Analysis of pre-trained convolutional neural network models in diabetic retinopathy detection through retinal fundus images

Diabetic Retinopathy (DR) is a disease on the rise; as this is a complication of diabetes, it becomes an imminent fate in people who have not been treated correctly for the disease, resulting in possible loss of vision if not is detected in time. This disease affects the retina, and the diagnosis is...

Full description

Autores:
Escorcia-Gutierrez, Jose
Cuello, Jose
Barraza, Carlos
Gamarra, Margarita
Romero-Aroca, Pedro
CAICEDO BRAVO, EDUARDO
Puig, Domenec
Tipo de recurso:
Part of book
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9481
Acceso en línea:
https://hdl.handle.net/11323/9481
https://doi.org/10.1007/978-3-031-10539-5_15
https://repositorio.cuc.edu.co/
Palabra clave:
Diabetic retinopathy
Retinal imaging
Image recognition
Convolutional neural network
Transfer learning
Rights
openAccess
License
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
id RCUC2_b092a97b30766b2363ae0692870d5b70
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9481
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Analysis of pre-trained convolutional neural network models in diabetic retinopathy detection through retinal fundus images
title Analysis of pre-trained convolutional neural network models in diabetic retinopathy detection through retinal fundus images
spellingShingle Analysis of pre-trained convolutional neural network models in diabetic retinopathy detection through retinal fundus images
Diabetic retinopathy
Retinal imaging
Image recognition
Convolutional neural network
Transfer learning
title_short Analysis of pre-trained convolutional neural network models in diabetic retinopathy detection through retinal fundus images
title_full Analysis of pre-trained convolutional neural network models in diabetic retinopathy detection through retinal fundus images
title_fullStr Analysis of pre-trained convolutional neural network models in diabetic retinopathy detection through retinal fundus images
title_full_unstemmed Analysis of pre-trained convolutional neural network models in diabetic retinopathy detection through retinal fundus images
title_sort Analysis of pre-trained convolutional neural network models in diabetic retinopathy detection through retinal fundus images
dc.creator.fl_str_mv Escorcia-Gutierrez, Jose
Cuello, Jose
Barraza, Carlos
Gamarra, Margarita
Romero-Aroca, Pedro
CAICEDO BRAVO, EDUARDO
Puig, Domenec
dc.contributor.author.spa.fl_str_mv Escorcia-Gutierrez, Jose
Cuello, Jose
Barraza, Carlos
Gamarra, Margarita
Romero-Aroca, Pedro
CAICEDO BRAVO, EDUARDO
Puig, Domenec
dc.subject.proposal.eng.fl_str_mv Diabetic retinopathy
Retinal imaging
Image recognition
Convolutional neural network
Transfer learning
topic Diabetic retinopathy
Retinal imaging
Image recognition
Convolutional neural network
Transfer learning
description Diabetic Retinopathy (DR) is a disease on the rise; as this is a complication of diabetes, it becomes an imminent fate in people who have not been treated correctly for the disease, resulting in possible loss of vision if not is detected in time. This disease affects the retina, and the diagnosis is made based on fundus images of patients, through which various lesions and anomalies can be visualized. Visual inspection is a challenging task, and the diagnosis is expert dependent. This article proposes a convolutional neural network (CNN) model to detect DR, a common illness in diabetic patients. This work allows estimating the capacity of a pre-trained CNN (VGG16) using the transfer learning technique to detect symptoms and injuries caused by DR. For learning and feature extraction we used a set of retinal images obtained from the APTOS 2019 Blindness Detection competition in Kaggle. This network is trained and learns to identify between healthy retina and RD with high performance, overcoming other works. The best experimentation we obtained reached an accuracy value of 96.86% for DR detection tasks.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-30T13:51:56Z
dc.date.available.none.fl_str_mv 2022-08-30T13:51:56Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Capítulo - Parte de Libro
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/CAP_LIB
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/resource_type/c_3248
status_str draft
dc.identifier.citation.spa.fl_str_mv Escorcia-Gutierrez, J. et al. (2022). Analysis of Pre-trained Convolutional Neural Network Models in Diabetic Retinopathy Detection Through Retinal Fundus Images. In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2022. Lecture Notes in Computer Science, vol 13293. Springer, Cham. https://doi.org/10.1007/978-3-031-10539-5_15
dc.identifier.isbn.spa.fl_str_mv 978-3-031-10538-8
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9481
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1007/978-3-031-10539-5_15
dc.identifier.doi.spa.fl_str_mv 10.1007/978-3-031-10539-5_15
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
dc.identifier.eisbn.spa.fl_str_mv 978-3-031-10539-5
identifier_str_mv Escorcia-Gutierrez, J. et al. (2022). Analysis of Pre-trained Convolutional Neural Network Models in Diabetic Retinopathy Detection Through Retinal Fundus Images. In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2022. Lecture Notes in Computer Science, vol 13293. Springer, Cham. https://doi.org/10.1007/978-3-031-10539-5_15
978-3-031-10538-8
10.1007/978-3-031-10539-5_15
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
978-3-031-10539-5
url https://hdl.handle.net/11323/9481
https://doi.org/10.1007/978-3-031-10539-5_15
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.spa.fl_str_mv Lecture Notes in Computer Science;
dc.relation.ispartofbook.spa.fl_str_mv Computer Information Systems and Industrial Management0
dc.relation.references.spa.fl_str_mv Romero-Aroca, P., et al.: Cost of diabetic retinopathy and macular oedema in a population, an eight year follow up. BMC Ophthalmol. 16, 1–7 (2016). https://doi.org/10.1186/S12886-016-0318-X
Pelullo, C.P., Rossiello, R., Nappi, R., Napolitano, F., Di Giuseppe, G.: Diabetes prevention: knowledge and perception of risk among italian population. Biomed. Res. Int. 2019 (2019). https://doi.org/10.1155/2019/2753131
Thapa, R., et al.: Prevalence and risk factors of diabetic retinopathy among an elderly population with diabetes in Nepal: the Bhaktapur Retina Study. Clin. Ophthalmol. 12, 561 (2018). https://doi.org/10.2147/OPTH.S157560
Sneha, N., Gangil, T.: Analysis of diabetes mellitus for early prediction using optimal features selection. J. Big Data 6(1), 1–19 (2019). https://doi.org/10.1186/s40537-019-0175-6 Diabetes. https://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed 21 Feb 2022
Wang, Y., Wang, G.A., Fan, W., Li, J.: A deep learning based pipeline for image grading of diabetic retinopathy. In: Chen, H., Fang, Q., Zeng, D., Wu, J. (eds.) ICSH 2018. LNCS (LNAI and LNB), vol. 10983, pp. 240–248. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03649-2_24
Muthumayil, K., Manikandan, S., Srinivasan, S., Escorcia-Gutierrez, J., Gamarra, M., Mansour, R.F.: Diagnosis of leukemia disease based on enhanced virtual neural network. Comput. Mater. Contin. 69, 2031–2044 (2021). https://doi.org/10.32604/CMC.2021.017116
Orlando, J.I., Prokofyeva, E., Del Fresno, M., Blaschko, M.B.: An ensemble deep learning based approach for red lesion detection in fundus images. Comput. Methods Program. Biomed. 153, 115–127 (2017)
Bodapati, J.D., Shaik, N.S., Naralasetti, V.: Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification. J. Ambient. Intell. Humaniz. Comput. 12(10), 9825–9839 (2021). https://doi.org/10.1007/s12652-020-02727-z
Adriman, R., Muchtar, K., Maulina, N.: Performance evaluation of binary classification of diabetic retinopathy through deep learning techniques using texture feature. Proc. Comput. Sci. 179, 88–94 (2021). https://doi.org/10.1016/j.procs.2020.12.012
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 2261–2269. Institute of Electrical and Electronics Engineers Inc. (2017). https://doi.org/10.1109/CVPR.2017.243
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90
Khalifa, N.E.M., Loey, M., Taha, M.H.N., Mohamed, H.N.E.T.: Deep transfer learning models for medical diabetic retinopathy detection. Acta Inform. Medica. 27, 327–332 (2019). https://doi.org/10.5455/aim.2019.27.327-332
VGG16 - Convolutional Network for Classification and Detection
VGG-19 convolutional neural network - MATLAB vgg19
Gangwar, A.K., Ravi, V.: Diabetic retinopathy detection using transfer learning and deep learning. Presented at the (2021). https://doi.org/10.1007/978-981-15-5788-0_64
Google AI Blog: Improving Inception and Image Classification in TensorFlow
Google colab is a free cloud notebook environment. https://bcrf.biochem.wisc.edu/2021/02/05/google-colab-is-a-free-cloud-notebook-environment/#:~:text=Google. Colab is a free cloud-based service that allows, and install new python libraries. &text=Colab is heavily used for, a platform to learn Python
APTOS 2019 Blindness Detection | Kaggle
APTOS: Eye Preprocessing in Diabetic Retinopathy | Kaggle
Torres, J.: Deep learning, introducción práctica con Keras (SEGUNDA PARTE) - Jordi TORRES.AI
Keras: The Python deep learning API. https://keras.io/
Montereal, Q.: APTOS 2019: DenseNet Keras Starter | Kaggle
Kassani, S.H., Kassani, P.H., Khazaeinezhad, R., Wesolowski, M.J., Schneider, K.A., Deters, R.: Diabetic retinopathy classification using a modified xception architecture. In: 2019 IEEE 19th International Symposium on Signal Processing and Information, ISSPIT 2019, pp. 1–6 (2019). https://doi.org/10.1109/ISSPIT47144.2019.9001846
Cuello Navarro, J., Barraza Peña, C., Escorcia-Gutiérrez, J.: Una revisión de los métodos de deep learning aplicados a la detección automatizada de la retinopatía diabética. Rev. SEXTANTE 23, 14–33 (2020)
Bodapati, J.D., Shaik, N.S., Naralasetti, V.: Deep convolution feature aggregation: an application to diabetic retinopathy severity level prediction. Signal Image Video Process. 15(5), 923–930 (2021). https://doi.org/10.1007/s11760-020-01816-y
Dekhil, O., Naglah, A., Shaban, M., Ghazal, M., Taher, F., Elbaz, A.: Deep learning based method for computer aided diagnosis of diabetic retinopathy. In: IST 2019 - IEEE International Conference on Imaging Systems and Techniques Proceedings, pp. 19–22 (2019). https://doi.org/10.1109/IST48021.2019.9010333
dc.relation.citationendpage.spa.fl_str_mv 213
dc.relation.citationstartpage.spa.fl_str_mv 202
dc.rights.spa.fl_str_mv © 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv © 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 página
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Nature
dc.publisher.place.spa.fl_str_mv Switzerland
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-031-10539-5_15
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/cbefc2eb-bca4-486e-af44-338efa443d72/download
https://repositorio.cuc.edu.co/bitstreams/452e7598-3207-487f-b3ed-b367f5242a1b/download
https://repositorio.cuc.edu.co/bitstreams/ffb08389-26d0-459b-b7a5-7c5b51c78bf3/download
https://repositorio.cuc.edu.co/bitstreams/ded11693-8a37-4799-a64f-8b23c3b312d2/download
bitstream.checksum.fl_str_mv 6f213f0c14aecc028066e997c682446b
e30e9215131d99561d40d6b0abbe9bad
6f7948a4cdeba1b4abe6313d5d88b9f8
041b75b29dd111bfe1c9082debb850a1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166589951770624
spelling Escorcia-Gutierrez, JoseCuello, JoseBarraza, CarlosGamarra, MargaritaRomero-Aroca, PedroCAICEDO BRAVO, EDUARDOPuig, Domenec2022-08-30T13:51:56Z2022-08-30T13:51:56Z2022Escorcia-Gutierrez, J. et al. (2022). Analysis of Pre-trained Convolutional Neural Network Models in Diabetic Retinopathy Detection Through Retinal Fundus Images. In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2022. Lecture Notes in Computer Science, vol 13293. Springer, Cham. https://doi.org/10.1007/978-3-031-10539-5_15978-3-031-10538-8https://hdl.handle.net/11323/9481https://doi.org/10.1007/978-3-031-10539-5_1510.1007/978-3-031-10539-5_15Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/978-3-031-10539-5Diabetic