An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times
Production scheduling is a critical factor to enhancing productivity in manufacturing engineering and combinatorial optimization research. The complexity and dynamic nature of production systems necessitates innovative solutions. The Job Shop Flexible Programming Problem (FJSP) provides a realistic...
- Autores:
-
Jiménez Tovar, Mary
Acevedo-Chedid, Jaime
Ospina-Mateus, Holman
Salas-Navarro, Katherinne
Sankar Sana, hib
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10491
- Acceso en línea:
- https://hdl.handle.net/11323/10491
https://repositorio.cuc.edu.co/
- Palabra clave:
- Flexible job-shop
Teaching–learning-based optimization
Fuzzy processing times
Hybrid algorithm
- Rights
- embargoedAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_afb85d923c41340d9c8c82524abde93d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10491 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times |
title |
An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times |
spellingShingle |
An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times Flexible job-shop Teaching–learning-based optimization Fuzzy processing times Hybrid algorithm |
title_short |
An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times |
title_full |
An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times |
title_fullStr |
An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times |
title_full_unstemmed |
An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times |
title_sort |
An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times |
dc.creator.fl_str_mv |
Jiménez Tovar, Mary Acevedo-Chedid, Jaime Ospina-Mateus, Holman Salas-Navarro, Katherinne Sankar Sana, hib |
dc.contributor.author.none.fl_str_mv |
Jiménez Tovar, Mary Acevedo-Chedid, Jaime Ospina-Mateus, Holman Salas-Navarro, Katherinne Sankar Sana, hib |
dc.subject.proposal.eng.fl_str_mv |
Flexible job-shop Teaching–learning-based optimization Fuzzy processing times Hybrid algorithm |
topic |
Flexible job-shop Teaching–learning-based optimization Fuzzy processing times Hybrid algorithm |
description |
Production scheduling is a critical factor to enhancing productivity in manufacturing engineering and combinatorial optimization research. The complexity and dynamic nature of production systems necessitates innovative solutions. The Job Shop Flexible Programming Problem (FJSP) provides a realistic environment for production, where processing times are variable and uncertain, and multiple objectives need optimization. To solve the Multi-Objective Flexible Fuzzy Job Shop problem with partial flexibility (P-MOFfJSP), this paper proposes a hybrid metaheuristic approach that combines the Teaching–Learning-based Optimization (TLBO) algorithm with a Genetic Algorithm. The proposed algorithm of Adaptive TLBO (TLBO-A) uses two genetic operators (mutation and crossover) with an adaptive population reconfiguration strategy, ensuring solution space exploration and preventing premature convergence. We have evaluated the TLBO-A algorithm's performance on benchmark instances commonly used in programming problems with fuzzy variables. The experimental analysis indicates significant results, demonstrating that the adaptive strategy improves the search for suitable solutions. The proposed algorithm (TLBO-A) exhibits low variations (around 11%) compared to the best mono-objective heuristic for the fuzzy makespan problem, indicating its robustness. Moreover, compared with other heuristics like traditional TLBO, the variations decrease to around 1%. However, TLBO-A stands out as it aims to solve a multi-objective problem, improving the fuzzy makespan, and identifying good results on the Pareto frontier for the fuzzy average flow time, all within this low variation margin. Our contribution addresses the challenges of production scheduling in fuzzy time environments and proposes a practical hybrid metaheuristic approach. The TLBO-A algorithm shows promising results in solving the P-MOFfJSP, highlighting the potential of our proposed methodology for solving real-world production scheduling problems. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-18T16:16:22Z |
dc.date.available.none.fl_str_mv |
2023-09-18T16:16:22Z 2024-06-05 |
dc.date.issued.none.fl_str_mv |
2023-06-05 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Jiménez Tovar, M., Acevedo-Chedid, J., Ospina-Mateus, H. et al. An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times. Soft Comput (2023). https://doi.org/10.1007/s00500-023-08342-2 |
dc.identifier.issn.spa.fl_str_mv |
1432-7643 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10491 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s00500-023-08342-2 |
dc.identifier.eissn.spa.fl_str_mv |
1433-7479 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Jiménez Tovar, M., Acevedo-Chedid, J., Ospina-Mateus, H. et al. An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times. Soft Comput (2023). https://doi.org/10.1007/s00500-023-08342-2 1432-7643 10.1007/s00500-023-08342-2 1433-7479 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/10491 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Soft Computing |
dc.relation.references.spa.fl_str_mv |
Abdullah S, Abdolrazzagh-Nezhad M (2014) Fuzzy job-shop scheduling problems: a review. Inf Sci 278:380–407 Acevedo Chedid J, Grice-Reyes J, Ospina-Mateus H, Salas-Navarro K, Santander-Mercado A, Sana SS (2020) Soft-computing approaches for rescheluding problems in a manufacturing industry. RAIRO Oper Res 55:S2125–S2159 Acevedo-Chedid J, Salas-Navarro K, Ospina-Mateus H, Villalobo A, Sana SS (2021) Production system in a collaborative supply chain considering deterioration. Int J Appl Comput Math 7:1–46 Adnan RM, Yuan X, Kisi O, Adnan M, Mehmood A (2018) Stream flow forecasting of poorly gauged mountainous watershed by least square support vector machine, fuzzy genetic algorithm and M5 model tree using climatic data from nearby station. Water Resour Manag 32:4469–4486 Adnan RM, Mostafa RR, Elbeltagi A, Yaseen ZM, Shahid S, Kisi O (2022) Development of new machine learning model for streamflow prediction: case studies in Pakistan. Stoch Env Res Risk Assess 36:999–1033 Al-Janabi S, Alkaim A (2020) A nifty collaborative analysis to predicting a novel tool (DRFLLS) for missing values estimation. Soft Comput 24:555–569 Al-Janabi S, Alkaim A (2022) A novel optimization algorithm (Lion-AYAD) to find optimal DNA protein synthesis. Egypt Inform J 23:271–290 Al-Janabi S, Alkaim A, Adel Z (2020a) An innovative synthesis of deep learning techniques (DCapsNet & DCOM) for generation electrical renewable energy from wind energy. Soft Comput 24:10943–10962 Al-Janabi S, Mohammad M, Al-Sultan A (2020b) A new method for prediction of air pollution based on intelligent computation. Soft Comput 24:661–680 Al-Janabi S, Alkaim A, Al-Janabi E, Alieboree A, Mustaja M (2021) Intelligent forecaster of concentrations (PM2.5, PM10, NO2, CO, O3, SO2) caused air pollution (IFCsAP). Neural Comput Appl 33:14199–14229 Basiri MA, Alinezhad E, Tavakkoli-Moghaddam R, Shahsavari-Poure N (2020) A hybrid intelligent algorithm for a fuzzy multi-objective job shop scheduling problem with reentrant workflows and parallel machines. J Intell Fuzzy Syst 39:7769–7785 Baykasoğlu A, Hamzadayi A, Köse SY (2014) Testing the performance of teaching–learning based optimization (TLBO) algorithm on combinatorial problems: flow shop and job shop scheduling cases. Inf Sci 276:204–218 Behnamian J (2017) Matheuristic for the decentralized factories scheduling problem. Appl Math Model 47:668–684 Boyer V, Vallikavungal J, Rodríguez XC, Salazar-Aguilar MA (2021) The generalized flexible job shop scheduling problem. Comput Ind Eng 160:107542 Brandimarte P (1993) Routing and scheduling in a flexible job shop by tabu search. Ann Oper Res 41:157–183 Braune R, Benda F, Doerner KF, Hartl RF (2022) A genetic programming learning approach to generate dispatching rules for flexible shop scheduling problems. Int J Prod Econ 243:108342 Bulbul SMA, Roy PK (2014) Adaptive teaching learning based optimization applied to nonlinear economic load dispatch problem. Int J Swarm Intell Res 5:1–16 Chen JC, Wu CC, Chen CW, Chen KH (2012) Flexible job shop scheduling with parallel machines using genetic algorithm and grouping genetic algorithm. Expert Syst Appl 39:10016–10021 Chiandussi G, Codegone M, Ferrero S, Varesio FE (2012) Comparison of multi-objective optimization methodologies for engineering applications. Comput Math Appl 63:912–942 Chiang TC, Lin HJ (2013) A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling. Int J Prod Econ 141:87–98 Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219:8121–8144 Deng Q, Gong G, Gong X, Zhang L, Liu W, Ren Q (2017) A bee evolutionary guiding nondominated sorting genetic algorithm II for multiobjective flexible job-shop scheduling. Comput Intell Neurosci 2017:5232518 Engin O, Yilmaz MK, Baysal M, Sarucan A (2013) Solving fuzzy job shop scheduling problems with availability constraints using a scatter search method. J Mult Valued Log Soft Comput 21:317–334 Ertenlice O, Kalayci CB (2018) A survey of swarm intelligence for portfolio optimization: algorithms and applications. Swarm Evol Comput 39:36–52 Fazel Zarandi MH, Sadat Asl AA, Sotudian S, Castillo O (2020) A state of the art review of intelligent scheduling. Artif Intell Rev 53:501–593 Gaham M, Bouzouia B, Achour N (2018) An effective operations permutation-based discrete harmony search approach for the flexible job shop scheduling problem with makespan criterion. Appl Intell 48:1423–1441 Gao J, Gen M, Sun L, Zhao X (2007) A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems. Comput Ind Eng 53:149–162 Gao J, Sun L, Gen M (2008) A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems. Comput Oper Res 35:2892–2907 Gao KZ, Suganthan PN, Pan QK, Tasgetiren MF (2015) An effective discrete harmony search algorithm for flexible job shop scheduling problem with fuzzy processing time. Int J Prod Res 53:5896–5911 Gao KZ, Suganthan PN, Pan QK, Chua TJ, Chong CS, Cai TX (2016a) An improved artificial bee colony algorithm for flexible job-shop scheduling problem with fuzzy processing time. Expert Syst Appl 65:52–67 Gao KZ, Suganthan PN, Pan QK, Tasgetiren MF, Sadollah A (2016b) Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion. Knowl Based Syst 109:1–16 Gao D, Wang GG, Pedrycz W (2020) Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection mechanism. IEEE Trans Fuzzy Syst 28:3265–3275 He C, Qiu D, Guo H (2013) Solving fuzzy job shop scheduling problem based on interval number theory. In: Proceedings of the 2012 international conference on information technology and software engineering. Springer, Berlin, Heidelberg Ji X, Ye H, Zhou J, Yin Y, Shen X (2017) An improved teaching-learning-based optimization algorithm and its application to a combinatorial optimization problem in foundry industry. Appl Soft Comput 57:504–516 Jia S, Hu ZH (2014) Path-relinking Tabu search for the multi-objective flexible job shop scheduling problem. Comput Oper Res 47:11–26 Jin L, Zhang C, Shao X, Tian G (2016) Mathematical modeling and a memetic algorithm for the integration of process planning and scheduling considering uncertain processing times. Proc Inst Mech Eng Part B J Eng Manuf 230:1272–1283 Jin L, Zhang C, Wen X, Sun C, Fei X (2021) A neutrosophic set-based TLBO algorithm for the flexible job-shop scheduling problem with routing flexibility and uncertain processing times. Complex Intell Syst 7:2833–2853 Joo BJ, Shim SO, Chua TJ, Cai TX (2018) Multi-level job scheduling under processing time uncertainty. Comput Ind Eng 120:480–487 Kacem I, Hammadi S, Borne P (2002) Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Math Comput Simul 60:245–276 Kaplanoğlu V (2016) An object-oriented approach for multi-objective flexible job-shop scheduling problem. Expert Syst Appl 45:71–84 Kato ERR, de Aguiar Aranha GD, Tsunaki RH (2018) A new approach to solve the flexible job shop problem based on a hybrid particle swarm optimization and random-restart hill climbing. Comput Ind Eng 125:178–189 Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80:8091–8126 Kisi O, Parmar KS, Mahdavi-Meymand A, Adnan RM, Shahid S, Zounemat-Kermani M (2023) Water quality prediction of the yamuna river in India using hybrid neuro-fuzzy models. Water 15:1095 Kundakcı N, Kulak O (2016) Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem. Comput Ind Eng 96:31–51 Lei D (2010) A genetic algorithm for flexible job shop scheduling with fuzzy processing time. Int J Prod Res 48:2995–3013 Lei D (2012) Co-evolutionary genetic algorithm for fuzzy flexible job shop scheduling. Appl Soft Comput 12:2237–2245 Lei H, Xing K, Han L, Gao Z (2017) Hybrid heuristic search approach for deadlock-free scheduling of flexible manufacturing systems using Petri nets. Appl Soft Comput 55:413–423 Lei K, Guo P, Zhao W, Wang Y, Qian L, Meng X, Tang L (2022) A multi-action deep reinforcement learning framework for flexible job-shop scheduling problem. Expert Syst Appl 205:117796 Li X, Gao L (2016) An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. Int J Prod Econ 174:93–110 Li JQ, Pan QK (2013a) Chemical-reaction optimization for solving fuzzy job-shop scheduling problem with flexible maintenance activities. Int J Prod Econ 145:4–17 Li JQ, Pan YX (2013b) A hybrid discrete particle swarm optimization algorithm for solving fuzzy job shop scheduling problem. Int J Adv Manuf Technol 66:583–596 Li JQ, Pan QK, Liang YC (2010) An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems. Comput Ind Eng 59:647–662 Li X, Peng Z, Du B, Guo J, Xu W, Zhuang K (2017) Hybrid artificial bee colony algorithm with a rescheduling strategy for solving flexible job shop scheduling problems. Comput Ind Eng 113:10–26 Li JQ, Liu ZM, Li C, Zheng ZX (2021) Improved artificial immune system algorithm for type-2 fuzzy flexible job shop scheduling problem. IEEE Trans Fuzzy Syst 29:3234–3248 Li R, Gong W, Wang L, Lu C, Jiang S (2022a) Two-stage knowledge-driven evolutionary algorithm for distributed green flexible job shop scheduling with type-2 fuzzy processing time. Swarm Evol Comput 74:101139 Li R, Gong W, Lu C (2022b) A reinforcement learning based RMOEA/D for bi-objective fuzzy flexible job shop scheduling. Expert Syst Appl 203:117380 Li R, Gong W, Lu C (2022c) Self-adaptive multi-objective evolutionary algorithm for flexible job shop scheduling with fuzzy processing time. Comput Ind Eng 168:108099 Li J, Pan QK, Suganthan PN, Tasgetiren MF (2012) Solving fuzzy jJob-shop scheduling problem by a hybrid PSO algorithm. Swarm and Evolutionary Computation, Berlin, Heidelberg, Springer Berlin Heidelberg. Lecture Notes in Computer Science book series (LNTCS,vol 7269), pp 275–282 Lin FT (2002) Fuzzy job-shop scheduling based on ranking level (/spl lambda/, 1) interval-valued fuzzy numbers. IEEE Trans Fuzzy Syst 10:510–522 Lin J (2019) Backtracking search based hyper-heuristic for the flexible job-shop scheduling problem with fuzzy processing time. Eng Appl Artif Intell 77:186–196 Lin J, Zhang S (2016) An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation flow-shop scheduling problem. Comput Ind Eng 97:128–136 Lin J, Zhu L, Wang ZJ (2019) A hybrid multi-verse optimization for the fuzzy flexible job-shop scheduling problem. Comput Ind Eng 127:1089–1100 Liu B, Fan Y, Liu Y (2015) A fast estimation of distribution algorithm for dynamic fuzzy flexible job-shop scheduling problem. Comput Ind Eng 87:193–201 Mandal B, Roy PK (2013) Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization. Int J Electr Power Energy Syst 53:123–134 Mane SU, Adamuthe AC, Omane RR (2020) Master-Slave TLBO algorithm for constrained global optimization problems. EAI Endorsed Trans Scalable Inf Syst 8:e2 Mohammed GS, Al-Janabi S (2022) An innovative synthesis of optmization techniques (FDIRE-GSK) for generation electrical renewable energy from natural resources. Results Eng 16:100637. https://doi.org/10.1016/j.rineng.2022.100637 Ortíz-Barrios M, Petrillo A, De Felice F, Jaramillo-Rueda N, Jiménez-Delgado G, Borrero-López L (2021) A dispatching-fuzzy AHP-TOPSIS model for scheduling flexible job-shop systems in industry 4.0 context. Appl Sci 11:5107 Özgüven C, Özbakır L, Yavuz Y (2010) Mathematical models for job-shop scheduling problems with routing and process plan flexibility. Appl Math Model 34:1539–1548 Palacios JJ, Puente J, González-Rodríguez I, Vela CR (2013) Hybrid tabu search for fuzzy job shop. Natural and artificial models in computation and biology. Springer, Berlin, Heidelberg Palacios JJ, González MA, Vela CR, González-Rodríguez I, Puente J (2015) Genetic tabu search for the fuzzy flexible job shop problem. Comput Oper Res 54:74–89 Pan C, Qiao Y, Wu N, Zhou M (2014) A novel algorithm for wafer sojourn time analysis of single-arm cluster tools with wafer residency time constraints and activity time variation. IEEE Trans Syst Man Cybern Syst 45:805–818 Pan Z, Lei D, Wang L (2022) A bi-population evolutionary algorithm with feedback for energy-efficient fuzzy flexible job shop scheduling. IEEE Trans Syst Man Cybern Syst 52:5295–5307 Petrović DV, Tanasijević M, Milić V, Lilić N, Stojadinović S, Svrkota I (2014) Risk assessment model of mining equipment failure based on fuzzy logic. Expert Syst Appl 41:8157–8164 Pezzella F, Morganti G, Ciaschetti G (2008) A genetic algorithm for the flexible job-shop scheduling problem. Comput Oper Res 35:3202–3212 Pickard JK, Carretero JA, Bhavsar VC (2016) On the convergence and origin bias of the teaching-learning-based-optimization algorithm. Appl Soft Comput 46:115–127 Pinedo M (2005) Planning and scheduling in manufacturing and services. Springer Rao RV, Rai DP (2016) Optimisation of advanced finishing processes using a teaching-learning-based optimisation algorithm. Nanofinishing science and technology. CRC Press, pp 495–518 Roy PK, Sarkar R (2014) Solution of unit commitment problem using quasi-oppositional teaching learning based algorithm. Int J Electr Power Energy Syst 60:96–106 Satapathy S, Naik A, Parvathi K (2013) A teaching learning based optimization based on orthogonal design for solving global optimization problems. Springerplus 2:1–12 Seck-Tuoh-Mora JC, Escamilla-Serna NJ, Montiel-Arrieta LJ, Barragan-Vite I, Medina-Marin J (2022) A global neighborhood with hill-climbing algorithm for fuzzy flexible job shop scheduling problem. Mathematics 10:4233 Seyyedi MH, Saghih AMF, Azimi ZN (2021) A fuzzy mathematical model for multi-objective flexible job-shop scheduling problem with new job insertion and earliness/tardiness penalty. Int J Ind Eng Theory Appl Pract, 28 Shao W, Pi D, Shao Z (2017) An extended teaching-learning based optimization algorithm for solving no-wait flow shop scheduling problem. Appl Soft Comput 61:193–210 Shi D, Zhang B, Li Y (2020) A multi-objective flexible job-shop scheduling model based on fuzzy theory and immune genetic algorithm. Int J Simul Model 19:123–133 Song H, Liu P (2022) A study on the optimal flexible job-shop scheduling with sequence-dependent setup time based on a hybrid algorithm of improved quantum cat swarm optimization. Sustainability 14:9547 Sun L, Lin L, Gen M, Li H (2019) A hybrid cooperative coevolution algorithm for fuzzy flexible job shop scheduling. IEEE Trans Fuzzy Syst 27:1008–1022 Thammano A, Teekeng W (2015) A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems. Int J Gen Syst 44:499–518 Tran TD, Varela R, González-Rodríguez I, Talbi EG (2014) Solving fuzzy job-shop scheduling problems with a multiobjective optimizer. Knowledge and systems engineering. Springer International Publishing, Cham Wang L, Wang S, Xu Y, Zhou G, Liu M (2012a) A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem. Comput Ind Eng 62:917–926 Wang X, Gao L, Zhang C, Li X (2012b) A multi–objective genetic algorithm for fuzzy flexible job–shop scheduling problem. Int J Comput Appl Technol 45:115–125 Wang X, Li W, Zhang Y (2013) An improved multi–objective genetic algorithm for fuzzy flexible job–shop scheduling problem. Int J Comput Appl Technol 47:280–288 Wang S, Liu G, Gao S (2016) A hybrid discrete imperialist competition algorithm for fuzzy job-shop scheduling problems. IEEE Access 4:9320–9331 Wang C, Tian N, Ji Z, Wang Y (2017) Multi-objective fuzzy flexible job shop scheduling using memetic algorithm. J Stat Comput Simul 87:2828–2846 Wang GG, Gao D, Pedrycz W (2022) Solving multiobjective fuzzy job-shop scheduling problem by a hybrid adaptive differential evolution algorithm. IEEE Trans Industr Inf 18:8519–8528 Xia W, Wu Z (2005) An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Comput Industr Eng 48(2):409–425. https://doi.org/10.1016/j.cie.2005.01.018 Xing LN, Chen YW, Yang KW (2009) An efficient search method for multi-objective flexible job shop scheduling problems. J Intell Manuf 20:283–293 Xu Y, Wang L, Wang SY, Liu M (2015) An effective teaching–learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time. Neurocomputing 148:260–268 Xu Y, Peng Y, Su X, Yang Z, Ding C, Yang X (2022) Improving teaching–learning-based-optimization algorithm by a distance-fitness learning strategy. Knowl Based Syst 257:108271 Xu L, Xia ZY, Ming H (2016) Study on improving multi-objective flexible job shop scheduling based on memetic algorithm in the NSGA-II framework. In: 2016 2nd international conference on cloud computing and internet of things (CCIOT), IEEE. Conference Location: Dalian, China Yu D, Hong J, Zhang J, Niu Q (2018) Multi-objective individualized-instruction teaching-learning-based optimization algorithm. Appl Soft Comput 62:288–314 Zadeh L (1963) Optimality and non-scalar-valued performance criteria. IEEE Trans Autom Control 8:59–60 Zhang G, Gao L, Shi Y (2011) An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Syst Appl 38:3563–3573 Zhang G, Lu X, Liu X, Zhang L, Wei S, Zhang W (2022) An effective two-stage algorithm based on convolutional neural network for the bi-objective flexible job shop scheduling problem with machine breakdown. Expert Syst Appl 203:117460 Zheng YL, Li YX (2012) Artificial bee colony algorithm for fuzzy job shop scheduling. Int J Comput Appl Technol 44:124–129 Zheng YL, Li YX, Lei DM (2012) Multi-objective swarm-based neighborhood search for fuzzy flexible job shop scheduling. Int J Adv Manuf Technol 60:1063–1069 Zou F, Chen D, Xu Q (2019) A survey of teaching–learning-based optimization. Neurocomputing 335:366–383 |
