Adsorption of various inorganic and organic pollutants by natural and synthetic zeolites: a critical review

Zeolites are microporous crystalline aluminosilicates with high surface area and uniform pore size. Natural and synthetic zeolites have been used to adsorb organic and inorganic compounds in aqueous media due to thier particular physicochemical properties and the low cost of the process. The flexibi...

Full description

Autores:
Dehmani, Younes
Ba Mohammed, Bouchra
OUKHRIB, Rachid
DEHBI, Ali
LAMHASNI, Taibi
BRAHMI, Younes
El-KORDY, Abderrazek
Dison S.P., Franco
georgin, jordana
Lima, Eder C.
Alrashdi, Awad A.
TIJANI, NAJIB
Sadik, Abouarnadasse
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13314
Acceso en línea:
https://hdl.handle.net/11323/13314
https://repositorio.cuc.edu.co/
Palabra clave:
Adsorption
Synthetized zeolites
Organic and inorganic pollutants
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_af7b7d243d289ba94783a64f6e0d45dc
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13314
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Adsorption of various inorganic and organic pollutants by natural and synthetic zeolites: a critical review
title Adsorption of various inorganic and organic pollutants by natural and synthetic zeolites: a critical review
spellingShingle Adsorption of various inorganic and organic pollutants by natural and synthetic zeolites: a critical review
Adsorption
Synthetized zeolites
Organic and inorganic pollutants
title_short Adsorption of various inorganic and organic pollutants by natural and synthetic zeolites: a critical review
title_full Adsorption of various inorganic and organic pollutants by natural and synthetic zeolites: a critical review
title_fullStr Adsorption of various inorganic and organic pollutants by natural and synthetic zeolites: a critical review
title_full_unstemmed Adsorption of various inorganic and organic pollutants by natural and synthetic zeolites: a critical review
title_sort Adsorption of various inorganic and organic pollutants by natural and synthetic zeolites: a critical review
dc.creator.fl_str_mv Dehmani, Younes
Ba Mohammed, Bouchra
OUKHRIB, Rachid
DEHBI, Ali
LAMHASNI, Taibi
BRAHMI, Younes
El-KORDY, Abderrazek
Dison S.P., Franco
georgin, jordana
Lima, Eder C.
Alrashdi, Awad A.
TIJANI, NAJIB
Sadik, Abouarnadasse
dc.contributor.author.none.fl_str_mv Dehmani, Younes
Ba Mohammed, Bouchra
OUKHRIB, Rachid
DEHBI, Ali
LAMHASNI, Taibi
BRAHMI, Younes
El-KORDY, Abderrazek
Dison S.P., Franco
georgin, jordana
Lima, Eder C.
Alrashdi, Awad A.
TIJANI, NAJIB
Sadik, Abouarnadasse
dc.subject.proposal.eng.fl_str_mv Adsorption
Synthetized zeolites
Organic and inorganic pollutants
topic Adsorption
Synthetized zeolites
Organic and inorganic pollutants
description Zeolites are microporous crystalline aluminosilicates with high surface area and uniform pore size. Natural and synthetic zeolites have been used to adsorb organic and inorganic compounds in aqueous media due to thier particular physicochemical properties and the low cost of the process. The flexibility of zeolites to remove pollutants from water, such as dyes, heavy metal ions, and phenolic compounds, is discussed in this document in the context of contemporary research. This review briefly consolidates the currently available literature to comprehend the structure of zeolites and their synthesized by hydrothermal method. Later, this manuscript is present different parameters to study the adsorption mechanisms of organic and inorganic contaminants using the zeolites. The main adsorption processes using zeolites as adsorbents include chelation, surface adsorption, natural processes, diffusion, electrostatic interaction and complexation. In addition, the research demonstrates that the dominant models in the isothermal and kinetic study of adsorption are the Langmuir and the pseudo-second-order models. We can assess the beneficial applicability of zeolite materials for real wastewater treatment in the future by comparing their adsorption capacities for removing harmful substances from water to those of other adsorbents and crude zeolites.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-12T19:16:18Z
dc.date.available.none.fl_str_mv 2024-09-12T19:16:18Z
dc.date.issued.none.fl_str_mv 2024-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Younes Dehmani, Bouchra Ba Mohammed, Rachid Oukhrib, Ali Dehbi, Taibi Lamhasni, Younes Brahmi, Abderrazek El-Kordy, Dison S.P. Franco, Jordana Georgin, Eder C. Lima, Awad A. Alrashdi, Najib Tijani, Sadik Abouarnadasse, Adsorption of various inorganic and organic pollutants by natural and synthetic zeolites: A critical review, Arabian Journal of Chemistry, Volume 17, Issue 1, 2024, 105474, ISSN 1878-5352, https://doi.org/10.1016/j.arabjc.2023.105474.