Retinopathy (DR) is a disease on the rise; as this is a complication of diabetes, it becomes an imminent fate in people who have not been treated correctly for the disease, resulting in possible loss of vision if not is detected in time. This disease affects the retina, and the diagnosis is made based on fundus images of patients, through which various lesions and anomalies can be visualized. Visual inspection is a challenging task, and the diagnosis is expert dependent. This article proposes a convolutional neural network (CNN) model to detect DR, a common illness in diabetic patients. This work allows estimating the capacity of a pre-trained CNN (VGG16) using the transfer learning technique to detect symptoms and injuries caused by DR. For learning and feature extraction we used a set of retinal images obtained from the APTOS 2019 Blindness Detection competition in Kaggle. This network is trained and learns to identify between healthy retina and RD with high performance, overcoming other works. The best experimentation we obtained reached an accuracy value of 96.86% for DR detection tasks.1 páginaapplication/pdfengSpringer NatureSwitzerlandLecture Notes in Computer Science;Computer Information Systems and Industrial Management0Romero-Aroca, P., et al.: Cost of diabetic retinopathy and macular oedema in a population, an eight year follow up. BMC Ophthalmol. 16, 1–7 (2016). https://doi.org/10.1186/S12886-016-0318-XPelullo, C.P., Rossiello, R., Nappi, R., Napolitano, F., Di Giuseppe, G.: Diabetes prevention: knowledge and perception of risk among italian population. Biomed. Res. Int. 2019 (2019). https://doi.org/10.1155/2019/2753131Thapa, R., et al.: Prevalence and risk factors of diabetic retinopathy among an elderly population with diabetes in Nepal: the Bhaktapur Retina Study. Clin. Ophthalmol. 12, 561 (2018). https://doi.org/10.2147/OPTH.S157560Sneha, N., Gangil, T.: Analysis of diabetes mellitus for early prediction using optimal features selection. J. Big Data 6(1), 1–19 (2019). https://doi.org/10.1186/s40537-019-0175-6 Diabetes. https://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed 21 Feb 2022Wang, Y., Wang, G.A., Fan, W., Li, J.: A deep learning based pipeline for image grading of diabetic retinopathy. In: Chen, H., Fang, Q., Zeng, D., Wu, J. (eds.) ICSH 2018. LNCS (LNAI and LNB), vol. 10983, pp. 240–248. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03649-2_24Muthumayil, K., Manikandan, S., Srinivasan, S., Escorcia-Gutierrez, J., Gamarra, M., Mansour, R.F.: Diagnosis of leukemia disease based on enhanced virtual neural network. Comput. Mater. Contin. 69, 2031–2044 (2021). https://doi.org/10.32604/CMC.2021.017116Orlando, J.I., Prokofyeva, E., Del Fresno, M., Blaschko, M.B.: An ensemble deep learning based approach for red lesion detection in fundus images. Comput. Methods Program. Biomed. 153, 115–127 (2017)Bodapati, J.D., Shaik, N.S., Naralasetti, V.: Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification. J. Ambient. Intell. Humaniz. Comput. 12(10), 9825–9839 (2021). https://doi.org/10.1007/s12652-020-02727-zAdriman, R., Muchtar, K., Maulina, N.: Performance evaluation of binary classification of diabetic retinopathy through deep learning techniques using texture feature. Proc. Comput. Sci. 179, 88–94 (2021). https://doi.org/10.1016/j.procs.2020.12.012Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 2261–2269. Institute of Electrical and Electronics Engineers Inc. (2017). https://doi.org/10.1109/CVPR.2017.243He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90Khalifa, N.E.M., Loey, M., Taha, M.H.N., Mohamed, H.N.E.T.: Deep transfer learning models for medical diabetic retinopathy detection. Acta Inform. Medica. 27, 327–332 (2019). https://doi.org/10.5455/aim.2019.27.327-332VGG16 - Convolutional Network for Classification and DetectionVGG-19 convolutional neural network - MATLAB vgg19Gangwar, A.K., Ravi, V.: Diabetic retinopathy detection using transfer learning and deep learning. Presented at the (2021). https://doi.org/10.1007/978-981-15-5788-0_64Google AI Blog: Improving Inception and Image Classification in TensorFlowGoogle colab is a free cloud notebook environment. https://bcrf.biochem.wisc.edu/2021/02/05/google-colab-is-a-free-cloud-notebook-environment/#:~:text=Google. Colab is a free cloud-based service that allows, and install new python libraries. &text=Colab is heavily used for, a platform to learn PythonAPTOS 2019 Blindness Detection | KaggleAPTOS: Eye Preprocessing in Diabetic Retinopathy | KaggleTorres, J.: Deep learning, introducción práctica con Keras (SEGUNDA PARTE) - Jordi TORRES.AIKeras: The Python deep learning API. https://keras.io/Montereal, Q.: APTOS 2019: DenseNet Keras Starter | KaggleKassani, S.H., Kassani, P.H., Khazaeinezhad, R., Wesolowski, M.J., Schneider, K.A., Deters, R.: Diabetic retinopathy classification using a modified xception architecture. In: 2019 IEEE 19th International Symposium on Signal Processing and Information, ISSPIT 2019, pp. 1–6 (2019). https://doi.org/10.1109/ISSPIT47144.2019.9001846Cuello Navarro, J., Barraza Peña, C., Escorcia-Gutiérrez, J.: Una revisión de los métodos de deep learning aplicados a la detección automatizada de la retinopatía diabética. Rev. SEXTANTE 23, 14–33 (2020)Bodapati, J.D., Shaik, N.S., Naralasetti, V.: Deep convolution feature aggregation: an application to diabetic retinopathy severity level prediction. Signal Image Video Process. 15(5), 923–930 (2021). https://doi.org/10.1007/s11760-020-01816-yDekhil, O., Naglah, A., Shaban, M., Ghazal, M., Taher, F., Elbaz, A.: Deep learning based method for computer aided diagnosis of diabetic retinopathy. In: IST 2019 - IEEE International Conference on Imaging Systems and Techniques Proceedings, pp. 19–22 (2019). https://doi.org/10.1109/IST48021.2019.9010333213202© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AGAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Analysis of pre-trained convolutional neural network models in diabetic retinopathy detection through retinal fundus imagesCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttp://purl.org/redcol/resource_type/CAP_LIBinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttps://link.springer.com/chapter/10.1007/978-3-031-10539-5_15Diabetic retinopathyRetinal imagingImage recognitionConvolutional neural networkTransfer learningPublicationORIGINALAnalysis of Pre-trained Convolutional Neural Network Models in Diabetic Retinopathy Detection Through Retinal Fundus Images.pdfAnalysis of Pre-trained Convolutional Neural Network Models in Diabetic Retinopathy Detection Through Retinal Fundus Images.pdfapplication/pdf74324https://repositorio.cuc.edu.co/bitstreams/cbefc2eb-bca4-486e-af44-338efa443d72/download6f213f0c14aecc028066e997c682446bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/452e7598-3207-487f-b3ed-b367f5242a1b/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTAnalysis of Pre-trained Convolutional Neural Network Models in Diabetic Retinopathy Detection Through Retinal Fundus Images.pdf.txtAnalysis of Pre-trained Convolutional Neural Network Models in Diabetic Retinopathy Detection Through Retinal Fundus Images.pdf.txttext/plain1607https://repositorio.cuc.edu.co/bitstreams/ffb08389-26d0-459b-b7a5-7c5b51c78bf3/download6f7948a4cdeba1b4abe6313d5d88b9f8MD53THUMBNAILAnalysis of Pre-trained Convolutional Neural Network Models in Diabetic Retinopathy Detection Through Retinal Fundus Images.pdf.jpgAnalysis of Pre-trained Convolutional Neural Network Models in Diabetic Retinopathy Detection Through Retinal Fundus Images.pdf.jpgimage/jpeg12766https://repositorio.cuc.edu.co/bitstreams/ded11693-8a37-4799-a64f-8b23c3b312d2/download041b75b29dd111bfe1c9082debb850a1MD5411323/9481oai:repositorio.cuc.edu.co:11323/94812024-09-17 10:18:39.028https://creativecommons.org/licenses/by-nc-sa/4.0/© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AGopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==