Conceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías
Introducción— El dengue es una enfermedad tropical transmitida por mosquito que según reportes de la Organización Mundial de la Salud-OMS deja unos 390 millones de personas infectadas cada año, es una de las enfermedades que más afecta la salud de la población y la economía a nivel mundial. En conse...
- Autores:
-
ARRUBLA HOYOS, WILSON DE JESÚS
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9091
- Acceso en línea:
- https://hdl.handle.net/11323/9091
https://doi.org/10.17981/cesta.03.01.2022.01
https://repositorio.cuc.edu.co/
- Palabra clave:
- Aprendizaje automático
Inteligencia artificial
Dengue
Big data
Machine learning
Artificial Intelligence
Dengue fever
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_b0bdc222a08ff40db8c823a51feb100b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9091 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Conceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías |
dc.title.translated.eng.fl_str_mv |
Conceptualization of the diagnosis of Dengue from an engineering and new technology perspective |
title |
Conceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías |
spellingShingle |
Conceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías Aprendizaje automático Inteligencia artificial Dengue Big data Machine learning Artificial Intelligence Dengue fever |
title_short |
Conceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías |
title_full |
Conceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías |
title_fullStr |
Conceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías |
title_full_unstemmed |
Conceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías |
title_sort |
Conceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías |
dc.creator.fl_str_mv |
ARRUBLA HOYOS, WILSON DE JESÚS |
dc.contributor.author.spa.fl_str_mv |
ARRUBLA HOYOS, WILSON DE JESÚS |
dc.subject.proposal.spa.fl_str_mv |
Aprendizaje automático Inteligencia artificial Dengue |
topic |
Aprendizaje automático Inteligencia artificial Dengue Big data Machine learning Artificial Intelligence Dengue fever |
dc.subject.proposal.eng.fl_str_mv |
Big data Machine learning Artificial Intelligence Dengue fever |
description |
Introducción— El dengue es una enfermedad tropical transmitida por mosquito que según reportes de la Organización Mundial de la Salud-OMS deja unos 390 millones de personas infectadas cada año, es una de las enfermedades que más afecta la salud de la población y la economía a nivel mundial. En consecuencia, Se han realizado esfuerzos desde diferentes áreas del saber donde se incluyen las Tecnologías de la Información y Comunicación-TIC para hacer frente a esta enfermedad. Objetivos— El objetivo de este artículo es presentar una conceptualización de la enfermedad del dengue desde una perspectiva de la ingeniería, caracterizando su comportamiento en las personas y como las principales tecnologías están realizando investigaciones para la predicción temprana. Métodología— Para su desarrollo se consultaron bases de datos especializadas como SCOPUS, WOS, IEEE, PUBMED utilizando cadenas de búsquedas que relacionan palabras claves de la enfermedad y las tecnologías de la información. Resultado: Como resultado se obtuvo que las principales tecnologías son el Machine Learning, el Big Data y la Inteligencia artificial con el desarrollo de modelos capaces de predecir la enfermedad de manera temprana. Existen muchas técnicas específicas que se utilizan, sin embargo, no se abordan en este artículo, solo se presenta la conceptualización de las tecnologías principales. Conclusiones— Se logra concluir que existen esfuerzos desde el área de la ingeniería en realizar investigaciones asociadas a la predicción temprana del dengue para hacer frente al impacto que está generando la enfermedad. Por un lado, existen modelos predictivos que apoyan las decisiones médicas en el diagnóstico temprano del dengue, aquí juega un papel importante la inteligencia artificial y el machine learning, y, por otro lado, se están generando grandes volúmenes de información en la práctica médica que posibilitan hacer nuevas investigaciones orientadas al diagnóstico y control del dengue. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-03-24T14:47:20Z |
dc.date.available.none.fl_str_mv |
2022-03-24T14:47:20Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
W. Arribla, “Conceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías”, J. Comput. Electron. Sci.: Theory Appl., vol. 3, no. 1, pp. 1–8, 2022. https://doi.org/10.17981/cesta.03.01.2022.01. |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9091 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.17981/cesta.03.01.2022.01 |
dc.identifier.doi.spa.fl_str_mv |
10.17981/cesta.03.01.2022.01 |
dc.identifier.eissn.spa.fl_str_mv |
2745-0090 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
W. Arribla, “Conceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías”, J. Comput. Electron. Sci.: Theory Appl., vol. 3, no. 1, pp. 1–8, 2022. https://doi.org/10.17981/cesta.03.01.2022.01. 10.17981/cesta.03.01.2022.01 2745-0090 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9091 https://doi.org/10.17981/cesta.03.01.2022.01 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Computer and Electronic Sciences: Theory and Applications Computer and Electronic Sciences: Theory and Applications |
dc.relation.references.spa.fl_str_mv |
[1] WHO, “Dengue y dengue grave”, www.who.int/es, 2021. https://www.who.int/es/news-room/fact-sheets/detail/dengue-andsevere-dengue (accedido oct. 03, 2021). [2] S. J. Gan, Y. Q. Leong, M. F. H. bin Barhanuddin, S. T. Wong, S. F. Wong, J. W. Mak & R.B. Ahmad, “Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review”, Parasites Vectors, vol. 14, no. 1, pp. 1–19, Jun. 2021. http://dx.doi.org/10.1186/s13071-021-04785-4 [3] Asivamosensalud, “Dengue - Georeferenciado” (Marzo 24 de 2021). Así Vamos en Salud. Disponible en https://www.asivamosensalud.org/indicadores/enfermedades-transmisibles/dengue-georeferenciado [4] República de Colombia, INS, “Dengue”, BES, no. 33, 1–2, Ago, 2021. https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2021_Boletin_epidemiologico_semana_33.pdf [5] P. Siriyasatien, S. Chadsuthi, K. Jampachaisri & K. Kesorn, “Dengue Epidemics Prediction: A Survey of the State-ofthe-Art Based on Data Science Processes”, IEEE Access, vol. 6, pp. 53757–53795, Sep. 2018. http://dx.doi.org/10.1109/ACCESS.2018.2871241 [6] PAHO/WHO, Dengue: guías para la atención de enfermos en la región de las Américas. WA, USA: PAHO/WHO, 2016. Disponible en https://iris.paho.org/handle/10665.2/28232 [7] I. Puc, T.-C. Ho, K.-L. Yen, A. Vats, J.-J. Tsai, P.-L. Chen, Y.-W. Chien, Y.-C. Lo & G.-C. Perng, “Cytokine Signature of Dengue Patients at Different Severity of the Disease”, Int J Mol Sci, vol. 22, no. 6, pp. 1–15, Mar. 2021. http://dx.doi.org/10.3390/ijms22062879 [8] República de Colombia, MinSalud, “Abordaje clínico del dengue”, [online], 2016. Recuperado de https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/presentacion-abordaje-clinico-dengue-vuelta-colombia.pdf [9] D. Sarma, S. Hossain, T. Mittra, Md. A. M. Bhuiya, I. Saha & R. Chakma, “Dengue Prediction using Machine Learning Algorithms”, presented at 8th R10 Humanitarian Technology Conference, R10-HTC, KCH, MY, 1-3 Dic. 2020, pp. 1–6. https://doi.org/10.1109/R10-HTC49770.2020.9357035 [10] M. M. F. Islam, S. A. Khushbu, A. S. Azad Rabby & T. Bhuiyan, “A Study on Dengue Fever in Bangladesh: Predicting the Probability of Dengue Infection with External Behavior with Machine Learning”, presented at 5th International Conference on Intelligent Computing and Control Systems, ICICCS, IXM, IMD, 6-8 May. 2021, pp. 1717–1721. http://dx.doi.org/10.1109/ICICCS51141.2021.9432288 [11] R. K. Putra & S. Mulyati, “Classification of Childhood Diseases with Fever Using Fuzzy K-Nearest Neighbor Method”, presented at 2018 International Seminar on Research of Information Technology and Intelligent Systems, ISRITI, JOG, IDSA, 21-22 Nov. 2018, pp. 332–337. http://dx.doi.org/10.1109/ISRITI.2018.8864475 [12] N. Saravanan & V. Gayathri, “Classification of dengue dataset using J48 algorithm and ant colony based AJ48 algorithm”, presented at 2017 International Conference on Inventive Computing and Informatics, ICICI, CJB, IMD, 23-24 Nov. 2017, pp. 1062–1067. http://dx.doi.org/10.1109/ICICI.2017.8365302 [13] C. Mohapatra, M. Pandey & S. S. Rautray, “Modeling and dynamics of infectious disease: Big data analytics”, presented at 2017 International Conference on Computer Communication and Informatics, ICCCI, CJB, IMD, 5-7 Jan. 2017, pp. 1–4. http://dx.doi.org/10.1109/ICCCI.2017.8117737 [14] M. C. Expósito y R. Ávila, “Aplicaciones de la inteligencia artificial en la Medicina: perspectivas y problemas”, ACIMED, vol. 17, no. 5, pp. 1–12, May 2008. Recuperado de http://scielo.sld.cu/pdf/aci/v17n5/aci05508.pdf [15] G. S. Handelman, H. K. Kok, R. V. Chandra, A. H. Razavi, M. J. Lee & H. Asadi, “eDoctor: machine learning and the future of medicine”, J Intern Med, vol. 284, no. 6, pp. 603–619, Dec. 2018. http://dx.doi.org/10.1111/joim.12822 [16] V. Fonseca, P.J. K. Libin, K. Theys, N. R. Faria, M. R. T. Nunes, M. I. Restovic, M. Freire, M. Giovanetti, L. Cuypers, A. Nowé, A. Abecasis, K. Deforche, G. A. Santiago & Tulio de Oliveira, “A computational method for the identification of Dengue, Zika and Chikungunya virus species and genotypes”, PLOS Negl Trop Dis, vol. 13, no. 5, pp. 1–15, May. 2019. http://dx.doi.org/10.1371/journal.pntd.0007231 [17] A. Núñez, M. A. Armengol & M. Sánchez, “Big Data Analysis y Machine Learning en medicina intensiva”, Med Intensiva, vol. 43, no. 7, pp. 416–426, Oct. 2019. http://dx.doi.org/10.1016/j.medin.2018.10.007 [18] S. Hassan, M. Dhali, F. Zaman & M. Tanveer, “Big data and predictive analytics in healthcare in Bangladesh: regulatory challenges”, Heliyon, vol. 7, no. 6, pp. 1–12, Jun. 2021. http://dx.doi.org/10.1016/j.heliyon.2021.e07179 [19] G. Manogaran y D. López, “A Gaussian process based big data processing framework in cluster computing environment”, Cluster Comput, vol. 21, no. 1, pp. 189–204, Mar. 2018. http://dx.doi.org/10.1007/s10586-017-0982-5 [20] H. C. Arteaga, “Técnicas de aprendizaje supervisado y no supervisado para el aprendizaje automatizado de computadoras”, presentado en el 1er Congreso Internacional de Ciencias Pedagógicas, ITB, GYE, ECUA, 2015, pp. 549–564. Recuperado de https://dialnet.unirioja.es/descarga/libro/742219.pdf [21] M. L. Errecalde, “Marcos teóricos del aprendizaje por refuerzo multiagente”, presentado en III Workshop de Investigadores en Ciencias de la Computación, RedUNCI, LUQ, ARG, May. 2001. Disponible en: http://sedici.unlp.edu.ar/handle/10915/21638 [22] J. R. Acosta, L. Oller, N. Sokol, R. Balado, D. Montero, R. Balado y M. E. Sardiñas, “Técnica Árboles de decisión aplicada al método clínico en el diagnóstico del dengue”, RevPediatría, vol. 88, no. 4, pp. 441–453, Dic. 2016. Disponible en http://www.revpediatria.sld.cu/index.php/ped/article/view/138 [23] S. Srivastava, S. Soman, A. Rai & A. S. Cheema, “An Online Learning Approach for Dengue Fever Classification”, presented at 33rd International Symposium on Computer-Based Medical Systems, CBMS, RNY, MN, USA, 28-30 Jul. 2020, pp. 163–168. http://dx.doi.org/10.1109/CBMS49503.2020.00038 [24] T.-S. Ho, T.-C. Weng, J.-D. Wang, H.-C. Han, H.-C. Cheng, C.-C. Yang, C.-H. Yu, Y.-J. Liu, C. H. Hu, C.-Y. Huang, M.- H. Chen, C.-C. King, Y.-J. Oyang & Ching-C. Liu, “Comparing machine learning with case-control models to identify confirmed dengue cases”, PLOS Negl Trop Dis, vol. 14, no. 11, pp. 1–21, Nov. 2020. http://dx.doi.org/10.1371/journal.pntd.0008843 |
dc.relation.citationendpage.spa.fl_str_mv |
8 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
3 |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
CESTA |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © The author; licensee Universidad de la Costa - CUC. |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © The author; licensee Universidad de la Costa - CUC. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
8 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.source.spa.fl_str_mv |
Computer and Electronic Sciences: Theory and Applications |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/CESTA/article/view/3961 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/9ba10a29-1dde-4444-8ac2-fb65af73f44b/download https://repositorio.cuc.edu.co/bitstreams/c1840baf-20ce-4049-929b-257f424836ac/download https://repositorio.cuc.edu.co/bitstreams/91b0b0cb-a56f-42df-8543-90ed0b6da86b/download https://repositorio.cuc.edu.co/bitstreams/26b8b6e0-2a78-4bac-b819-fd98ac67108c/download |
bitstream.checksum.fl_str_mv |
df58aab507a4814224458801c67e7175 e30e9215131d99561d40d6b0abbe9bad 6bf6fe4b8b66881ecff606c89d8b5da5 856de7d73bd35d877d5cc4888af8c59a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760737622687744 |
spelling |
ARRUBLA HOYOS, WILSON DE JESÚS2022-03-24T14:47:20Z2022-03-24T14:47:20Z2022W. Arribla, “Conceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías”, J. Comput. Electron. Sci.: Theory Appl., vol. 3, no. 1, pp. 1–8, 2022. https://doi.org/10.17981/cesta.03.01.2022.01.https://hdl.handle.net/11323/9091https://doi.org/10.17981/cesta.03.01.2022.0110.17981/cesta.03.01.2022.012745-0090Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introducción— El dengue es una enfermedad tropical transmitida por mosquito que según reportes de la Organización Mundial de la Salud-OMS deja unos 390 millones de personas infectadas cada año, es una de las enfermedades que más afecta la salud de la población y la economía a nivel mundial. En consecuencia, Se han realizado esfuerzos desde diferentes áreas del saber donde se incluyen las Tecnologías de la Información y Comunicación-TIC para hacer frente a esta enfermedad. Objetivos— El objetivo de este artículo es presentar una conceptualización de la enfermedad del dengue desde una perspectiva de la ingeniería, caracterizando su comportamiento en las personas y como las principales tecnologías están realizando investigaciones para la predicción temprana. Métodología— Para su desarrollo se consultaron bases de datos especializadas como SCOPUS, WOS, IEEE, PUBMED utilizando cadenas de búsquedas que relacionan palabras claves de la enfermedad y las tecnologías de la información. Resultado: Como resultado se obtuvo que las principales tecnologías son el Machine Learning, el Big Data y la Inteligencia artificial con el desarrollo de modelos capaces de predecir la enfermedad de manera temprana. Existen muchas técnicas específicas que se utilizan, sin embargo, no se abordan en este artículo, solo se presenta la conceptualización de las tecnologías principales. Conclusiones— Se logra concluir que existen esfuerzos desde el área de la ingeniería en realizar investigaciones asociadas a la predicción temprana del dengue para hacer frente al impacto que está generando la enfermedad. Por un lado, existen modelos predictivos que apoyan las decisiones médicas en el diagnóstico temprano del dengue, aquí juega un papel importante la inteligencia artificial y el machine learning, y, por otro lado, se están generando grandes volúmenes de información en la práctica médica que posibilitan hacer nuevas investigaciones orientadas al diagnóstico y control del dengue.Introduction— Dengue is a mosquito-borne tropical disease that according to reports from the World Health OrganizationWHO leaves about 390 million people infected each year, it is one of the diseases that most affects the health of the population and the economy worldwide. Consequently, efforts have been made from different areas of knowledge, including Information and Communication Technologies-ICT, to address this disease. Objective— The objective of this article is to present a conceptualization of the dengue disease from an engineering perspective, characterizing its behavior in people and how the main technologies are conducting research for early prediction. Methodology— For its development, specialized databases such as SCOPUS, WOS, IEEE, PUBMED were consulted using search strings that relate key words of the disease and information technologies. Results— As a result, it was obtained that the main technologies are Machine Learning, Big Data and Artificial Intelligence with the development of models capable of predicting the disease early. There are many specific techniques used, however, they are not addressed in this article, only the conceptualization of the main technologies is presented. Conclusions— It is possible to conclude that there are efforts from the engineering area to carry out research associated with the early prediction of dengue to face the impact that the disease is generating. On the one hand, there are predictive models that support medical decisions in the early diagnosis of dengue, here artificial intelligence, and machine learning play an important role, and, on the other hand, large volumes of information are being generated in medical practice that make it possible to carry out new research aimed at the diagnosis and control of dengue.8 páginasapplication/pdfspaCorporación Universidad de la CostaBarranquillaAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© The author; licensee Universidad de la Costa - CUC.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Computer and Electronic Sciences: Theory and Applicationshttps://revistascientificas.cuc.edu.co/CESTA/article/view/3961Conceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologíasConceptualization of the diagnosis of Dengue from an engineering and new technology perspectiveArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionComputer and Electronic Sciences: Theory and ApplicationsComputer and Electronic Sciences: Theory and Applications[1] WHO, “Dengue y dengue grave”, www.who.int/es, 2021. https://www.who.int/es/news-room/fact-sheets/detail/dengue-andsevere-dengue (accedido oct. 03, 2021).[2] S. J. Gan, Y. Q. Leong, M. F. H. bin Barhanuddin, S. T. Wong, S. F. Wong, J. W. Mak & R.B. Ahmad, “Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review”, Parasites Vectors, vol. 14, no. 1, pp. 1–19, Jun. 2021. http://dx.doi.org/10.1186/s13071-021-04785-4[3] Asivamosensalud, “Dengue - Georeferenciado” (Marzo 24 de 2021). Así Vamos en Salud. Disponible en https://www.asivamosensalud.org/indicadores/enfermedades-transmisibles/dengue-georeferenciado[4] República de Colombia, INS, “Dengue”, BES, no. 33, 1–2, Ago, 2021. https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2021_Boletin_epidemiologico_semana_33.pdf[5] P. Siriyasatien, S. Chadsuthi, K. Jampachaisri & K. Kesorn, “Dengue Epidemics Prediction: A Survey of the State-ofthe-Art Based on Data Science Processes”, IEEE Access, vol. 6, pp. 53757–53795, Sep. 2018. http://dx.doi.org/10.1109/ACCESS.2018.2871241[6] PAHO/WHO, Dengue: guías para la atención de enfermos en la región de las Américas. WA, USA: PAHO/WHO, 2016. Disponible en https://iris.paho.org/handle/10665.2/28232[7] I. Puc, T.-C. Ho, K.-L. Yen, A. Vats, J.-J. Tsai, P.-L. Chen, Y.-W. Chien, Y.-C. Lo & G.-C. Perng, “Cytokine Signature of Dengue Patients at Different Severity of the Disease”, Int J Mol Sci, vol. 22, no. 6, pp. 1–15, Mar. 2021. http://dx.doi.org/10.3390/ijms22062879[8] República de Colombia, MinSalud, “Abordaje clínico del dengue”, [online], 2016. Recuperado de https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/presentacion-abordaje-clinico-dengue-vuelta-colombia.pdf[9] D. Sarma, S. Hossain, T. Mittra, Md. A. M. Bhuiya, I. Saha & R. Chakma, “Dengue Prediction using Machine Learning Algorithms”, presented at 8th R10 Humanitarian Technology Conference, R10-HTC, KCH, MY, 1-3 Dic. 2020, pp. 1–6. https://doi.org/10.1109/R10-HTC49770.2020.9357035[10] M. M. F. Islam, S. A. Khushbu, A. S. Azad Rabby & T. Bhuiyan, “A Study on Dengue Fever in Bangladesh: Predicting the Probability of Dengue Infection with External Behavior with Machine Learning”, presented at 5th International Conference on Intelligent Computing and Control Systems, ICICCS, IXM, IMD, 6-8 May. 2021, pp. 1717–1721. http://dx.doi.org/10.1109/ICICCS51141.2021.9432288[11] R. K. Putra & S. Mulyati, “Classification of Childhood Diseases with Fever Using Fuzzy K-Nearest Neighbor Method”, presented at 2018 International Seminar on Research of Information Technology and Intelligent Systems, ISRITI, JOG, IDSA, 21-22 Nov. 2018, pp. 332–337. http://dx.doi.org/10.1109/ISRITI.2018.8864475[12] N. Saravanan & V. Gayathri, “Classification of dengue dataset using J48 algorithm and ant colony based AJ48 algorithm”, presented at 2017 International Conference on Inventive Computing and Informatics, ICICI, CJB, IMD, 23-24 Nov. 2017, pp. 1062–1067. http://dx.doi.org/10.1109/ICICI.2017.8365302[13] C. Mohapatra, M. Pandey & S. S. Rautray, “Modeling and dynamics of infectious disease: Big data analytics”, presented at 2017 International Conference on Computer Communication and Informatics, ICCCI, CJB, IMD, 5-7 Jan. 2017, pp. 1–4. http://dx.doi.org/10.1109/ICCCI.2017.8117737[14] M. C. Expósito y R. Ávila, “Aplicaciones de la inteligencia artificial en la Medicina: perspectivas y problemas”, ACIMED, vol. 17, no. 5, pp. 1–12, May 2008. Recuperado de http://scielo.sld.cu/pdf/aci/v17n5/aci05508.pdf[15] G. S. Handelman, H. K. Kok, R. V. Chandra, A. H. Razavi, M. J. Lee & H. Asadi, “eDoctor: machine learning and the future of medicine”, J Intern Med, vol. 284, no. 6, pp. 603–619, Dec. 2018. http://dx.doi.org/10.1111/joim.12822[16] V. Fonseca, P.J. K. Libin, K. Theys, N. R. Faria, M. R. T. Nunes, M. I. Restovic, M. Freire, M. Giovanetti, L. Cuypers, A. Nowé, A. Abecasis, K. Deforche, G. A. Santiago & Tulio de Oliveira, “A computational method for the identification of Dengue, Zika and Chikungunya virus species and genotypes”, PLOS Negl Trop Dis, vol. 13, no. 5, pp. 1–15, May. 2019. http://dx.doi.org/10.1371/journal.pntd.0007231[17] A. Núñez, M. A. Armengol & M. Sánchez, “Big Data Analysis y Machine Learning en medicina intensiva”, Med Intensiva, vol. 43, no. 7, pp. 416–426, Oct. 2019. http://dx.doi.org/10.1016/j.medin.2018.10.007[18] S. Hassan, M. Dhali, F. Zaman & M. Tanveer, “Big data and predictive analytics in healthcare in Bangladesh: regulatory challenges”, Heliyon, vol. 7, no. 6, pp. 1–12, Jun. 2021. http://dx.doi.org/10.1016/j.heliyon.2021.e07179[19] G. Manogaran y D. López, “A Gaussian process based big data processing framework in cluster computing environment”, Cluster Comput, vol. 21, no. 1, pp. 189–204, Mar. 2018. http://dx.doi.org/10.1007/s10586-017-0982-5[20] H. C. Arteaga, “Técnicas de aprendizaje supervisado y no supervisado para el aprendizaje automatizado de computadoras”, presentado en el 1er Congreso Internacional de Ciencias Pedagógicas, ITB, GYE, ECUA, 2015, pp. 549–564. Recuperado de https://dialnet.unirioja.es/descarga/libro/742219.pdf[21] M. L. Errecalde, “Marcos teóricos del aprendizaje por refuerzo multiagente”, presentado en III Workshop de Investigadores en Ciencias de la Computación, RedUNCI, LUQ, ARG, May. 2001. Disponible en: http://sedici.unlp.edu.ar/handle/10915/21638[22] J. R. Acosta, L. Oller, N. Sokol, R. Balado, D. Montero, R. Balado y M. E. Sardiñas, “Técnica Árboles de decisión aplicada al método clínico en el diagnóstico del dengue”, RevPediatría, vol. 88, no. 4, pp. 441–453, Dic. 2016. Disponible en http://www.revpediatria.sld.cu/index.php/ped/article/view/138[23] S. Srivastava, S. Soman, A. Rai & A. S. Cheema, “An Online Learning Approach for Dengue Fever Classification”, presented at 33rd International Symposium on Computer-Based Medical Systems, CBMS, RNY, MN, USA, 28-30 Jul. 2020, pp. 163–168. http://dx.doi.org/10.1109/CBMS49503.2020.00038[24] T.-S. Ho, T.-C. Weng, J.-D. Wang, H.-C. Han, H.-C. Cheng, C.-C. Yang, C.-H. Yu, Y.-J. Liu, C. H. Hu, C.-Y. Huang, M.- H. Chen, C.-C. King, Y.-J. Oyang & Ching-C. Liu, “Comparing machine learning with case-control models to identify confirmed dengue cases”, PLOS Negl Trop Dis, vol. 14, no. 11, pp. 1–21, Nov. 2020. http://dx.doi.org/10.1371/journal.pntd.00088438113CESTAAprendizaje automáticoInteligencia artificialDengueBig dataMachine learningArtificial IntelligenceDengue feverPublicationORIGINALConceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías.pdfConceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías.pdfapplication/pdf678396https://repositorio.cuc.edu.co/bitstreams/9ba10a29-1dde-4444-8ac2-fb65af73f44b/downloaddf58aab507a4814224458801c67e7175MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/c1840baf-20ce-4049-929b-257f424836ac/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTConceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías.pdf.txtConceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías.pdf.txttext/plain27687https://repositorio.cuc.edu.co/bitstreams/91b0b0cb-a56f-42df-8543-90ed0b6da86b/download6bf6fe4b8b66881ecff606c89d8b5da5MD53THUMBNAILConceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías.pdf.jpgConceptualización del diagnóstico del Dengue desde una perspectiva de la ingeniería y las nuevas tecnologías.pdf.jpgimage/jpeg14005https://repositorio.cuc.edu.co/bitstreams/26b8b6e0-2a78-4bac-b819-fd98ac67108c/download856de7d73bd35d877d5cc4888af8c59aMD5411323/9091oai:repositorio.cuc.edu.co:11323/90912024-09-17 10:53:42.529https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |