Biodiversity in Southern Brazil: Integrating Efforts for Conservation and Use of Neglected and Underutilized Species. Sustainability 2014, 6, 741–757. [CrossRef]65. Haubert, L.; Zehetmeyr, M.L.; Pereira, Y.M.N.; Kroning, I.S.; Maia, D.S.V.; Sehn, C.P.; Lopes, G.V.; de Lima, A.S.; da Silva, W.P. Tolerance to Benzalkonium Chloride and Antimicrobial Activity of Butia Odorata Barb. Rodr. Extract in Salmonella Spp. Isolates from Food and Food Environments. Food Res. Int. 2019, 116, 652–659. [CrossRef]66. Maia, D.S.V.; Haubert, L.; Kroning, I.S.; Soares, K.; dos, S.; Oliveira, T.L.; da Silva, W.P. Biofilm Formation by Staphylococcus Aureus Isolated from Food Poisoning Outbreaks and Effect of Butia Odorata Barb. Rodr. Extract on Planktonic and Biofilm Cells. LWT 2020, 117, 108685. [CrossRef]67. Vieira, B.M.; Elicker, C.; Nunes, C.F.P.; Bairros, A.V.; Becker, E.M.; de Oliveira, D.M.; Piva, E.; Fontoura, L.A.M.; Pereira, C.M.P. The Synthesis and Characterization of Butia Capitata Seed Oil as a FAME Feedstock. Fuel 2016, 184, 533–535. [CrossRef]68. Zanuttini, M.S.; Pisarello, M.L.; Querini, C.A. Butia Yatay Coconut Oil: Process Development for Biodiesel Production and Kinetics of Esterification with Ethanol. Energy Convers. Manag. 2014, 85, 407–416. [CrossRef]69. Peralta, S.L.; de Carvalho, P.H.A.; Ccahuana-Vásquez, R.A.; de Pereira, C.M.P.; Cury, J.A.; Piva, E.; Lund, R.G. Cytotoxicity, Genotoxicity and Antibiofilm Activity on Streptococcus Mutans of an Experimental Self-Etching Adhesive System Containing Natural Butia Capitata Oil. Int. J. Adhes. Adhes. 2017, 78, 95–101. [CrossRef]70. Cruz, P.N.; Pereira, T.C.S.; Guindani, C.; Oliveira, D.A.; Rossi, M.J.; Ferreira, S.R.S. Antioxidant and Antibacterial Potential of Butia (Butia Catarinensis) Seed Extracts Obtained by Supercritical Fluid Extraction. J. Supercrit. Fluids 2017, 119, 229–237. [CrossRef]71. Kerkhoff, C.M.; da Boit Martinello, K.; Franco, D.S.P.; Netto, M.S.; Georgin, J.; Foletto, E.L.; Piccilli, D.G.A.; Silva, L.F.O.; Dotto, G.L. Adsorption of Ketoprofen and Paracetamol and Treatment of a Synthetic Mixture by Novel Porous Carbon Derived from Butia Capitata Endocarp. J. Mol. Liq. 2021, 339, 117184. [CrossRef]72. Cunha, M.R.; Lima, E.C.; Lima, D.R.; da Silva, R.S.; Thue, P.S.; Seliem, M.K.; Sher, F.; dos Reis, G.S.; Larsson, S.H. Removal of Captopril Pharmaceutical from Synthetic Pharmaceutical-Industry Wastewaters: Use of Activated Carbon Derived from Butia Catarinensis. J. Environ. Chem. Eng. 2020, 8, 104506. [CrossRef]73. Mishra, R.K. Pyrolysis of Low-Value Waste Switchgrass: Physicochemical Characterization, Kinetic Investigation, and Online Characterization of Hot Pyrolysis Vapours. Bioresour. Technol. 2022, 347, 126720. [CrossRef] [PubMed]74. Selvarajoo, A.; Oochit, D. Effect of Pyrolysis Temperature on Product Yields of Palm Fibre and Its Biochar Characteristics. Mater. Sci. Energy Technol. 