dc.relation.citationvolume.spa.fl_str_mv |
145 |
dc.rights.eng.fl_str_mv |
© 2023 Springer Nature |
dc.rights.license.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2023 Springer Nature https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
2 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Verlag |
dc.publisher.place.spa.fl_str_mv |
Germany |
dc.source.spa.fl_str_mv |
https://link.springer.com/article/10.1007/s00500-023-08342-2 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/dc040df1-23ef-4f32-bbfe-f89f2da7d67e/download https://repositorio.cuc.edu.co/bitstreams/ef677830-1436-41b8-9b06-9a2e50b37fe8/download https://repositorio.cuc.edu.co/bitstreams/391395b2-b3b8-4e3d-ab60-5c78eca478b5/download https://repositorio.cuc.edu.co/bitstreams/f438e9ee-e8aa-4d07-94c6-884230e945b4/download |
bitstream.checksum.fl_str_mv |
2e3e4d3d3a6c5c4c903354c2ec072bc1 2f9959eaf5b71fae44bbf9ec84150c7a f097ad4b843d030b6273d1786887de6d da13f0292a8be86bf4e2cabcae448a6a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166903893327872 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)© 2023 Springer Naturehttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfJiménez Tovar, MaryAcevedo-Chedid, JaimeOspina-Mateus, HolmanSalas-Navarro, KatherinneSankar Sana, hib2023-09-18T16:16:22Z2024-06-052023-09-18T16:16:22Z2023-06-05Jiménez Tovar, M., Acevedo-Chedid, J., Ospina-Mateus, H. et al. An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times. Soft Comput (2023). https://doi.org/10.1007/s00500-023-08342-21432-7643https://hdl.handle.net/11323/1049110.1007/s00500-023-08342-21433-7479Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Production scheduling is a critical factor to enhancing productivity in manufacturing engineering and combinatorial optimization research. The complexity and dynamic nature of production systems necessitates innovative solutions. The Job Shop Flexible Programming Problem (FJSP) provides a realistic environment for production, where processing times are variable and uncertain, and multiple objectives need optimization. To solve the Multi-Objective Flexible Fuzzy Job Shop problem with partial flexibility (P-MOFfJSP), this paper proposes a hybrid metaheuristic approach that combines the Teaching–Learning-based Optimization (TLBO) algorithm with a Genetic Algorithm. The proposed algorithm of Adaptive TLBO (TLBO-A) uses two genetic operators (mutation and crossover) with an adaptive population reconfiguration strategy, ensuring solution space exploration and preventing premature convergence. We have evaluated the TLBO-A algorithm's performance on benchmark instances commonly used in programming problems with fuzzy variables. The experimental analysis indicates significant results, demonstrating that the adaptive strategy improves the search for suitable solutions. The proposed algorithm (TLBO-A) exhibits low variations (around 11%) compared to the best mono-objective heuristic for the fuzzy makespan problem, indicating its robustness. Moreover, compared with other heuristics like traditional TLBO, the variations decrease to around 1%. However, TLBO-A stands out as it aims to solve a multi-objective problem, improving the fuzzy makespan, and identifying good results on the Pareto frontier for the fuzzy average flow time, all within this low variation margin. Our contribution addresses the challenges of production scheduling in fuzzy time environments and proposes a practical hybrid metaheuristic approach. The TLBO-A algorithm shows promising results in solving the P-MOFfJSP, highlighting the potential of our proposed methodology for solving real-world production scheduling problems.2 páginasapplication/pdfengSpringer VerlagGermanyhttps://link.springer.com/article/10.1007/s00500-023-08342-2An optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing timesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bcceSoft ComputingAbdullah S, Abdolrazzagh-Nezhad M (2014) Fuzzy job-shop scheduling problems: a review. Inf Sci 278:380–407Acevedo Chedid J, Grice-Reyes J, Ospina-Mateus H, Salas-Navarro K, Santander-Mercado A, Sana SS (2020) Soft-computing approaches for rescheluding problems in a manufacturing industry. RAIRO Oper Res 55:S2125–S2159Acevedo-Chedid J, Salas-Navarro K, Ospina-Mateus H, Villalobo A, Sana SS (2021) Production system in a collaborative supply chain considering deterioration. Int J Appl Comput Math 7:1–46Adnan RM, Yuan X, Kisi O, Adnan M, Mehmood A (2018) Stream flow forecasting of poorly gauged mountainous watershed by least square support vector machine, fuzzy genetic algorithm and M5 model tree using climatic data from nearby station. Water Resour Manag 32:4469–4486Adnan RM, Mostafa RR, Elbeltagi A, Yaseen ZM, Shahid S, Kisi O (2022) Development of new machine learning model for streamflow prediction: case studies in Pakistan. Stoch Env Res Risk Assess 36:999–1033Al-Janabi S, Alkaim A (2020) A nifty collaborative analysis to predicting a novel tool (DRFLLS) for missing values estimation. Soft Comput 24:555–569Al-Janabi S, Alkaim A (2022) A novel optimization algorithm (Lion-AYAD) to find optimal DNA protein synthesis. Egypt Inform J 23:271–290Al-Janabi S, Alkaim A, Adel Z (2020a) An innovative synthesis of deep learning techniques (DCapsNet & DCOM) for generation electrical renewable energy from wind energy. Soft Comput 24:10943–10962Al-Janabi S, Mohammad M, Al-Sultan A (2020b) A new method for prediction of air pollution based on intelligent computation. Soft Comput 24:661–680Al-Janabi S, Alkaim A, Al-Janabi E, Alieboree A, Mustaja M (2021) Intelligent forecaster of concentrations (PM2.5, PM10, NO2, CO, O3, SO2) caused air pollution (IFCsAP). Neural Comput Appl 33:14199–14229Basiri MA, Alinezhad E, Tavakkoli-Moghaddam R, Shahsavari-Poure N (2020) A hybrid intelligent algorithm for a fuzzy multi-objective job shop scheduling problem with reentrant workflows and parallel machines. J Intell Fuzzy Syst 39:7769–7785Baykasoğlu A, Hamzadayi A, Köse SY (2014) Testing the performance of teaching–learning based optimization (TLBO) algorithm on combinatorial problems: flow shop and job shop scheduling cases. Inf Sci 276:204–218Behnamian J (2017) Matheuristic for the decentralized factories scheduling problem. Appl Math Model 47:668–684Boyer V, Vallikavungal J, Rodríguez XC, Salazar-Aguilar MA (2021) The generalized flexible job shop scheduling problem. Comput Ind Eng 160:107542Brandimarte P (1993) Routing and scheduling in a flexible job shop by tabu search. Ann Oper Res 41:157–183Braune R, Benda F, Doerner KF, Hartl RF (2022) A genetic programming learning approach to generate dispatching rules for flexible shop scheduling problems. Int J Prod Econ 243:108342Bulbul SMA, Roy PK (2014) Adaptive teaching learning based optimization applied to nonlinear economic load dispatch problem. Int J Swarm Intell Res 5:1–16Chen JC, Wu CC, Chen CW, Chen KH (2012) Flexible job shop scheduling with parallel machines using genetic algorithm and grouping genetic algorithm. Expert Syst Appl 39:10016–10021Chiandussi G, Codegone M, Ferrero S, Varesio FE (2012) Comparison of multi-objective optimization methodologies for engineering applications. Comput Math Appl 63:912–942Chiang TC, Lin HJ (2013) A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling. Int J Prod Econ 141:87–98Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219:8121–8144Deng Q, Gong G, Gong X, Zhang L, Liu W, Ren Q (2017) A bee evolutionary guiding nondominated sorting genetic algorithm II for multiobjective flexible job-shop scheduling. Comput Intell Neurosci 2017:5232518Engin O, Yilmaz MK, Baysal M, Sarucan A (2013) Solving fuzzy job shop scheduling problems with availability constraints using a scatter search method. J Mult Valued Log Soft Comput 21:317–334Ertenlice O, Kalayci CB (2018) A survey of swarm intelligence for portfolio optimization: algorithms and applications. Swarm Evol Comput 39:36–52Fazel Zarandi MH, Sadat Asl AA, Sotudian S, Castillo O (2020) A state of the art review of intelligent scheduling. Artif Intell Rev 53:501–593Gaham M, Bouzouia B, Achour N (2018) An effective operations permutation-based discrete harmony search approach for the flexible job shop scheduling problem with makespan criterion. Appl Intell 48:1423–1441Gao J, Gen M, Sun L, Zhao X (2007) A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems. Comput Ind Eng 53:149–162Gao J, Sun L, Gen M (2008) A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems. Comput Oper Res 35:2892–2907Gao KZ, Suganthan PN, Pan QK, Tasgetiren MF (2015) An effective discrete harmony search algorithm for flexible job shop scheduling problem with fuzzy processing time. Int J Prod Res 53:5896–5911Gao KZ, Suganthan PN, Pan QK, Chua TJ, Chong CS, Cai TX (2016a) An improved artificial bee colony algorithm for flexible job-shop scheduling problem with fuzzy processing time. Expert Syst Appl 65:52–67Gao KZ, Suganthan PN, Pan QK, Tasgetiren MF, Sadollah A (2016b) Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion. Knowl Based Syst 109:1–16Gao D, Wang GG, Pedrycz W (2020) Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection mechanism. IEEE Trans Fuzzy Syst 28:3265–3275He C, Qiu D, Guo H (2013) Solving fuzzy job shop scheduling problem based on interval number theory. In: Proceedings of the 2012 international conference on information technology and software engineering. Springer, Berlin, HeidelbergJi X, Ye H, Zhou J, Yin Y, Shen X (2017) An improved teaching-learning-based optimization algorithm and its application to a combinatorial optimization problem in foundry industry. Appl Soft Comput 57:504–516Jia S, Hu ZH (2014) Path-relinking Tabu search for the multi-objective flexible job shop scheduling problem. Comput Oper Res 47:11–26Jin L, Zhang C, Shao X, Tian G (2016) Mathematical modeling and a memetic algorithm for the integration of process planning and scheduling considering uncertain processing times. Proc Inst Mech Eng Part B J Eng Manuf 230:1272–1283Jin L, Zhang C, Wen X, Sun C, Fei X (2021) A neutrosophic set-based TLBO algorithm for the flexible job-shop scheduling problem with routing flexibility and uncertain processing times. Complex Intell Syst 7:2833–2853Joo BJ, Shim SO, Chua TJ, Cai TX (2018) Multi-level job scheduling under processing time uncertainty. Comput Ind Eng 120:480–487Kacem I, Hammadi S, Borne P (2002) Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Math Comput Simul 60:245–276Kaplanoğlu V (2016) An object-oriented approach for multi-objective flexible job-shop scheduling problem. Expert Syst Appl 45:71–84Kato ERR, de Aguiar Aranha GD, Tsunaki RH (2018) A new approach to solve the flexible job shop problem based on a hybrid particle swarm optimization and random-restart hill climbing. Comput Ind Eng 125:178–189Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80:8091–8126Kisi O, Parmar KS, Mahdavi-Meymand A, Adnan RM, Shahid S, Zounemat-Kermani M (2023) Water quality prediction of the yamuna river in India using hybrid neuro-fuzzy models. Water 15:1095Kundakcı N, Kulak O (2016) Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem. Comput Ind Eng 96:31–51Lei D (2010) A genetic algorithm for flexible job shop scheduling with fuzzy processing time. Int J Prod Res 48:2995–3013Lei D (2012) Co-evolutionary genetic algorithm for fuzzy flexible job shop scheduling. Appl Soft Comput 12:2237–2245Lei H, Xing K, Han L, Gao Z (2017) Hybrid heuristic search approach for deadlock-free scheduling of flexible manufacturing systems using Petri nets. Appl Soft Comput 55:413–423Lei K, Guo P, Zhao W, Wang Y, Qian L, Meng X, Tang L (2022) A multi-action deep reinforcement learning framework for flexible job-shop scheduling problem. Expert Syst Appl 205:117796Li X, Gao L (2016) An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. Int J Prod Econ 174:93–110Li JQ, Pan QK (2013a) Chemical-reaction optimization for solving fuzzy job-shop scheduling problem with flexible maintenance activities. Int J Prod Econ 145:4–17Li JQ, Pan YX (2013b) A hybrid discrete particle swarm optimization algorithm for solving fuzzy job shop scheduling problem. Int J Adv Manuf Technol 66:583–596Li JQ, Pan QK, Liang YC (2010) An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems. Comput Ind Eng 59:647–662Li X, Peng Z, Du B, Guo J, Xu W, Zhuang K (2017) Hybrid artificial bee colony algorithm with a rescheduling strategy for solving flexible job shop scheduling problems. Comput Ind Eng 113:10–26Li JQ, Liu ZM, Li C, Zheng ZX (2021) Improved artificial immune system algorithm for type-2 fuzzy flexible job shop scheduling problem. IEEE Trans Fuzzy Syst 29:3234–3248Li R, Gong W, Wang L, Lu C, Jiang S (2022a) Two-stage knowledge-driven evolutionary algorithm for distributed green flexible job shop scheduling with type-2 fuzzy processing time. Swarm Evol Comput 74:101139Li R, Gong W, Lu C (2022b) A reinforcement learning based RMOEA/D for bi-objective fuzzy flexible job shop scheduling. Expert Syst Appl 203:117380Li R, Gong W, Lu C (2022c) Self-adaptive multi-objective evolutionary algorithm for flexible job shop scheduling with fuzzy processing time. Comput Ind Eng 168:108099Li J, Pan QK, Suganthan PN, Tasgetiren MF (2012) Solving fuzzy jJob-shop scheduling problem by a hybrid PSO algorithm. Swarm and Evolutionary Computation, Berlin, Heidelberg, Springer Berlin Heidelberg. Lecture Notes in Computer Science book series (LNTCS,vol 7269), pp 275–282Lin FT (2002) Fuzzy job-shop scheduling based on ranking level (/spl lambda/, 1) interval-valued fuzzy numbers. IEEE Trans Fuzzy Syst 10:510–522Lin J (2019) Backtracking search based hyper-heuristic for the flexible job-shop scheduling problem with fuzzy processing time. Eng Appl Artif Intell 77:186–196Lin J, Zhang S (2016) An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation flow-shop scheduling problem. Comput Ind Eng 97:128–136Lin J, Zhu L, Wang ZJ (2019) A hybrid multi-verse optimization for the fuzzy flexible job-shop scheduling problem. Comput Ind Eng 127:1089–1100Liu B, Fan Y, Liu Y (2015) A fast estimation of distribution algorithm for dynamic fuzzy flexible job-shop scheduling problem. Comput Ind Eng 87:193–201Mandal B, Roy PK (2013) Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization. Int J Electr Power Energy Syst 53:123–134Mane SU, Adamuthe AC, Omane RR (2020) Master-Slave TLBO algorithm for constrained global optimization problems. EAI Endorsed Trans Scalable Inf Syst 8:e2Mohammed GS, Al-Janabi S (2022) An innovative synthesis of optmization techniques (FDIRE-GSK) for generation electrical renewable energy from natural resources. Results Eng 16:100637. https://doi.org/10.1016/j.rineng.2022.100637Ortíz-Barrios M, Petrillo A, De Felice F, Jaramillo-Rueda N, Jiménez-Delgado G, Borrero-López L (2021) A dispatching-fuzzy AHP-TOPSIS model for scheduling flexible job-shop systems in industry 4.0 context. Appl Sci 11:5107Özgüven C, Özbakır L, Yavuz Y (2010) Mathematical models for job-shop scheduling problems with routing and process plan flexibility. Appl Math Model 34:1539–1548Palacios JJ, Puente J, González-Rodríguez I, Vela CR (2013) Hybrid tabu search for fuzzy job shop. Natural and artificial models in computation and biology. Springer, Berlin, HeidelbergPalacios JJ, González MA, Vela CR, González-Rodríguez I, Puente J (2015) Genetic tabu search for the fuzzy flexible job shop problem. Comput Oper Res 54:74–89Pan C, Qiao Y, Wu N, Zhou M (2014) A novel algorithm for wafer sojourn time analysis of single-arm cluster tools with wafer residency time constraints and activity time variation. IEEE Trans Syst Man Cybern Syst 45:805–818Pan Z, Lei D, Wang L (2022) A bi-population evolutionary algorithm with feedback for energy-efficient fuzzy flexible job shop scheduling. IEEE Trans Syst Man Cybern Syst 52:5295–5307Petrović DV, Tanasijević M, Milić V, Lilić N, Stojadinović S, Svrkota I (2014) Risk assessment model of mining equipment failure based on fuzzy logic. Expert Syst Appl 41:8157–8164Pezzella F, Morganti G, Ciaschetti G (2008) A genetic algorithm for the flexible job-shop scheduling problem. Comput Oper Res 35:3202–3212Pickard JK, Carretero JA, Bhavsar VC (2016) On the convergence and origin bias of the teaching-learning-based-optimization algorithm. Appl Soft Comput 46:115–127Pinedo M (2005) Planning and scheduling in manufacturing and services. SpringerRao RV, Rai DP (2016) Optimisation of advanced finishing processes using a teaching-learning-based optimisation algorithm. Nanofinishing science and technology. CRC Press, pp 495–518Roy PK, Sarkar R (2014) Solution of unit commitment problem using quasi-oppositional teaching learning based algorithm. Int J Electr Power Energy Syst 60:96–106Satapathy S, Naik A, Parvathi K (2013) A teaching learning based optimization based on orthogonal design for solving global optimization problems. Springerplus 2:1–12Seck-Tuoh-Mora JC, Escamilla-Serna NJ, Montiel-Arrieta LJ, Barragan-Vite I, Medina-Marin J (2022) A global neighborhood with hill-climbing algorithm for fuzzy flexible job shop scheduling problem. Mathematics 10:4233Seyyedi MH, Saghih AMF, Azimi ZN (2021) A fuzzy mathematical model for multi-objective flexible job-shop scheduling problem with new job insertion and earliness/tardiness penalty. Int J Ind Eng Theory Appl Pract, 28Shao W, Pi D, Shao Z (2017) An extended teaching-learning based optimization algorithm for solving no-wait flow shop scheduling problem. Appl Soft Comput 61:193–210Shi D, Zhang B, Li Y (2020) A multi-objective flexible job-shop scheduling model based on fuzzy theory and immune genetic algorithm. Int J Simul Model 19:123–133Song H, Liu P (2022) A study on the optimal flexible job-shop scheduling with sequence-dependent setup time based on a hybrid algorithm of improved quantum cat swarm optimization. Sustainability 14:9547Sun L, Lin L, Gen M, Li H (2019) A hybrid cooperative coevolution algorithm for fuzzy flexible job shop scheduling. IEEE Trans Fuzzy Syst 27:1008–1022Thammano A, Teekeng W (2015) A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems. Int J Gen Syst 44:499–518Tran TD, Varela R, González-Rodríguez I, Talbi EG (2014) Solving fuzzy job-shop scheduling problems with a multiobjective optimizer. Knowledge and systems engineering. Springer International Publishing, ChamWang L, Wang S, Xu Y, Zhou G, Liu M (2012a) A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem. Comput Ind Eng 62:917–926Wang X, Gao L, Zhang C, Li X (2012b) A multi–objective genetic algorithm for fuzzy flexible job–shop scheduling problem. Int J Comput Appl Technol 45:115–125Wang X, Li W, Zhang Y (2013) An improved multi–objective genetic algorithm for fuzzy flexible job–shop scheduling problem. Int J Comput Appl Technol 47:280–288Wang S, Liu G, Gao S (2016) A hybrid discrete imperialist competition algorithm for fuzzy job-shop scheduling problems. IEEE Access 4:9320–9331Wang C, Tian N, Ji Z, Wang Y (2017) Multi-objective fuzzy flexible job shop scheduling using memetic algorithm. J Stat Comput Simul 87:2828–2846Wang GG, Gao D, Pedrycz W (2022) Solving multiobjective fuzzy job-shop scheduling problem by a hybrid adaptive differential evolution algorithm. IEEE Trans Industr Inf 18:8519–8528Xia W, Wu Z (2005) An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Comput Industr Eng 48(2):409–425. https://doi.org/10.1016/j.cie.2005.01.018Xing LN, Chen YW, Yang KW (2009) An efficient search method for multi-objective flexible job shop scheduling problems. J Intell Manuf 20:283–293Xu Y, Wang L, Wang SY, Liu M (2015) An effective teaching–learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time. Neurocomputing 148:260–268Xu Y, Peng Y, Su X, Yang Z, Ding C, Yang X (2022) Improving teaching–learning-based-optimization algorithm by a distance-fitness learning strategy. Knowl Based Syst 257:108271Xu L, Xia ZY, Ming H (2016) Study on improving multi-objective flexible job shop scheduling based on memetic algorithm in the NSGA-II framework. In: 2016 2nd international conference on cloud computing and internet of things (CCIOT), IEEE. Conference Location: Dalian, ChinaYu D, Hong J, Zhang J, Niu Q (2018) Multi-objective individualized-instruction teaching-learning-based optimization algorithm. Appl Soft Comput 62:288–314Zadeh L (1963) Optimality and non-scalar-valued performance criteria. IEEE Trans Autom Control 8:59–60Zhang G, Gao L, Shi Y (2011) An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Syst Appl 38:3563–3573Zhang G, Lu X, Liu X, Zhang L, Wei S, Zhang W (2022) An effective two-stage algorithm based on convolutional neural network for the bi-objective flexible job shop scheduling problem with machine breakdown. Expert Syst Appl 203:117460Zheng YL, Li YX (2012) Artificial bee colony algorithm for fuzzy job shop scheduling. Int J Comput Appl Technol 44:124–129Zheng YL, Li YX, Lei DM (2012) Multi-objective swarm-based neighborhood search for fuzzy flexible job shop scheduling. Int J Adv Manuf Technol 60:1063–1069Zou F, Chen D, Xu Q (2019) A survey of teaching–learning-based optimization. Neurocomputing 335:366–383145Flexible job-shopTeaching–learning-based optimizationFuzzy processing timesHybrid algorithmPublicationORIGINALAn optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times.pdfAn optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times.pdfArtículoapplication/pdf57483https://repositorio.cuc.edu.co/bitstreams/dc040df1-23ef-4f32-bbfe-f89f2da7d67e/download2e3e4d3d3a6c5c4c903354c2ec072bc1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/ef677830-1436-41b8-9b06-9a2e50b37fe8/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTAn optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times.pdf.txtAn optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times.pdf.txtExtracted texttext/plain2467https://repositorio.cuc.edu.co/bitstreams/391395b2-b3b8-4e3d-ab60-5c78eca478b5/downloadf097ad4b843d030b6273d1786887de6dMD53THUMBNAILAn optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times.pdf.jpgAn optimization algorithm for the multi-objective flexible fuzzy job shop environment with partial flexibility based on adaptive teaching–learning considering fuzzy processing times.pdf.jpgGenerated Thumbnailimage/jpeg17479https://repositorio.cuc.edu.co/bitstreams/f438e9ee-e8aa-4d07-94c6-884230e945b4/downloadda13f0292a8be86bf4e2cabcae448a6aMD5411323/10491oai:repositorio.cuc.edu.co:11323/104912024-09-17 14:24:12.271https://creativecommons.org/licenses/by/4.0/© 2023 Springer Natureopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |