Valorization of different fractions from butiá pomace by pyrolysis: H2 generation and use of the biochars for CO2 capture

This work valorizes butiá pomace (Butia capitata) using pyrolysis to prepare CO2 adsorbents. Different fractions of the pomace, like fibers, endocarps, almonds, and deoiled almonds, were characterized and later pyrolyzed at 700 °C. Gas, bio-oil, and biochar fractions were collected and characterized...

Full description

Autores:
dos Santos Nunes, Isaac
Schnorr, Carlos
Perondi, Daniele
Godinho, Marcelo
Diel, Julia C.
Machado, Lauren M. M.
Dalla Nora, Fabíola B.
Silva Oliveira, Luis Felipe
Dotto, Guilherme Luiz
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10912
Acceso en línea:
https://hdl.handle.net/11323/10912
https://repositorio.cuc.edu.co/
Palabra clave:
Butiá wastes
Pyrolysis
Butiá biochar
H2 generation
CO2 adsorption
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
Description
Summary:This work valorizes butiá pomace (Butia capitata) using pyrolysis to prepare CO2 adsorbents. Different fractions of the pomace, like fibers, endocarps, almonds, and deoiled almonds, were characterized and later pyrolyzed at 700 °C. Gas, bio-oil, and biochar fractions were collected and characterized. The results revealed that biochar, bio-oil, and gas yields depended on the type of pomace fraction (fibers, endocarps, almonds, and deoiled almonds). The higher biochar yield was obtained by endocarps (31.9%wt.). Furthermore, the gas fraction generated at 700 °C presented an H2 content higher than 80%vol regardless of the butiá fraction used as raw material. The biochars presented specific surface areas reaching 220.4 m2 g−1. Additionally, the endocarp-derived biochar presented a CO2 adsorption capacity of 66.43 mg g−1 at 25 °C and 1 bar, showing that this material could be an effective adsorbent to capture this greenhouse gas. Moreover, this capacity was maintained for 5 cycles. Biochars produced from butiá precursors without activation resulted in a higher surface area and better performance than some activated carbons reported in the literature. The results highlighted that pyrolysis could provide a green solution for butiá agro-industrial wastes, generating H2 and an adsorbent for CO2.