2020, 3, 575–583. [CrossRef]75. de Godois Baroni, É.; Tannous, K.; Rueda-Ordóñez, Y.J.; Tinoco-navarro, L.K. The Applicability of Isoconversional Models in Estimating the Kinetic Parameters of Biomass Pyrolysis. J. Ther. Anal. Calorim. 2015, 123, 909–917. [CrossRef]76. Aygün, A.; Yenisoy-Karaka¸s, S.; Duman, I. Production of Granular Activated Carbon from Fruit Stones and Nutshells and Evaluation of Their Physical, Chemical and Adsorption Properties. Microporous Mesoporous Mater. 2003, 66, 189–195. [CrossRef]77. Santos, V.O.; Queiroz, L.S.; Araujo, R.O.; Ribeiro, F.C.P.; Guimarães, M.N.; Carlos, E.F.; Chaar, J.S.; De Souza, L.K.C. Pyrolysis of Acai Seed Biomass: Kinetics and Thermodynamic Parameters Using Thermogravimetric Analysis. Bioresour. Technol. Reports 2020, 12, 100553. [CrossRef]78. Ahmad, M.S.; Mehmood, M.A.; Al Ayed, O.S.; Ye, G.; Luo, H.; Ibrahim, M.; Rashid, U.; Arbi Nehdi, I.; Qadir, G. Kinetic Analyses and Pyrolytic Behavior of Para Grass (Urochloa Mutica) for Its Bioenergy Potential. Bioresour. Technol. 2017, 224, 708–713. [CrossRef]79. Toribio-cuaya, H.; Pedraza-segura, L.; Macías-bravo, S. Biological and Physical Sciences Characterization of Lignocellulosic Biomass Using Five Simple Steps. J. Chem. Biol. Phys. Sci. 2014, 4, 28–49.80. Siqueira, P.; Mabel, M.; Helena, R.; De Oliveira, J.; Prado, A.; Matias, S.; Alencar, D. Açaí Seeds: An Unexplored Agro-Industrial Residue as a Potential Source of Lipids, Fibers, and Antioxidant Phenolic Compounds. Ind. Crops Prod. 2021, 161, 113204.81. Rasool, T.; Najar, I.; Chandra, V.; Pandey, A. Pyrolysis of Almond (Prunus Amygdalus) Shells: Kinetic Analysis, Modelling, Energy Assessment and Technical Feasibility Studies. Bioresour. Technol. 2021, 337, 125466. [CrossRef] [PubMed]82. Hansted, A.L.S.; Cacuro, T.A.; Nakashima, G.T.; Costa, V.E.; Yamamoto, H.; Yamaji, F.M. Industrial Crops & Products Use of a Lignocellulosic Residue as Solid Fuel: The e Ff Ect of Ash Content in the Energy Potential. Ind. Crops Prod. 2018, 116, 209–214. [CrossRef]83. Reshad, A.S.; Tiwari, P.; Goud, V.V. Thermo-Chemical Conversion of Waste Rubber Seed Shell to Produce Fuel and Value-Added Chemicals. J. Energy Inst. 2018, 91, 940–950. [CrossRef]84. Sangaré, D.; Bostyn, S.; Santillán, M.M.; García-Alamilla, P.; Belandria, V.; Gökalp, I. Comparative Pyrolysis Studies of Lignocellulosic Biomasses: Online Gas Quantification, Kinetics Triplets, and Thermodynamic Parameters of the Process. Bioresour. Technol. 2022, 346, 126598. [CrossRef] [PubMed]85. Rambo, M.K.D.; Alexandre, G.P.; Rambo, M.C.D.; Alves, A.R.; Garcia, W.T.; Baruque, E. Characterization of Biomasses from the North and Northeast Regions of Brazil for Processes in Biorefineries. Food Sci. Technol. 2015, 35, 605–611. [CrossRef]86. Li, S.; Li, J.; Xu, J. Investigating the Release Behavior of Biomass and Coal during the Co-Pyrolysis Process. Int. J. Hydrog. Energy 2021, 46, 34652–34662. [CrossRef]87. Cui, T.; Xu, J.; Fan, W.; Chang, Q.; Yu, G.; Wang, F. Experimental Study on Fragmental Behavior of Coals and Biomasses during Rapid Pyrolysis. Bioresour. Technol. 2016, 222, 439–447. [CrossRef]88. Vasudev, V.; Ku, X.; Lin, J. Kinetic Study and Pyrolysis Characteristics of Algal and Lignocellulosic Biomasses. Bioresour. Technol. 2019, 288, 121496. [CrossRef]89. Sahoo, A.; Kumar, S.; Kumar, J.; Bhaskar, T. A Detailed Assessment of Pyrolysis Kinetics of Invasive Lignocellulosic Biomasses (Prosopis Juliflora and Lantana Camara) by Thermogravimetric Analysis. Bioresour. Technol. 2021, 319, 124060. [CrossRef]90. Aguiar, M.C.S.; Silvério, F.O.; de Pinho, G.P.; Lopes, P.S.N.; Fidêncio, P.H.; Ventura, S.J. Volatile Compounds from Fruits of Butia Capitata at Different Stages of Maturity and Storage. Food Res. Int. 2014, 62, 1095–1099. [CrossRef]91. Kumar, M.; Kumar, S.; Upadhyay, S.N.; Mishra, P.K. Analysis of Thermal Degradation of Banana (Musa Balbisiana) Trunk Biomass Waste Using Iso-Conversional Models. Bioresour. Technol. 2020, 310, 123393. [CrossRef] [PubMed]92. Hernowo, P.; Steven, S.; Restiawaty, E.; Irawan, A.; Borromeus, C.; Marno, S.; Meliana, Y.; Bindar, Y. Chemicals Component Yield Prediction and Kinetic Parameters Determination of Oil Palm Shell Pyrolysis through Volatile State Approach and Experimental Study. J. Anal. Appl. Pyrolysis 2022, 161, 105399. [CrossRef]93. Raza, M.; Abu-jdayil, B.; Al-marzouqi, A.H.; Inayat, A. Kinetic and Thermodynamic Analyses of Date Palm Surface Fi Bers Pyrolysis Using Coats-Redfern Method. Renew. Energy 2022, 183, 67–77. [CrossRef]94. Cai, J.; He, Y.; Yu, X.; Banks, S.W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A.V. Review of Physicochemical Properties and Analytical Characterization of Lignocellulosic Biomass. Renew. Sustain. Energy Rev. 2017, 76, 309–322. [CrossRef]95. Ma, Z.; Chen, D.; Gu, J.; Bao, B.; Zhang, Q. Determination of Pyrolysis Characteristics and Kinetics of Palm Kernel Shell Using TGA—FTIR and Model-Free Integral Methods. Energy Convers. Manag. 2015, 89, 251–259. [CrossRef]96. Salgado-ramos, M.; Martí-quijal, F.J.; Huertas-alonso, A.J.; Barba, F.J. Almond Hull Biomass: Preliminary Characterization and Development of Two Alternative Valorization Routes by Applying Innovative and Sustainable Technologies. Ind. Crops Prod. 2022, 179, 114697. [CrossRef]97. Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [CrossRef]98. Poletto, M.; Zattera, A.J.; Forte, M.M.C.; Santana, R.M.C. Thermal Decomposition of Wood: Influence of Wood Components and Cellulose Crystallite Size. Bioresour. Technol. 2012, 109, 148–153. [CrossRef]99. Zazycki, M.A.; Godinho, M.; Perondi, D.; Foletto, E.L.; Collazzo, G.C.; Dotto, G.L. New Biochar from Pecan Nutshells as an Alternative Adsorbent for Removing Reactive Red 141 from Aqueous Solutions. J. Clean. Prod. 2018, 171, 57–65. [CrossRef]100. Franciski, M.A.; Peres, E.C.; Godinho, M.; Perondi, D.; Foletto, E.L.; Collazzo, G.C.; Dotto, G.L. Development of CO2 Activated Biochar from Solid Wastes of a Beer Industry and Its Application for Methylene Blue Adsorption. Waste Manag. 2018, 78, 630–638. [CrossRef]101. Rijo, B.; Paula, A.; Dias, S.; Ramos, M.; Ameixa, M. Valorization of Forest Waste Biomass by Catalyzed Pyrolysis. Energy 2022, 243, 122766. [CrossRef]102. Mishra, R.K.; Lu, Q.; Mohanty, K. Thermal Behaviour, Kinetics and Fast Pyrolysis of Cynodon Dactylon Grass Using Py-GC/MS and Py-FTIR Analyser. J. Anal. Appl. Pyrolysis 2020, 150, 104887. [CrossRef]103. Shi, J.; Xing, D.; Li, J. FTIR Studies of the Changes in Wood Chemistry from Wood Forming Tissue under Inclined Treatment. Energy Procedia 2012, 16, 758–762. [CrossRef]104. Bentes, V.L.I.; Nobre, F.X.; Barros, I.C.L.; Couceiro, P.R.C. Composite of Iron Phosphate-Supported Carbon from the Açaí (Euterpe Oleracea) as a Solid Catalyst for Photo-Fenton Reactions. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100520. [CrossRef]105. Li, C.; Sun, Y.; Yi, Z.; Zhang, L.; Zhang, S.; Hu, X. Co-Pyrolysis of Coke Bottle Wastes with Cellulose, Lignin and Sawdust: Impacts of the Mixed Feedstock on Char Properties. Renew. Energy 2022, 181, 1126–1139. [CrossRef]106. Faria, J.P.; Arellano, D.B.; Grimaldi, R.; Silva, L.D.C.R.; Vieira, R.F.; Silva, D.D.B.; Agostini-costa, T.D.S. Chemical Characterization of Nut of Butia Capitata Var Capitata. Rev. Bras. Frutic. 2008, 30, 549–552. [CrossRef]107. Kobelnik, M.; Fontanari, G.G.; Marques, M.R.; Ribeiro, C.A.; Crespi, M.S. Thermal Behavior and Chromatographic Characterization of Oil Extracted from the Nut of the Butia (Butia Capitata). J. Therm. Anal. Calorim. 2016, 123, 2517–2522. [CrossRef]108. Peralta, S.L.; Carvalho, P.H.A.; van de Sande, F.H.; Pereira, C.M.P.; Piva, E.; Lund, R.G. Self-Etching Dental Adhesive Containing a Natural Essential Oil: Anti-Biofouling Performance and Mechanical Properties. Biofouling 2013, 29, 345–355. [CrossRef]109. De Conto, D.; Silvestre, W.P.; Baldasso, C.; Godinho, M. Performance of Rotary Kiln Reactor for the Elephant Grass Pyrolysis. Bioresour. Technol. 2016, 218, 153–160. [CrossRef]110. Chang, G.; Huang, Y.; Xie, J.; Yang, H.; Liu, H.; Yin, X.; Wu, C. The Lignin Pyrolysis Composition and Pyrolysis Products of Palm Kernel Shell, Wheat Straw, and Pine Sawdust. Energy Convers. Manag. 2016, 124, 587–597. [CrossRef]111. Soltani, N.; Bahrami, A.; González, L.A. Review on the Physicochemical Treatments of Rice Husk for Production of Advanced Materials. Chem. Eng. J. 2015, 264, 899–935. [CrossRef]112. Teixeira, V.G.; Coutinho, F.M.B.; Gomes, A.S. Principais Métodos de Caracterização Da Porosidade de Resinas à Base de Divinilbenzeno. Quim. Nova 2001, 24, 808–818. [CrossRef]113. IUPAC. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure Appl. Chem. 1972, 31, 577–638. [CrossRef]114. Ambroz, F.; Macdonald, T.J.; Martis, V.; Parkin, I.P. Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small Methods 2018, 2, 1800173. [CrossRef]115. Darmawan, S.; Wistara, N.J.; Pari, G.; Maddu, A.; Syafii, W. Characterization of Lignocellulosic Biomass as Raw Material for the Production of Porous Carbon-Based Materials. BioResources 2016, 11, 3561–3574. [CrossRef]116. Cagnon, B.; Py, X.; Guillot, A.; Stoeckli, F.; Chambat, G. Contributions of Hemicellulose, Cellulose and Lignin to the Mass and the Porous Properties of Chars and Steam Activated Carbons from Various Lignocellulosic Precursors. Bioresour. Technol. 2009, 100, 292–298. [CrossRef]117. Daud, W.M.A.W.; Ali, W.S.W. Comparison on Pore Development of Activated Carbon Produced from Palm Shell and Coconut Shell. Bioresour. Technol. 2004, 93, 63–69. [CrossRef]118. Danish, M.; Hashim, R.; Ibrahim, M.N.M. Optimized Preparation for Large Surface Area Activated Carbon from Date (Phoenix dactylifera L.) Stone Biomass. Biomass Bioenergy 2014, 61, 167–178. [CrossRef]119. Peterson, S.C.; Jackson, M.A.; Kim, S.; Palmquist, D.E. Increasing Biochar Surface Area: Optimization of Ball Milling Parameters. Powder Technol. 2012, 228, 115–120. [CrossRef]120. Zhang, Y.; Qin, J.; Yi, Y. Biochar and Hydrochar Derived from Freshwater Sludge: Characterization and Possible Applications. Sci. Total Environ. 2021, 763, 144550. [CrossRef]121. Manera, C.; Perondi, D.; Godinho, M. Production of Micro-Mesoporous Activated Carbons from Various Citrus Waste. In Proceedings of the IV Congresso Internacional de Biomassa, Curitiba, Brazil, 25–27 June 2019.122. Mohan, D.; Rajput, S.; Singh, V.K.; Steele, P.H.; Pittman, C.U. Modeling and Evaluation of Chromium Remediation from Water Using Low Cost Bio-Char, a Green Adsorbent. J. Hazard. Mater. 2011, 188, 319–333. [CrossRef] [PubMed]123. Li, S.-Q.; Yao, Q.; Wen, S.-E.; Chi, Y.; Yan, J.-H. Properties of Pyrolytic Chars and Activated Carbons Derived from Pilot-Scale Pyrolysis of Used Tires. J. Air Waste Manag. Assoc. 2005, 55, 1315–1326. [CrossRef] [PubMed]124. Botomé, M.L.; Poletto, P.; Junges, J.; Perondi, D.; Dettmer, A.; Godinho, M. Preparation and Characterization of a Metal-Rich Activated Carbon from CCA-Treated Wood for CO2 Capture. Chem. Eng. J. 2017, 321, 614–621. [CrossRef]125. Sabri, M.A.; Al Jitan, S.; Bahamon, D.; Vega, L.F.; Palmisano, G. Current and Future Perspectives on Catalytic-Based Integrated Carbon Capture and Utilization. Sci. Total Environ. 2021, 790, 148081. [CrossRef]126. Zhang, X.; Cao, L.; Xiang, W.; Xu, Y.; Gao, B. Preparation and Evaluation of Fine-Tuned Micropore Biochar by Lignin Impregnation for CO2 and VOCs Adsorption. Sep. Purif. Technol. 2022, 295, 121295. [CrossRef]127. Wjihi, S.; Aouaini, F.; Erto, A.; Balsamo, M.; Lamine, A. Ben Advanced Interpretation of CO2 Adsorption Thermodynamics onto Porous Solids by Statistical Physics Formalism. Chem. Eng. J. 2021, 406, 126669. [CrossRef]128. Heidari, A.; Younesi, H.; Rashidi, A.; Ghoreyshi, A.A. Adsorptive Removal of CO2 on Highly Microporous Activated Carbons Prepared from Eucalyptus Camaldulensis Wood: Effect of Chemical Activation. J. Taiwan Inst. Chem. Eng. 2014, 45, 579–588. [CrossRef]129. Du, X.; Cheng, Y.; Liu, Z.; Hou, Z.; Wu, T.; Lei, R.; Shu, C. Study on the Adsorption of CH4, CO2 and Various CH4/CO2 Mixture Gases on Shale. Alex. Eng. J. 2020, 59, 5165–5178. [CrossRef]130. Singh, J.; Basu, S.; Bhunia, H. CO2 Capture by Modified Porous Carbon Adsorbents: Effect of Various Activating Agents. J. Taiwan Inst. Chem. Eng. 2019, 102, 438–447. [CrossRef]131. Li, M.; Xiao, R. Preparation of a Dual Pore Structure Activated Carbon from Rice Husk Char as an Adsorbent for CO2 Capture. Fuel Process. Technol. 2019, 186, 35–39. [CrossRef]132. TAPPI T 204 Cm-97; Solvent Extractives of Wood and Pulp. Tappi Press: Atlanta, GA, USA, 1997.133. ASTM. Standard Practice for Proximate Analysis of Coal and Coke. In Annual Book of ASTM Standards; ASTM International: West Conshohoken, PA, USA, 1993; pp. D3172–D3189.134. Van Soest, P.J.; Wine, R.H. Determination of Lignin and Cellulose in Acid-Detergent Fiber with Permanganate. J. AOAC Int. 1968, 51, 780–785. [CrossRef]135. Singh, G.; Kim, I.Y.; Lakhi, K.S.; Srivastava, P.; Naidu, R.; Vinu, A. Single Step Synthesis of Activated Bio-Carbons with a High Surface Area and Their Excellent CO2 Adsorption Capacity. Carbon N. Y. 2017, 116, 448–455. [CrossRef]136. Nasri, N.S.; Hamza, U.D.; Ismail, S.N.; Ahmed, M.M.; Mohsin, R. Assessment of Porous Carbons Derived from Sustainable Palm Solid Waste for Carbon Dioxide Capture. J. Clean. Prod. 2014, 71, 148–157. [CrossRef]137. Wedler, C.; Span, R. A Pore-Structure Dependent Kinetic Adsorption Model for Consideration in Char Conversion—Adsorption Kinetics of CO2 on Biomass Chars. Chem. Eng. Sci. 2021, 231, 116281. [CrossRef]138. Ello, A.S.; De Souza, L.K.C.; Trokourey, A.; Jaroniec, M. Coconut Shell-Based Microporous Carbons for CO2 Capture. Microporous Mesoporous Mater. 2013, 180, 280–283. [CrossRef]139. Conte, G.; Stelitano, S.; Policicchio, A.; Minuto, F.D.; Lazzaroli, V.; Galiano, F.; Agostino, R.G. Assessment of Activated Carbon Fibers from Commercial Kevlar® as Nanostructured Material for Gas Storage: Effect of Activation Procedure and Adsorption of CO2 and CH4. J. Anal. Appl. Pyrolysis 2020, 152, 104974. [CrossRef]140. Singh, G.; Kim, I.Y.; Lakhi, K.S.; Joseph, S.; Srivastava, P.; Naidu, R.; Vinu, A. Heteroatom Functionalized Activated Porous Biocarbons and Their Excellent Performance for CO2 Capture at High Pressure. J. Mater. Chem. A 2017, 5, 21196–21204. [CrossRef]141. Choi, S.W.; Tang, J.; Pol, V.G.; Lee, K.B. Pollen-Derived Porous Carbon by KOH Activation: Effect of Physicochemical Structure on CO2 Adsorption. J. CO2 Util. 2019, 29, 146–155. [CrossRef]142. Serafin, J.; Narkiewicz, U.; Morawski, A.W.; Wróbel, R.J.; Michalkiewicz, B. Highly Microporous Activated Carbons from Biomass for CO2 Capture and Effective Micropores at Different Conditions. J. CO2 Util. 2017, 18, 73–79. [CrossRef]143. Bae, J.S.; Su, S. Macadamia Nut Shell-Derived Carbon Composites for Post Combustion CO2 Capture. Int. J. Greenh. Gas Control 2013, 19, 174–182. [CrossRef]144. Zhu, X.L.; Wang, P.Y.; Peng, C.; Yang, J.; Yan, X. Bin Activated Carbon Produced from Paulownia Sawdust for High-Performance CO2 Sorbents. Chin. Chem. Lett. 2014, 25, 929–932. [CrossRef]145. Labus, K.; Gryglewicz, S.; Machnikowski, J. Granular KOH-Activated Carbons from Coal-Based Cokes and Their CO2 Adsorption Capacity. Fuel 2014, 118, 9–15. [CrossRef]146. Quan, C.; Wang, H.; Jia, X.; Gao, N. Effect of Carbonization Temperature on CO2 Adsorption Behavior of Activated Coal Char. J. Energy Inst. 2021, 97, 92–99. [CrossRef]147. Ello, A.S.; De Souza, L.K.C.; Trokourey, A.; Jaroniec, M. Development of Microporous Carbons for CO2 Capture by KOH Activation of African Palm Shells. J. CO2 Util. 2013, 2, 35–38. [CrossRef]148. Cong, H.; Zhang, M.; Chen, Y.; Chen, K.; Hao, Y.; Zhao, Y.; Feng, L. Highly Selective CO2 Capture by Nitrogen Enriched Porous Carbons. Carbon N. Y. 2015, 92, 297–304. [CrossRef]149. Hao, W.; Björkman, E.; Lilliestråle, M.; Hedin, N. Activated Carbons Prepared from Hydrothermally Carbonized Waste Biomass Used as Adsorbents for CO2 . Appl. Energy 2013, 112, 526–532. [CrossRef]150. Pramanik, P.; Patel, H.; Charola, S.; Neogi, S.; Maiti, S. High Surface Area Porous Carbon from Cotton Stalk Agro-Residue for CO2 adsorption and Study of Techno-Economic Viability of Commercial Production. J. CO2 Util. 2021, 45, 101450. [CrossRef]151. Parshetti, G.K.; Chowdhury, S.; Balasubramanian, R. Biomass Derived Low-Cost Microporous Adsorbents for Efficient CO2 Capture. Fuel 2015, 148, 246–254. [CrossRef]152. Song, J.; Shen, W.; Wang, J.; Fan, W. Superior Carbon-Based CO2 Adsorbents Prepared from Poplar Anthers. Carbon N. Y. 2014, 69, 255–263. [CrossRef]1812127Butiá wastesPyrolysisButiá biocharH2 generationCO2 adsorptionPublicationORIGINALValorization of Different Fractions from Butiá Pomace by Pyrolysis.pdfValorization of Different Fractions from Butiá Pomace by Pyrolysis.pdfArtículoapplication/pdf3061297https://repositorio.cuc.edu.co/bitstreams/6869c707-924c-4ec3-80e6-ad15439b7331/download5e32c334a4a317fd8125d80229b3a178MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/01f6ae28-160f-49f5-a00b-44c02da36385/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTValorization of Different Fractions from Butiá Pomace by Pyrolysis.pdf.txtValorization of Different Fractions from Butiá Pomace by Pyrolysis.pdf.txtExtracted texttext/plain81065https://repositorio.cuc.edu.co/bitstreams/ea9ee2bb-f85d-43fa-86b1-026bbc7184dd/download61fbe6fae165296eeaf7ce1b087fa638MD53THUMBNAILValorization of Different Fractions from Butiá Pomace by Pyrolysis.pdf.jpgValorization of Different Fractions from Butiá Pomace by Pyrolysis.pdf.jpgGenerated Thumbnailimage/jpeg16323https://repositorio.cuc.edu.co/bitstreams/f37c7b20-b19c-482a-ade2-67c427184b97/download63e00aa8d33e8006a46d1e219e0fffa7MD5411323/10912oai:repositorio.cuc.edu.co:11323/109122024-09-17 10:58:53.257https://creativecommons.org/licenses/by/4.0/© 2022 by the authors. Licensee MDPI, Basel, Switzerland.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |