Data mining techniques and multivariate analysis to discover Patterns in university final researches
The aim of this study is to extract knowledge from the final researches of the Mumbai University Science Faculty. Five classification models were applied: Vector Support Machines, Neural Networks, Decision Tree, Random Forest and Powering; considering the Experiment Design and Multivariate Analysis...
- Autores:
-
amelec, viloria
Rodríguez López, Jorge
García Leyva, Diana Margarita
Vargas Mercado, Carlos
Hernández-Palma, Hugo
ORELLANO LLINAS, NATALY
Arrozola David, Mónica
Velasquez Rodriguez, Javier
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5867
- Acceso en línea:
- https://hdl.handle.net/11323/5867
https://repositorio.cuc.edu.co/
- Palabra clave:
- Data mining education
Education indicators
Classification.
Data mining techniques
Educación en minería de datos
Técnicas de minería de datos
Indicadores de educación
Clasificación
- Rights
- openAccess
- License
- http://creativecommons.org/publicdomain/zero/1.0/
id |
RCUC2_afc65041cacb05a18a671a7ba9256b82 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5867 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Data mining techniques and multivariate analysis to discover Patterns in university final researches |
dc.title.translated.spa.fl_str_mv |
Técnicas de minería de datos y análisis multivariado para descubrir patrones en investigaciones finales universitarias. |
title |
Data mining techniques and multivariate analysis to discover Patterns in university final researches |
spellingShingle |
Data mining techniques and multivariate analysis to discover Patterns in university final researches Data mining education Education indicators Classification. Data mining techniques Educación en minería de datos Técnicas de minería de datos Indicadores de educación Clasificación |
title_short |
Data mining techniques and multivariate analysis to discover Patterns in university final researches |
title_full |
Data mining techniques and multivariate analysis to discover Patterns in university final researches |
title_fullStr |
Data mining techniques and multivariate analysis to discover Patterns in university final researches |
title_full_unstemmed |
Data mining techniques and multivariate analysis to discover Patterns in university final researches |
title_sort |
Data mining techniques and multivariate analysis to discover Patterns in university final researches |
dc.creator.fl_str_mv |
amelec, viloria Rodríguez López, Jorge García Leyva, Diana Margarita Vargas Mercado, Carlos Hernández-Palma, Hugo ORELLANO LLINAS, NATALY Arrozola David, Mónica Velasquez Rodriguez, Javier |
dc.contributor.author.spa.fl_str_mv |
amelec, viloria Rodríguez López, Jorge García Leyva, Diana Margarita Vargas Mercado, Carlos Hernández-Palma, Hugo ORELLANO LLINAS, NATALY Arrozola David, Mónica Velasquez Rodriguez, Javier |
dc.subject.spa.fl_str_mv |
Data mining education Education indicators Classification. Data mining techniques Educación en minería de datos Técnicas de minería de datos Indicadores de educación Clasificación |
topic |
Data mining education Education indicators Classification. Data mining techniques Educación en minería de datos Técnicas de minería de datos Indicadores de educación Clasificación |
description |
The aim of this study is to extract knowledge from the final researches of the Mumbai University Science Faculty. Five classification models were applied: Vector Support Machines, Neural Networks, Decision Tree, Random Forest and Powering; considering the Experiment Design and Multivariate Analysis Lines. Results showed that for the Experiment Design line, the most accurate model was Random Forest with 71.48% predictions that are correct respecting to the total. Regarding the Multivariate Analysis line, there was no significant difference in overall accuracy, fluctuating by 97%. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-01-17T19:41:31Z |
dc.date.available.none.fl_str_mv |
2020-01-17T19:41:31Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1877-0509 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5867 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1877-0509 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5867 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://doi.org/10.1016/j.procs.2019.08.081 |
dc.relation.references.spa.fl_str_mv |
Vasquez, C., Torres, M., Viloria, A.: Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J. Eng. Appl. Sci. 12(11), 2963–2965 (2017). Aguado-López, E., Rogel-Salazar, R., Becerril-García, A., Baca-Zapata, G.: Presencia de universidades en la Red: La brecha digital entre Estados Unidos y el resto del mundo. Revista de Universidad y Sociedad del Conocimiento 6(1), 1–17 (2009). Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web Visibility Profiles of Top100 Latin American Universities. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943, 1-12 (2018). Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J. : Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching – Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Yang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943,1-12 (2018). Caicedo, E.J.C., Guerrero, S., López, D.: Propuesta para la construcción de un índice socioeconómico para los estudiantes que presentan las pruebas Saber Pro. Comunicaciones en Estadística, vol. 9(1), 93-106 (2016). Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Designing Data Warehouses: From Business Requirement Analysis to Multidimensional Modeling. In Proceedings of the 1st Int. Workshop on Requirements Engineering for Business Need and IT Alignment. Paris, France (2005). Vásquez, C., Torres-Samuel, M., Viloria, A., Lis-Gutiérrez, J.P., Crissien Borrero, T., Varela, N., Cabrera, D.: Cluster of the Latin American Universities Top100 According to Webometrics 2017. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham , vol 10943, 1-12 (2018). Haykin, S.: Neural Networks a Comprehensive Foundation. Second Edition. Macmillan College Publishing, Inc. USA. ISBN 9780023527616 (1999). Isasi, P., Galván, I.: Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson. ISBN 8420540250 (2004). Haykin, S.: Neural Networks and Learning Machines. New Jersey, Prentice Hall International (2009). Rafailidis, D., Kefalas, P., Manolopoulos, Y.: Preference dynamics with multimodal user-item interactions in social media recommendation. Expert Systems with Applications 74(1), 11-18 (2017). Zheng, C., Haihong, E., Song, M., Song, J.: CMPTF: Contextual Modeling Probabilistic Tensor Factorization for recommender systems. Neurocomputing 205(1), 141-151 (2016). Hidasi, B., Tikk, D.: Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback. Machine Learning and Knowledge Discovery in Databases (2012). Lee, J., Lee, D., Lee, Y. C., Hwang, W. S., Kim, S. W.: Improving the accuracy of top-n recommendation using a preference model. Information Sciences 348(1), 290-304 (2016). Abhay, K.A., Neelendra, B.: Data Storing in Intelligent and Distributed Data Warehouse using Unique Identification Number, published in International Journal of Grid and Distributed Computing, Publisher: SERSC Australia 10(9), 13-32 (September, 2017). |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Procedia Computer Science |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/99091639-0085-4bab-961a-cda889615a7e/download https://repositorio.cuc.edu.co/bitstreams/d157718c-01d2-49c1-b15b-9c069ac6622d/download https://repositorio.cuc.edu.co/bitstreams/60a60c90-bd26-4711-8c31-c5075a2d404c/download https://repositorio.cuc.edu.co/bitstreams/feb08d6f-6dc9-4209-b2e9-120c2a64b88c/download https://repositorio.cuc.edu.co/bitstreams/1904269e-9f2d-464f-9539-7db916dce609/download |
bitstream.checksum.fl_str_mv |
42fd4ad1e89814f5e4a476b409eb708c 48772c8ab623b41e1fb39c01f3ca816d 8a4605be74aa9ea9d79846c1fba20a33 d09181ae79096ada10bb9e8a96ffbae4 03aecfe28ecd42379d5a35f017b36e7e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760738425896960 |
spelling |
amelec, viloriaRodríguez López, JorgeGarcía Leyva, Diana MargaritaVargas Mercado, CarlosHernández-Palma, HugoORELLANO LLINAS, NATALYArrozola David, MónicaVelasquez Rodriguez, Javier2020-01-17T19:41:31Z2020-01-17T19:41:31Z20191877-0509https://hdl.handle.net/11323/5867Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The aim of this study is to extract knowledge from the final researches of the Mumbai University Science Faculty. Five classification models were applied: Vector Support Machines, Neural Networks, Decision Tree, Random Forest and Powering; considering the Experiment Design and Multivariate Analysis Lines. Results showed that for the Experiment Design line, the most accurate model was Random Forest with 71.48% predictions that are correct respecting to the total. Regarding the Multivariate Analysis line, there was no significant difference in overall accuracy, fluctuating by 97%.El objetivo de este estudio es extraer conocimiento de las investigaciones finales de la Facultad de Ciencias de la Universidad de Mumbai. Se aplicaron cinco modelos de clasificación: máquinas de soporte de vectores, redes neuronales, árbol de decisión, bosque aleatorio y alimentación; considerando el diseño del experimento y las líneas de análisis multivariante. Los resultados mostraron que para la línea de diseño de experimentos, el modelo más preciso fue Random Forest con 71.48% de predicciones que son correctas con respecto al total. Con respecto a la línea de Análisis Multivariante, no hubo diferencias significativas en la precisión general, fluctuando en un 97%.Amelec, Viloria-will be generated-orcid-0000-0003-2673-6350-600Rodríguez López, JorgeGarcía Leyva, Diana MargaritaVargas Mercado, Carlos-will be generated-orcid-0000-0002-5436-0568-600Hernández-Palma, HugoOrellano Llinas, Nataly-will be generated-orcid-0000-0002-5341-6718-600Arrozola David, MónicaVelasquez Rodriguez, JavierengProcedia Computer Sciencehttps://doi.org/10.1016/j.procs.2019.08.081Vasquez, C., Torres, M., Viloria, A.: Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J. Eng. Appl. Sci. 12(11), 2963–2965 (2017).Aguado-López, E., Rogel-Salazar, R., Becerril-García, A., Baca-Zapata, G.: Presencia de universidades en la Red: La brecha digital entre Estados Unidos y el resto del mundo. Revista de Universidad y Sociedad del Conocimiento 6(1), 1–17 (2009).Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web Visibility Profiles of Top100 Latin American Universities. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943, 1-12 (2018).Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J. : Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching – Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Yang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943,1-12 (2018).Caicedo, E.J.C., Guerrero, S., López, D.: Propuesta para la construcción de un índice socioeconómico para los estudiantes que presentan las pruebas Saber Pro. Comunicaciones en Estadística, vol. 9(1), 93-106 (2016).Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Designing Data Warehouses: From Business Requirement Analysis to Multidimensional Modeling. In Proceedings of the 1st Int. Workshop on Requirements Engineering for Business Need and IT Alignment. Paris, France (2005).Vásquez, C., Torres-Samuel, M., Viloria, A., Lis-Gutiérrez, J.P., Crissien Borrero, T., Varela, N., Cabrera, D.: Cluster of the Latin American Universities Top100 According to Webometrics 2017. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham , vol 10943, 1-12 (2018).Haykin, S.: Neural Networks a Comprehensive Foundation. Second Edition. Macmillan College Publishing, Inc. USA. ISBN 9780023527616 (1999).Isasi, P., Galván, I.: Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson. ISBN 8420540250 (2004).Haykin, S.: Neural Networks and Learning Machines. New Jersey, Prentice Hall International (2009).Rafailidis, D., Kefalas, P., Manolopoulos, Y.: Preference dynamics with multimodal user-item interactions in social media recommendation. Expert Systems with Applications 74(1), 11-18 (2017).Zheng, C., Haihong, E., Song, M., Song, J.: CMPTF: Contextual Modeling Probabilistic Tensor Factorization for recommender systems. Neurocomputing 205(1), 141-151 (2016).Hidasi, B., Tikk, D.: Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback. Machine Learning and Knowledge Discovery in Databases (2012).Lee, J., Lee, D., Lee, Y. C., Hwang, W. S., Kim, S. W.: Improving the accuracy of top-n recommendation using a preference model. Information Sciences 348(1), 290-304 (2016).Abhay, K.A., Neelendra, B.: Data Storing in Intelligent and Distributed Data Warehouse using Unique Identification Number, published in International Journal of Grid and Distributed Computing, Publisher: SERSC Australia 10(9), 13-32 (September, 2017).http://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Data mining educationEducation indicatorsClassification.Data mining techniquesEducación en minería de datosTécnicas de minería de datosIndicadores de educaciónClasificaciónData mining techniques and multivariate analysis to discover Patterns in university final researchesTécnicas de minería de datos y análisis multivariado para descubrir patrones en investigaciones finales universitarias.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/99091639-0085-4bab-961a-cda889615a7e/download42fd4ad1e89814f5e4a476b409eb708cMD54ORIGINALData Mining Techniques.pdfData Mining Techniques.pdfapplication/pdf494165https://repositorio.cuc.edu.co/bitstreams/d157718c-01d2-49c1-b15b-9c069ac6622d/download48772c8ab623b41e1fb39c01f3ca816dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/60a60c90-bd26-4711-8c31-c5075a2d404c/download8a4605be74aa9ea9d79846c1fba20a33MD55THUMBNAILData Mining Techniques.pdf.jpgData Mining Techniques.pdf.jpgimage/jpeg45056https://repositorio.cuc.edu.co/bitstreams/feb08d6f-6dc9-4209-b2e9-120c2a64b88c/downloadd09181ae79096ada10bb9e8a96ffbae4MD57TEXTData Mining Techniques.pdf.txtData Mining Techniques.pdf.txttext/plain20434https://repositorio.cuc.edu.co/bitstreams/1904269e-9f2d-464f-9539-7db916dce609/download03aecfe28ecd42379d5a35f017b36e7eMD5811323/5867oai:repositorio.cuc.edu.co:11323/58672024-09-17 10:54:04.024http://creativecommons.org/publicdomain/zero/1.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |