Detección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva: compleción de matrices mediante valores semilla

Introducción— La Radio Cognitiva (CR) hace un uso eficiente del recurso radioeléctrico, para ello realiza la Detección de Espectro (SS) con el fin de identificar el espectro disponible. Pero debido a la rápida evolución de los transceptores, la microelectrónica y las altas frecuencias de propagación...

Full description

Autores:
Erazo De La Cruz, Olger Ferledy
Miramá Pérez, Víctor
Mora Arroyo, Jorge Edison
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10301
Acceso en línea:
https://hdl.handle.net/11323/10301
https://repositorio.cuc.edu.co/
Palabra clave:
Radio cognitiva
Algoritmo de detección de espectro en banda ancha
Compleción de matrices
Aproximación matricial de la zona de interés
muestreo SubNyquist
Detección de energía
Cognitive radio
Algorithm of spectrum sensing in wideband
Matrix completion
Interest zone matrix approximation
Sub-Nyquist sampling
Energy detection
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_b071fa0aae58d06369e480b448f0b2b7
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10301
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Detección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva: compleción de matrices mediante valores semilla
dc.title.translated.none.fl_str_mv Sub-Nyquist Wideband Spectrum sensing for Cognitive Radio Networks: Matrix Completion via seed values
title Detección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva: compleción de matrices mediante valores semilla
spellingShingle Detección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva: compleción de matrices mediante valores semilla
Radio cognitiva
Algoritmo de detección de espectro en banda ancha
Compleción de matrices
Aproximación matricial de la zona de interés
muestreo SubNyquist
Detección de energía
Cognitive radio
Algorithm of spectrum sensing in wideband
Matrix completion
Interest zone matrix approximation
Sub-Nyquist sampling
Energy detection
title_short Detección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva: compleción de matrices mediante valores semilla
title_full Detección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva: compleción de matrices mediante valores semilla
title_fullStr Detección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva: compleción de matrices mediante valores semilla
title_full_unstemmed Detección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva: compleción de matrices mediante valores semilla
title_sort Detección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva: compleción de matrices mediante valores semilla
dc.creator.fl_str_mv Erazo De La Cruz, Olger Ferledy
Miramá Pérez, Víctor
Mora Arroyo, Jorge Edison
dc.contributor.author.none.fl_str_mv Erazo De La Cruz, Olger Ferledy
Miramá Pérez, Víctor
Mora Arroyo, Jorge Edison
dc.subject.proposal.spa.fl_str_mv Radio cognitiva
Algoritmo de detección de espectro en banda ancha
Compleción de matrices
Aproximación matricial de la zona de interés
muestreo SubNyquist
topic Radio cognitiva
Algoritmo de detección de espectro en banda ancha
Compleción de matrices
Aproximación matricial de la zona de interés
muestreo SubNyquist
Detección de energía
Cognitive radio
Algorithm of spectrum sensing in wideband
Matrix completion
Interest zone matrix approximation
Sub-Nyquist sampling
Energy detection
dc.subject.proposal.eng.fl_str_mv Detección de energía
Cognitive radio
Algorithm of spectrum sensing in wideband
Matrix completion
Interest zone matrix approximation
Sub-Nyquist sampling
Energy detection
description Introducción— La Radio Cognitiva (CR) hace un uso eficiente del recurso radioeléctrico, para ello realiza la Detección de Espectro (SS) con el fin de identificar el espectro disponible. Pero debido a la rápida evolución de los transceptores, la microelectrónica y las altas frecuencias de propagación, se hace necesario que en CR se apliquen algoritmos de SS en bandas de frecuencia y se realice un muestreo inferior a la tasa de Nyquist. Objetivo— Adaptar un algoritmo para Detección de Espectro Sub-Nyquist en Banda Ancha (WBSS) para redes de CR mediante la Compleción de Matrices (MC) que integra valores semilla a partir de las muestras conocidas, con el fin de completar las entradas no muestreadas de la banda a evaluar, reconstruir las señales e identificar el espectro disponible. Metodología— Se realizó una adaptación al algoritmo Aproximación Matricial de la Zona de Interés (IZMA), para ello se diseña la etapa de reconstrucción y se elige un método de detección de espectro en banda estrecha para conformar el banco de detectores; el algoritmo que se denomina IZMA_SV es evaluado a nivel de simulación, por tanto se reconstruyen señales determinísticas en diferentes SNR y se identifica el estado del canal como ocupado o libre. Resultados— Las simulaciones indican que el algoritmo adaptado presenta diferencias entre los valores conocidos de la matriz de muestreo M y la matriz recuperada X en SNR inferiores a –8 dB, mientras que la diferencia tiende a cero en SNR superiores a 2 dB. Conclusiones— El algoritmo IZMA-SV logra reducir el número de operaciones para llegar a la matriz aproximada X, reconstruyendo señales muestreadas al 75% de la tasa Nyquist y aún con un muestreo del 20% se mantienen las características de la señal que hacen posible la detección de espectro en banda ancha.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-07-07T19:14:06Z
dc.date.available.none.fl_str_mv 2023-07-07T19:14:06Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv O. Erazo De La Cruz, V. Miramá Pérez & J. Mora Arroyo, “Detección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva: compleción de matrices mediante valores semilla”, INGECUC, vol. 17, no. 1, pp. 126–. DOI: http://doi. org/10.17981/ingecuc.17.1.2021.10
dc.identifier.issn.spa.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10301
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.17.1.2021.10
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv O. Erazo De La Cruz, V. Miramá Pérez & J. Mora Arroyo, “Detección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva: compleción de matrices mediante valores semilla”, INGECUC, vol. 17, no. 1, pp. 126–. DOI: http://doi. org/10.17981/ingecuc.17.1.2021.10
0122-6517
10.17981/ingecuc.17.1.2021.10
2382-4700
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10301
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] Cisco, “Cisco Visual Networking Index: Forecast and Trends, 2017–2022,” Informe técnico 2018-2023, [online], 2017. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visualnetworking-index-vni/white-paper-c11-741490.html
[2] Federal Communications Commission, “Spectrum Policy Task Force ,” Wikia.org, [online], Nov. 2002. Available: https://itlaw.wikia.org/wiki/Spectrum_Policy_Task_Force
[3] J. Mitola & G. Q. Maguire, “Cognitive Radio: making software radios more personal,” IEEE Personal Communicant, vol. 6, no. 4 , pp. 13–18, Aug. 1999. https://doi.org/10.1109/98.788210
[4] J. Mitola, “Cognitive Radio an Integrated Agent Architecture for Software Defined Radio,” Ph.D. dissertation, KTH, SK, SE, 2000 .
[5] S. Haykin, “Cognitive Radio: Brain-Empowered Wireless Communications,” IEEE J Sel Areas Commun, vol. 23, no. 2, pp. 201–220, Feb. 2005. https://doi.org/10.1109/JSAC.2004.839380
[6] J. C. Clement, K. V. Krishnan & A. Bagubali, “Cognitive Radio: Spectrum Sensing Problems in Signal Processing,” Int J Comput App, vol. 40, no. 16, pp. 37–40, Feb. 2012. https://doi.org/10.1109/ JSAC.2004.839380
[7] T. Yucek & H. Arslan, “A Survey of Spectrum Sensing Algorithms for Cognitive Radio Applications,” IEEE Commun Surv Tutor, vol. 11, no. 1, pp. 116–130, 2009. https://doi.org/10.1109/SURV.2009.090109
[8] M. M. Mabrook & A. I. Hussein, “Major Spectrum Sensing Techniques for Cognitive Radio Networks: A Survey,” IJEIT, vol. 5, no. 3, pp. 24–37, Sep. 2015. Available from https://www.ijeit.com/Vol%205/ Issue%203/IJEIT1412201509_05.pdf
[9] S. Chinchu & T. R. Sangeeta, “Hybrid Detection Method for Improving Spectrum Sensing Performance in Cognitive Radio,” IJSR, vol. 5, no. 6, pp. 948–951, Jun. 2016. https://doi.org/10.21275/v5i6. NOV164316
[10] H. Sun, A. Nallanathan, C.-X. Wang & Y. Chen, “Wideband spectrum sensing for cognitive radio networks: a survey,” IEEE Wirel Commun, vol. 20, no. 2, pp. 74–81, Apr. 2013. https://doi.org/10.1109/ MWC.2013.6507397
[11] H. Sun, W.-Y. Chiu, J. Jiang, A. Nallanathan & H. V. Poor , “Wideband spectrum sensing with subNyquist sampling in cognitive radios,” IEEE Trans Signal Process, vol. 60, no 11, pp. 6068–6073, Nov. 2012. https://doi.org/10.1109/TSP.2012.2212892
[12] R. Al-Aomar, E. J. Williams & O. M. Ülgen, Process Simulation Using WITNESS. NJ, USA: John Wiley & Sons, 2015.
[13] S. Qaisar, R. M. Bilal, W. Iqbal , M. Naureen & S. Lee, “Compressive Sensing: From Theory to Applications, A survey,” J Commun Net IEEE (KICS), vol. 15, no. 5, pp. 443–456, Oct. 2013. https://doi. org/10.1109/JCN.2013.000083
[14] H. Huang, S. Misra, W. Tang, H. Barani & H. Al-Azzawi, “Applications of compressed sensing in communications networks,” ARXIV, vol. 1305.3002, pp. 1–18, Feb. 2014. Available: https://arxiv.org/ pdf/1305.3002.pdf
[15] F. Salahdine, N. Kaabouch & H. El Ghazi, “A survey on compressive sensing techniques for cognitive radio networks,” Phys Commun, vol. 20, no. 1, pp. 61–73, Sep. 2016. https://doi.org/10.1016/j. phycom.2016.05.002
[16] E. J. Candes & B. Recht, “Exact Matrix completion via convex optimization,” FoCM, vol. 9, no. 6, pp. 717–766, Apr. 2009. https://doi.org/10.1007/s10208-009-9045-5
[17] Z. Qin, Y. Gao, M. D. Plumbey & C. G. Parini, “Wideband Spectrum Sensing on Real-Time Signals at Sub-Nyquist Sampling Rates in Single and Cooperative Multiple Nodes,” IEEE Trans Signal Process , vol. 64, no. 12, pp. 3106–3117, Jun. 2016. https://doi.org/10.1109/TSP.2015.2512562
[18] Z. Qin, Y. Liu, Y. Gao, M. Elkashlan & A. Nallanathan, “Wireless Powered Cognitive Radio Networks With Compressive Sensing and Matrix Completion,” IEEE Trans Commun, vol. 65, no. 4, pp. 1464– 1476, Apr. 2017. https://doi.org/10.1109/TCOMM.2016.2623606
[19] Z. Qin, Y. Gao & M. D. Plumbey, “Malicious User Detection Based on Low-Rank Matrix Completion in Wideband Spectrum Sensing,” IEEE Trans Signal Process, vol. 66, no. 1, pp. 5–17, Jan. 2018. https:// doi.org/10.1109/TSP.2017.2759082
[20] G. Shabat & A. Averbuch , “ Interest zone matrix approximation,” ELA, vol. 23, no. 1, pp. 678–702, Aug. 2012. https://doi.org/10.13001/1081-3810.1551
[21] M. Subhedar & G. Birajdar, “Spectrum Sensing Techniques In Cognitive Radio Networks: A Survey,” IJNGN, vol. 3, no. 2, pp. 37–51, Jun. 2011. https://doi.org/10.5121/ijngn.2011.3203
[22] M. A. Abdulsattar & Z. A. Hussein, “Energy Detection Technique For Spectrum Sensing In Cognitive, Radio: A Survey,” IJCNC, vol. 4, no. 5, pp. 223–242, Sep. 2012. https://doi.org/10.5121/ijcnc.2012.4514
[23] P. S. Aparna & M. Jayasheela, “Cyclostationary Feature Detection in Cognitive Radio using Different Modulation Schemes,” Int J Comp App, vol. 47, no. 21, pp. 12–16, Jun. 2012. https://doi.org/10.5120/7472- 0517
[24] D. Bhargavi & C. R. Murthy, “Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing,” IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications, SPAWC, MAR, MA, pp. 1–5, 20-23 Jun. 2010. https://doi.org/10.1109/ SPAWC.2010.5670882
[25] S. Pattanayak, P. Venkateswaran & R. Nandi, “Artificial Intelligence Based Model for Channel Status Prediction: A New Spectrum Sensing Technique for Cognitive Radio,” IJCNS, vol. 6, no. 3, pp. 139–148, Mar. 2013. https://doi.org/10.4236/ijcns.2013.63017
dc.relation.citationendpage.spa.fl_str_mv 145
dc.relation.citationstartpage.spa.fl_str_mv 126
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 17
dc.rights.spa.fl_str_mv Derechos de autor 2021 INGE CUC
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Derechos de autor 2021 INGE CUC
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 20 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/3176
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/cbcbf3b0-416c-40e3-b652-56d0cfa72ef6/download
https://repositorio.cuc.edu.co/bitstreams/5dd17aa8-1456-4f58-8e48-6e889354c38e/download
https://repositorio.cuc.edu.co/bitstreams/02a77775-3120-4907-bde0-6aa75edcbe11/download
https://repositorio.cuc.edu.co/bitstreams/4772d726-fbd1-4a32-ac9c-c4f4c0688ce6/download
bitstream.checksum.fl_str_mv cc5c301cd64a1cb32d048a90825d57d2
2f9959eaf5b71fae44bbf9ec84150c7a
8cd697774e2afe2a9ec79b7ba1d648ac
ad2d197a79d2ce998a54c623f3f9fbf9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760730706280448
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Derechos de autor 2021 INGE CUChttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Erazo De La Cruz, Olger FerledyMiramá Pérez, VíctorMora Arroyo, Jorge Edison2023-07-07T19:14:06Z2023-07-07T19:14:06Z2021O. Erazo De La Cruz, V. Miramá Pérez & J. Mora Arroyo, “Detección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva: compleción de matrices mediante valores semilla”, INGECUC, vol. 17, no. 1, pp. 126–. DOI: http://doi. org/10.17981/ingecuc.17.1.2021.100122-6517https://hdl.handle.net/11323/1030110.17981/ingecuc.17.1.2021.102382-4700Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introducción— La Radio Cognitiva (CR) hace un uso eficiente del recurso radioeléctrico, para ello realiza la Detección de Espectro (SS) con el fin de identificar el espectro disponible. Pero debido a la rápida evolución de los transceptores, la microelectrónica y las altas frecuencias de propagación, se hace necesario que en CR se apliquen algoritmos de SS en bandas de frecuencia y se realice un muestreo inferior a la tasa de Nyquist. Objetivo— Adaptar un algoritmo para Detección de Espectro Sub-Nyquist en Banda Ancha (WBSS) para redes de CR mediante la Compleción de Matrices (MC) que integra valores semilla a partir de las muestras conocidas, con el fin de completar las entradas no muestreadas de la banda a evaluar, reconstruir las señales e identificar el espectro disponible. Metodología— Se realizó una adaptación al algoritmo Aproximación Matricial de la Zona de Interés (IZMA), para ello se diseña la etapa de reconstrucción y se elige un método de detección de espectro en banda estrecha para conformar el banco de detectores; el algoritmo que se denomina IZMA_SV es evaluado a nivel de simulación, por tanto se reconstruyen señales determinísticas en diferentes SNR y se identifica el estado del canal como ocupado o libre. Resultados— Las simulaciones indican que el algoritmo adaptado presenta diferencias entre los valores conocidos de la matriz de muestreo M y la matriz recuperada X en SNR inferiores a –8 dB, mientras que la diferencia tiende a cero en SNR superiores a 2 dB. Conclusiones— El algoritmo IZMA-SV logra reducir el número de operaciones para llegar a la matriz aproximada X, reconstruyendo señales muestreadas al 75% de la tasa Nyquist y aún con un muestreo del 20% se mantienen las características de la señal que hacen posible la detección de espectro en banda ancha.Introduction— Cognitive Radio (CR) makes efficient use of the radio resource, for this it performs Spectrum Sensing (SS) in order to identify the available spectrum. But due to the rapid evolution of transceivers, microelectronics and high propagation frequencies, it is necessary for SS algorithms to be applied in frequency bands in CR and for sampling below the Nyquist rate. Objective— Adapt an algorithm for Wideband SubNyquist Spectrum Detection (WBSS) for CR networks using Matrix Completion (MC) integrating seed values from known samples, in order to complete the unsampled inputs of the band to evaluate, reconstruct the signals and the identify the available spectrum. Methodology— An adaptation to the Interest Zone Matrix Approximation (IZMA) algorithm was carried out, for this purpose the reconstruction stage is designed and a narrow band spectrum sensing method is chosen to form the detector bank; the algorithm called IZMA_SV is evaluated at the simulation level, therefore deterministic signals are reconstructed in different SNRs and the channel status is identified as busy or free. Results— The simulations indicate that the adapted algorithm shows differences between the known values of the sampling matrix M and the recovered matrix X in SNRs lower than –8 dB, while the difference tends to zero in SNRs greater than 2 dB. Conclusions— The IZMA-SV algorithm manages to reduce the number of operations to arrive at the approximate matrix X, reconstructing signals sampled at 75% of the Nyquist rate and even with a sampling of 20% the characteristics of the signal that make possible the detection of wideband spectrum.20 páginasapplication/pdfspaCorporación Universidad de la CostaColombiahttps://revistascientificas.cuc.edu.co/ingecuc/article/view/3176Detección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva: compleción de matrices mediante valores semillaSub-Nyquist Wideband Spectrum sensing for Cognitive Radio Networks: Matrix Completion via seed valuesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85[1] Cisco, “Cisco Visual Networking Index: Forecast and Trends, 2017–2022,” Informe técnico 2018-2023, [online], 2017. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visualnetworking-index-vni/white-paper-c11-741490.html[2] Federal Communications Commission, “Spectrum Policy Task Force ,” Wikia.org, [online], Nov. 2002. Available: https://itlaw.wikia.org/wiki/Spectrum_Policy_Task_Force[3] J. Mitola & G. Q. Maguire, “Cognitive Radio: making software radios more personal,” IEEE Personal Communicant, vol. 6, no. 4 , pp. 13–18, Aug. 1999. https://doi.org/10.1109/98.788210[4] J. Mitola, “Cognitive Radio an Integrated Agent Architecture for Software Defined Radio,” Ph.D. dissertation, KTH, SK, SE, 2000 .[5] S. Haykin, “Cognitive Radio: Brain-Empowered Wireless Communications,” IEEE J Sel Areas Commun, vol. 23, no. 2, pp. 201–220, Feb. 2005. https://doi.org/10.1109/JSAC.2004.839380[6] J. C. Clement, K. V. Krishnan & A. Bagubali, “Cognitive Radio: Spectrum Sensing Problems in Signal Processing,” Int J Comput App, vol. 40, no. 16, pp. 37–40, Feb. 2012. https://doi.org/10.1109/ JSAC.2004.839380[7] T. Yucek & H. Arslan, “A Survey of Spectrum Sensing Algorithms for Cognitive Radio Applications,” IEEE Commun Surv Tutor, vol. 11, no. 1, pp. 116–130, 2009. https://doi.org/10.1109/SURV.2009.090109[8] M. M. Mabrook & A. I. Hussein, “Major Spectrum Sensing Techniques for Cognitive Radio Networks: A Survey,” IJEIT, vol. 5, no. 3, pp. 24–37, Sep. 2015. Available from https://www.ijeit.com/Vol%205/ Issue%203/IJEIT1412201509_05.pdf[9] S. Chinchu & T. R. Sangeeta, “Hybrid Detection Method for Improving Spectrum Sensing Performance in Cognitive Radio,” IJSR, vol. 5, no. 6, pp. 948–951, Jun. 2016. https://doi.org/10.21275/v5i6. NOV164316[10] H. Sun, A. Nallanathan, C.-X. Wang & Y. Chen, “Wideband spectrum sensing for cognitive radio networks: a survey,” IEEE Wirel Commun, vol. 20, no. 2, pp. 74–81, Apr. 2013. https://doi.org/10.1109/ MWC.2013.6507397[11] H. Sun, W.-Y. Chiu, J. Jiang, A. Nallanathan & H. V. Poor , “Wideband spectrum sensing with subNyquist sampling in cognitive radios,” IEEE Trans Signal Process, vol. 60, no 11, pp. 6068–6073, Nov. 2012. https://doi.org/10.1109/TSP.2012.2212892[12] R. Al-Aomar, E. J. Williams & O. M. Ülgen, Process Simulation Using WITNESS. NJ, USA: John Wiley & Sons, 2015.[13] S. Qaisar, R. M. Bilal, W. Iqbal , M. Naureen & S. Lee, “Compressive Sensing: From Theory to Applications, A survey,” J Commun Net IEEE (KICS), vol. 15, no. 5, pp. 443–456, Oct. 2013. https://doi. org/10.1109/JCN.2013.000083[14] H. Huang, S. Misra, W. Tang, H. Barani & H. Al-Azzawi, “Applications of compressed sensing in communications networks,” ARXIV, vol. 1305.3002, pp. 1–18, Feb. 2014. Available: https://arxiv.org/ pdf/1305.3002.pdf[15] F. Salahdine, N. Kaabouch & H. El Ghazi, “A survey on compressive sensing techniques for cognitive radio networks,” Phys Commun, vol. 20, no. 1, pp. 61–73, Sep. 2016. https://doi.org/10.1016/j. phycom.2016.05.002[16] E. J. Candes & B. Recht, “Exact Matrix completion via convex optimization,” FoCM, vol. 9, no. 6, pp. 717–766, Apr. 2009. https://doi.org/10.1007/s10208-009-9045-5[17] Z. Qin, Y. Gao, M. D. Plumbey & C. G. Parini, “Wideband Spectrum Sensing on Real-Time Signals at Sub-Nyquist Sampling Rates in Single and Cooperative Multiple Nodes,” IEEE Trans Signal Process , vol. 64, no. 12, pp. 3106–3117, Jun. 2016. https://doi.org/10.1109/TSP.2015.2512562[18] Z. Qin, Y. Liu, Y. Gao, M. Elkashlan & A. Nallanathan, “Wireless Powered Cognitive Radio Networks With Compressive Sensing and Matrix Completion,” IEEE Trans Commun, vol. 65, no. 4, pp. 1464– 1476, Apr. 2017. https://doi.org/10.1109/TCOMM.2016.2623606[19] Z. Qin, Y. Gao & M. D. Plumbey, “Malicious User Detection Based on Low-Rank Matrix Completion in Wideband Spectrum Sensing,” IEEE Trans Signal Process, vol. 66, no. 1, pp. 5–17, Jan. 2018. https:// doi.org/10.1109/TSP.2017.2759082[20] G. Shabat & A. Averbuch , “ Interest zone matrix approximation,” ELA, vol. 23, no. 1, pp. 678–702, Aug. 2012. https://doi.org/10.13001/1081-3810.1551[21] M. Subhedar & G. Birajdar, “Spectrum Sensing Techniques In Cognitive Radio Networks: A Survey,” IJNGN, vol. 3, no. 2, pp. 37–51, Jun. 2011. https://doi.org/10.5121/ijngn.2011.3203[22] M. A. Abdulsattar & Z. A. Hussein, “Energy Detection Technique For Spectrum Sensing In Cognitive, Radio: A Survey,” IJCNC, vol. 4, no. 5, pp. 223–242, Sep. 2012. https://doi.org/10.5121/ijcnc.2012.4514[23] P. S. Aparna & M. Jayasheela, “Cyclostationary Feature Detection in Cognitive Radio using Different Modulation Schemes,” Int J Comp App, vol. 47, no. 21, pp. 12–16, Jun. 2012. https://doi.org/10.5120/7472- 0517[24] D. Bhargavi & C. R. Murthy, “Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing,” IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications, SPAWC, MAR, MA, pp. 1–5, 20-23 Jun. 2010. https://doi.org/10.1109/ SPAWC.2010.5670882[25] S. Pattanayak, P. Venkateswaran & R. Nandi, “Artificial Intelligence Based Model for Channel Status Prediction: A New Spectrum Sensing Technique for Cognitive Radio,” IJCNS, vol. 6, no. 3, pp. 139–148, Mar. 2013. https://doi.org/10.4236/ijcns.2013.63017145126117Radio cognitivaAlgoritmo de detección de espectro en banda anchaCompleción de matricesAproximación matricial de la zona de interésmuestreo SubNyquistDetección de energíaCognitive radioAlgorithm of spectrum sensing in widebandMatrix completionInterest zone matrix approximationSub-Nyquist samplingEnergy detectionPublicationORIGINALDetección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva.pdfDetección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva.pdfArtículoapplication/pdf1904346https://repositorio.cuc.edu.co/bitstreams/cbcbf3b0-416c-40e3-b652-56d0cfa72ef6/downloadcc5c301cd64a1cb32d048a90825d57d2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/5dd17aa8-1456-4f58-8e48-6e889354c38e/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTDetección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva.pdf.txtDetección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva.pdf.txtExtracted texttext/plain64548https://repositorio.cuc.edu.co/bitstreams/02a77775-3120-4907-bde0-6aa75edcbe11/download8cd697774e2afe2a9ec79b7ba1d648acMD53THUMBNAILDetección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva.pdf.jpgDetección de espectro en banda ancha Sub-Nyquist para redes Radio Cognitiva.pdf.jpgGenerated Thumbnailimage/jpeg13197https://repositorio.cuc.edu.co/bitstreams/4772d726-fbd1-4a32-ac9c-c4f4c0688ce6/downloadad2d197a79d2ce998a54c623f3f9fbf9MD5411323/10301oai:repositorio.cuc.edu.co:11323/103012024-09-17 10:51:26.687https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos de autor 2021 INGE CUCopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=