dc.identifier.issn.spa.fl_str_mv 1878-5352
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13314
dc.identifier.doi.none.fl_str_mv 10.1016/j.arabjc.2023.105474
dc.identifier.eissn.spa.fl_str_mv 1878-5379
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Younes Dehmani, Bouchra Ba Mohammed, Rachid Oukhrib, Ali Dehbi, Taibi Lamhasni, Younes Brahmi, Abderrazek El-Kordy, Dison S.P. Franco, Jordana Georgin, Eder C. Lima, Awad A. Alrashdi, Najib Tijani, Sadik Abouarnadasse, Adsorption of various inorganic and organic pollutants by natural and synthetic zeolites: A critical review, Arabian Journal of Chemistry, Volume 17, Issue 1, 2024, 105474, ISSN 1878-5352, https://doi.org/10.1016/j.arabjc.2023.105474.
1878-5352
10.1016/j.arabjc.2023.105474
1878-5379
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13314
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Arabian Journal of Chemistry
dc.relation.references.spa.fl_str_mv Aazza, M., Ahlafi, H., Moussout, H., Maghat, H., 2017. Ortho-Nitro-Phenol adsorption onto alumina and surfactant modified alumina: kinetic, isotherm and mechanism. J. Environ. Chem. Eng. 5, 3418–3428. https://doi.org/10.1016/j.jece.2017.06.051.
Abbas-Ghaleb, R., Chlala, D., Assaf, J.C., 2019. Isopropyl Alcohol Total Oxidation Over Platinum Supported on Alumina and Mullite. Chem. Afr. 2, 335–341. https://doi. org/10.1007/s42250-019-00066-x.
Abbasi, A., 2019. Adsorption of phenol, hydrazine and thiophene on stanene monolayers : A computational investigation. Synth. Met. 247, 26–36. https://doi.org/10.1016/j. synthmet.2018.11.012.
Abdellaoui, Y., Abou Oualid, H., Hsini, A., El Ibrahimi, B., Laabd, M., El Ouardi, M., Giacoman-Vallejos, ´ G., Gamero-Melo, P., 2020. Synthesis of zirconium-modified merlinoite from fly ash for enhanced removal of phosphate in aqueous medium : Experimental studies supported by Monte Carlo/SA Simulations. Chem. Eng. J. 404, 126600 https://doi.org/10.1016/j.cej.2020.126600.
Abou Oualid, H., Abdellaoui, Y., Laabd, M., Ouardi, M.E., Brahmi, Y., Iazza, M., Oualid, J.A., 2020. Eco-Efficient Green Seaweed Codium decorticatum Biosorbent for Textile Dyes : Characterization, Mechanism, Recyclability, and RSM Optimization. ACS Omega. https://doi.org/10.1021/acsomega.0c02311.
Afiqah, N., Mohamad, H., Biaw, L., Lim, L., Usman, A., 2019. Environmental Technology & Innovation Enhancing adsorption of malachite green dye using base-modified Artocarpus odoratissimus leaves as adsorbents. Environ. Technol. Innov. 13, 211–223. https://doi.org/10.1016/j.eti.2018.12.002.
Ahali Abadeh, Z., Irannajad, M., 2017. Removal of Ni and Cd ions from aqueous solution using iron dust-zeolite composite: Analysis by thermodynamic, kinetic and isotherm studies. Chem. Res. Chin. Univer. 33, 318–326. https://doi.org/10.1007/s40242- 017-6150-x.
Ahmad, A.A., Ahmad, M.A., Yahaya, N.K.E.M., Karim, J., 2021. Adsorption of malachite green by activated carbon derived from gasified Hevea brasiliensis root. Arab. J. Chem. 14, 103104 https://doi.org/10.1016/j.arabjc.2021.103104.
Ahmed, M.J., Hameed, B.H., 2020. Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review. J. Clean. Prod. 265, 121762 https://doi.org/10.1016/j. jclepro.2020.121762.
Akani, N.P., Nwankwo, C.E.I., 2018. Monitoring the Microbial Load at Chosen Critical Control Points in the Production of Kunun-zaki. IOSR J. Environ. Sci. 12, 41–46. https://doi.org/10.9790/2402-1209034146.
Aksu, Z., Yener, J., 1999. The usage of dried activated sludge and fly ash wastes in phenol biosorption/adsorption: Comparison with granular activated carbon. J. Environ. Sci. Health - Part A Toxic/hazardous Subst. Environmen. Eng. 34, 1777–1796. https://doi.org/10.1080/10934529909376928.
Alborzi, E., Flyagina, I.S., Mielczarek, D.C., Blakey, S.G., Pourkashanian, M., 2022. A theoretical investigation into the comparative adsorption between dissolved oxygen and oxygenate species on zeolite 3.7 Å during aviation fuel treatment for thermal stability improvement. Fuel 317, 123451. https://doi.org/10.1016/j. fuel.2022.123451.
Alkaim, A.F., Aljeboree, A.M., Alrazaq, N.A., Baqir, S.J., Hussein, F.H., Lilo, A.J., 2014. Effect of pH on adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue. Asian J. Chem. 26, 8445–8448. https://doi. org/10.14233/ajchem.2014.17908.
Alshabib, M., Onaizi, S.A., 2019. A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes : Current status and potential challenges. Sep. Purif. Technol. 219, 186–207. https://doi.org/10.1016/j. seppur.2019.03.028.
Ameh, A.E., Oyekola, O.O., Petrik, L.F., 2022. Column adsorption of Rhodamine 6G over Na–P/SOD zeolite synthesised from aluminosilicate secondary waste. J. Clean. Prod. 338, 130571 https://doi.org/10.1016/j.jclepro.2022.130571.
Angaru, G.K.R., Lingamdinne, L.P., Choi, Y.L., Koduru, J.R., Yang, J.K., Chang, Y.Y., 2021. Encapsulated zerovalent iron/nickel-fly ash zeolite foam for treating industrial wastewater contaminated by heavy metals. Mater. Today Chem. 22, 100577 https:// doi.org/10.1016/j.mtchem.2021.100577.
Armaroli, T., Finocchio, E., Busca, G., Rossini, S., 1999. A FT-IR study of the adsorption of C5 olefinic compounds on NaX zeolite. Vib. Spectrosc 20, 85–94. https://doi.org/ 10.1016/S0924-2031(99)00024-7.
Ba Mohammed, B., Yamni, K., Tijani, N., Alrashdi, A.A., Zouihri, H., Dehmani, Y., Chung, I.-M., Kim, S.-H., Lgaz, H., 2019a. Adsorptive removal of phenol using faujasite-type Y zeolite: Adsorption isotherms, kinetics and grand canonical Monte Carlo simulation studies. J. Mol. Liq. 296, 111997 https://doi.org/10.1016/j. molliq.2019.111997.
Ba Mohammed, B., Yamni, K., Tijani, N., Alrashdi, A.A., Zouihri, H., Dehmani, Y., Chung, I.M., Kim, S.H., Lgaz, H., 2019b. Adsorptive removal of phenol using faujasite-type Y zeolite: Adsorption isotherms, kinetics and grand canonical Monte Carlo simulation studies. J. Mol. Liq. 296 https://doi.org/10.1016/j. molliq.2019.111997.
Ba Mohammed, B., Hsini, A., Abdellaoui, Y., Abou Oualid, H., Laabd, M., El Ouardi, M., Ait Addi, A., Yamni, K., Tijani, N., 2020. Fe-ZSM-5 zeolite for efficient removal of basic Fuchsin dye from aqueous solutions: Synthesis, characterization and adsorption process optimization using BBD-RSM modeling. J. Environ. Chem. Eng. 8, 104419 https://doi.org/10.1016/j.jece.2020.104419.
Ba Mohammed, B., Yamni, K., Tijani, N., Lee, H.S., Dehmani, Y., El Hamdani, H., Alrashdi, A.A., Ramola, S., Belwal, T., Lgaz, H., 2021. Enhanced removal efficiency of NaY zeolite toward phenol from aqueous solution by modification with nickel (NiNaY). J. Saudi Chem. Soc. 25, 101224 https://doi.org/10.1016/j.jscs.2021.101224.
Bas¸kan, G., Açıkel, Ü., Levent, M., 2022. Investigation of adsorption properties of oxytetracycline hydrochloride on magnetic zeolite/Fe3O4 particles. Adv. Powder Technol. 33 https://doi.org/10.1016/j.apt.2022.103600.
Beauchet, R., Mijoin, J., Batonneau-Gener, I., Magnoux, P., 2010. Catalytic oxidation of VOCs on NaX zeolite: Mixture effect with isopropanol and o-xylene. Appl. Catal. B 100, 91–96. https://doi.org/10.1016/j.apcatb.2010.07.017.
Bhaskar, M., Surekha, M., Suma, N., 2020. Evaluation on the Activity of Surfactant Immobilized and Metal Cation Exchanged Impregnated Montmorillonite Nanoclays on Oxidation of Benzyl Alcohol. Chem. Afr. 3, 351–361. https://doi.org/10.1007/ s42250-020-00125-8.
Chaibi, A., Boucheffa, Y., Bendjaballah-Lalaoui, N., 2021. TGA investigation of water and ethanol adsorption over LTA zeolites. Micropor. Mesopor. Mater. 324, 111285 https://doi.org/10.1016/j.micromeso.2021.111285.
Chaouati, N., Soualah, A., Chater, M., 2013. Adsorption of phenol from aqueous solution onto zeolites y modified by silylation. C. R. Chim. 16, 222–228. https://doi.org/ 10.1016/j.crci.2012.10.010.
Cheng, W.P., Gao, W., Cui, X., Ma, J.H., Li, R.F., 2016. Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite. J. Taiwan Inst. Chem. Eng. 62, 192–198. https://doi.org/10.1016/j.jtice.2016.02.004.
Cheng, Z.L., Li, Y.X., Liu, Z., 2017. Novel adsorption materials based on graphene oxide/ Beta zeolite composite materials and their adsorption performance for rhodamine B. J. Alloy. Compd. 708, 255–263. https://doi.org/10.1016/j.jallcom.2017.03.004.
Cheng, Y., Xu, L., Liu, C., 2021. NaP1 zeolite synthesized via effective extraction of Si and Al from red mud for methylene blue adsorption. Adv. Powder Technol. 32, 3904–3914. https://doi.org/10.1016/j.apt.2021.08.036.
Choi, S., Johnston, M., Wang, G.S., Huang, C.P., 2018. A seasonal observation on the distribution of engineered nanoparticles in municipal wastewater treatment systems exemplified by TiO 2 and ZnO. Sci. Total Environ. 625, 1321–1329. https://doi.org/ 10.1016/j.scitotenv.2017.12.326.
Clark, L.A., Snurr, R.Q., 1999. Adsorption isotherm sensitivity to small changes in zeolite structure. Chem. Phys. Lett. 308, 155–159. https://doi.org/10.1016/S0009-2614 (99)00568-0.
de Aquino, T.F., Estevam, S.T., Viola, V.O., Marques, C.R.M., Zancan, F.L., Vasconcelos, L.B., Riella, H.G., Pires, M.J.R., Morales-Ospino, R., Torres, A.E.B., Bastos-Neto, M., Cavalcante, C.L., 2020. CO2 adsorption capacity of zeolites synthesized from coal fly ashes. Fuel 276, 118143. https://doi.org/10.1016/j. fuel.2020.118143.
Dehbi, A., Dehmani, Y., Omari, H., Lammini, A., Elazhari, K., Abdallaoui, A., 2019. Hematite Iron Oxide Nanoparticles (α-Fe2O3): Synthesis and Modelling Adsorption of Malachite Green. J. Environ. Chem. Eng. 103394 https://doi.org/10.1016/j. jece.2019.103394.
Dehghani, M.H., Dehghan, A., Najafpoor, A., 2017. Removing Reactive Red 120 and 196 using chitosan/zeolite composite from aqueous solutions: Kinetics, isotherms, and process optimization. J. Ind. Eng. Chem. 51, 185–195. https://doi.org/10.1016/j. jiec.2017.03.001.
Dehmani, Y., Alrashdi, A.A., Lgaz, H., Lamhasni, T., Abouarnadasse, S., Chung, I.M., 2020a. Removal of phenol from aqueous solution by adsorption onto hematite (α-Fe2O3): Mechanism exploration from both experimental and theoretical studies. Arab. J. Chem. 13, 5474–5486. https://doi.org/10.1016/j.arabjc.2020.03.026.
Dehmani, Y., Sellaoui, L., Alghamdi, Y., Lain´e, J., Badawi, M., Amhoud, A., BonillaPetriciolet, A., Lamhasni, T., Abouarnadasse, S., 2020b. Kinetic, thermodynamic and mechanism study of the adsorption of phenol on Moroccan clay. J. Mol. Liq. 312, 113383 https://doi.org/10.1016/j.molliq.2020.113383.
Dinu, M.V., Dragan, E.S., 2010. Evaluation of Cu2+, Co2+ and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: Kinetics and isotherms. Chem. Eng. J. 160, 157–163. https://doi.org/10.1016/j.cej.2010.03.029.
dos Santos, G.C., Bleyer, G.C., Martins, L.S., Padoin, N., Watzko, E.S., de Aquino, T.F., Vasconcelos, L.B., 2021. CO2 adsorption in a zeolite-based bench scale moving bed prototype: Experimental and theoretical investigation. Chem. Eng. Res. Des. 171, 225–236. https://doi.org/10.1016/j.cherd.2021.05.006.
Du, Z., Dunne, L.J., Chaplin, M.F., Manos, G., 1999. Comparative study of mean-field theory and Monte Carlo simulation of supercritical methane adsorption in zeolites. Chem. Phys. Lett. 307, 413–418. https://doi.org/10.1016/S0009-2614(99)00534-5.
El Alouani, M., Saufi, H., Moutaoukil, G., Alehyen, S., Nematollahi, B., Belmaghraoui, W., Taibi, M., 2021. Application of geopolymers for treatment of water contaminated with organic and inorganic pollutants: State-of-the-art review. J. Environ. Chem. Eng. 9, 105095 https://doi.org/10.1016/j.jece.2021.105095.
Elhakim, A.A., El-Kemary, M., Ibrahim, M.M., El-Mehasseb, I.M., El-Sheshtawy, H.S., 2021. Direct Z-scheme of WO3/GO decorated with silver nanoparticles for synergetic adsorption and photocatalytic activity for organic and inorganic water pollutants removal. Appl. Surf. Sci. 564, 150410 https://doi.org/10.1016/j. apsusc.2021.150410.
Eljamal, O., Shubair, T., Tahara, A., Sugihara, Y., Matsunaga, N., 2019. Iron based nanoparticles-zeolite composites for the removal of cesium from aqueous solutions. J. Mol. Liq. 277, 613–623. https://doi.org/10.1016/j.molliq.2018.12.115.
El-Kordy, A., Dehmani, Y., Douma, M., Bouazizi, A., El Moustansiri, H., El Abbadi, S., Tijani, N., 2022a. Experimental study of phenol removal from aqueous solution by adsorption onto synthesized Faujasite-type Y zeolite. Desalin. Water Treat. 277, 144–154. https://doi.org/10.5004/dwt.2022.28958.
El-Kordy, A., Elgamouz, A., Lemdek, E.M., Tijani, N., Alharthi, S.S., Kawde, A.N., Shehadi, I., 2022b. Preparation of sodalite and faujasite clay composite membranes and their utilization in the decontamination of dye effluents. Membranes 12, 1–18. https://doi.org/10.3390/membranes12010012.
Eltaweil, A.S., Mohamed, H.A., El-monaem, E.M.A., 2020. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye : Characterization, adsorption kinetics, thermodynamics and isotherms. Adv. Powder Technol. 31, 1253–1263. https://doi.org/10.1016/j.apt.2020.01.005.
Elwakeel, K.Z., El-Bindary, A.A., Kouta, E.Y., 2017. Retention of copper, cadmium and lead from water by Na-Y-Zeolite confined in methyl methacrylate shell. J. Environ. Chem. Eng. 5, 3698–3710. https://doi.org/10.1016/j.jece.2017.06.049.
Erkonak, H., So¨ǧüt, O.O., ¨ Akgün, M., 2008. Treatment of olive mill wastewater by supercritical water oxidation. J. Supercrit. Fluids 46, 142–148. https://doi.org/ 10.1016/j.supflu.2008.04.006.
Feng, D., Guo, D., Zhang, Y., Sun, S., Zhao, Y., Shang, Q., Sun, H., Wu, J., Tan, H., 2020. Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption. Chem. Eng. J. 410, 127707 https:// doi.org/10.1016/j.cej.2020.127707.
Feng, A., Yu, Y., Mi, L., Cao, Y., Yu, Y., Song, L., 2022. Synthesis and VOCs adsorption performance of surfactant-templated USY zeolites with controllable mesopores. Chem. Phys. Lett. 798 https://doi.org/10.1016/j.cplett.2022.139578.
Frost, R.R., Griffin, R.A., 1977. Effect of pH on Adsorption of Arsenic and Selenium from Landfill Leachate by Clay Minerals. Soil Sci. Soc. Am. J. 41, 53–57. https://doi.org/ 10.2136/sssaj1977.03615995004100010019x.
Fungaro, D.A., Graciano, J.E.A., 2007. Adsorption of zinc ions from water using zeolite/ iron oxide composites. Adsorpt. Sci. Technol. 25, 729–740. https://doi.org/ 10.1260/026361707785284185.
Ghanavati, L., Hekmati, A.H., Rashidi, A., Shafiekhani, A., 2021. Application of electrospun Polyamide-6/Modified zeolite nanofibrous composite to remove Acid Blue 74 dye from textile dyeing wastewater. J. Text. Inst. 112, 1730–1742. https:// doi.org/10.1080/00405000.2020.1840691.
Griffin, R.A., Au, A.K., Frost, R.R., 1977. The Capture Threshold Of Male Pink Bollworm1/ Moth With Gossyplure, And Its Effect On Boll Infestation And Frequency Of Insecticidal Treatment. J. Environ. Sci. Health Part A: Environ. Sci. Eng. 12, 431–449. https://doi.org/10.1080/10934527709374769.
Guan, Y., Zhou, Y., Jiang, C., Xu, X., Yang, Z., Zhang, J., Fan, X., Jiao, Y., 2021. Catalytic combustion of volatile organic compounds (VOCs) over structured Co3O4 nanoflowers on silicalite-1/SiC foam catalysts. Micropor. Mesopor. Mater. 323, 111173 https://doi.org/10.1016/j.micromeso.2021.111173.
Gupta, N., Kushwaha, A.K., Chattopadhyaya, M.C., 2011. Adsorption of cobalt(II) from aqueous solution onto hydroxyapatite/zeolite composite. Adv. Mater. Lett. 2, 309–312. https://doi.org/10.5185/amlett.indias.201.
Habiba, U., Siddique, T.A., Talebian, S., Lee, J.J.L., Salleh, A., Ang, B.C., Afifi, A.M., 2017. Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe(III) and Cr(VI) ions. Carbohydrate Polymers 177, 32–39. https://doi.org/10.1016/j.carbpol.2017.08.115.
Haffane, S., Achak, O., Chafik, T., 2016. Etude de l ’ effet de purification et de modification d ’ une argile locale sur les propri´et´es structurales et texturales (Investigation of the effect of purification and modification of a local clay on its structural and textural properties). J. Mater. Environ. Science 7, 525–530.
Hailu, S.L., Nair, B.U., Redi-Abshiro, M., DIaz, I., Tessema, M., 2017. Preparation and characterization of cationic surfactant modified zeolite adsorbent material for adsorption of organic and inorganic industrial pollutants. J. Environ. Chem. Eng. 5, 3319–3329. https://doi.org/10.1016/j.jece.2017.06.039.
Hassan, O., Youne, D., Lahcen, M., Mohamed, A., n.d. The phenol adsorption in an aqueous environment by Moroccan clay Summary : 1–22.
He, P., Wang, Q., Fu, S., Wang, M., Zhao, S., Liu, X., Jiang, Y., Jia, D., Zhou, Y., 2021. Hydrothermal transformation of geopolymers to bulk zeolite structures for efficient hazardous elements adsorption. Sci. Total Environ. 767, 144973 https://doi.org/ 10.1016/j.scitotenv.2021.144973.
Hernandez-Huesca, R., Díaz, L., Aguilar-Armenta, G., 1999. Adsorption equilibria and kinetics of CO2, CH4 and N2 in natural zeolites. Sep. Purif. Technol. 15, 163–173. https://doi.org/10.1016/S1383-5866(98)00094-X.
Hosseini, A., karimi, H., Foroughi, J., Sabzehmeidani, M.M., Ghaedi, M., 2021. Heterogeneous photoelectro-Fenton using ZnO and TiO2 thin film as photocatalyst for photocatalytic degradation Malachite Green. Appl. Surface Sci. Adv. 6, 100126 https://doi.org/10.1016/j.apsadv.2021.100126.
Huang, T., Yan, M., He, K., Huang, Z., Zeng, G., Chen, A., Peng, M., Li, H., Yuan, L., Chen, G., 2019. Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite. J. Colloid Interface Sci. 543, 43–51. https://doi.org/10.1016/j.jcis.2019.02.030.
Huang, C., Zhang, B., Wu, Y., Ruan, Q., Liu, L., Su, J., Tang, Y., Liu, R., Chu, P.K., 2021. Experimental and theoretical investigation of reconstruction and active phases on honeycombed Ni3N-Co3N/C in water splitting. Appl Catal B 297, 120461. https:// doi.org/10.1016/j.apcatb.2021.120461.
Huber, S., Knozinger, ¨ H., 1999. Adsorption of CO on sodium containing X- and Y-zeolites and determination of the aluminum distribution. Appl. Catal. A 181, 239–244. https://doi.org/10.1016/S0926-860X(98)00407-4.
Humelnicu, D., Dinu, M.V., Drǎgan, E.S., 2011. Adsorption characteristics of UO22+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. J. Hazard. Mater. 185, 447–455. https://doi.org/10.1016/j. jhazmat.2010.09.053.
Ioannou, Z., Simitzis, J., 2009. Adsorption kinetics of phenol and 3-nitrophenol from aqueous solutions on conventional and novel carbons. J. Hazard. Mater. 171, 954–964. https://doi.org/10.1016/j.jhazmat.2009.06.098.
Ismagilov, I.Z., Michurin, E.M., Sukhova, O.B., Tsykoza, L.T., Matus, E.V., Kerzhentsev, M.A., Ismagilov, Z.R., Zagoruiko, A.N., Rebrov, E.V., de Croon, M.H.J. M., Schouten, J.C., 2007. Oxidation of organic compounds in a microstructured catalytic reactor. Chem. Eng. J. 135 https://doi.org/10.1016/j.cej.2007.07.036.
Ivanov, A.V., Graham, G.W., Shelef, M., 1999. Adsorption of hydrocarbons by ZSM-5 zeolites with different SiO2/Al2O3 ratios: A combined FTIR and gravimetric study. Appl. Catal. B 21, 243–258. https://doi.org/10.1016/S0926-3373(99)00021-1.
Jedli, H., Almoneef, M.M., Mbarek, M., Jbara, A., Slimi, K., 2022. Adsorption of CO2 onto zeolite ZSM-5: Kinetic, equilibrium and thermodynamic studies. Fuel 321, 124097. https://doi.org/10.1016/j.fuel.2022.124097.
Jeguirim, M., Belhachemi, M., Limousy, L., Bennici, S., 2018. Adsorption/reduction of nitrogen dioxide on activated carbons: Textural properties versus surface chemistry – A review. Chem. Eng. J. 347, 493–504. https://doi.org/10.1016/j.cej.2018.04.063.
Ji, B., Zhang, W., 2022. Adsorption of cerium (III) by zeolites synthesized from kaolinite after rare earth elements (REEs) recovery. Chemosphere 303, 134941. https://doi. org/10.1016/j.chemosphere.2022.134941.
Jia, J., Wang, C., Li, Y., Wu, D., Yu, J., Gao, T., Li, F., 2022. Water-Insoluble Cyclodextrin-based nanocubes for highly efficient adsorption toward diverse organic and inorganic pollutants. Sep. Purif. Technol. 291, 120970 https://doi.org/10.1016/ j.seppur.2022.120970.
Jiang, N., Shang, R., Heijman, S.G.J., Rietveld, L.C., 2020. Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms. Sep. Purif. Technol. 235, 1–9. https://doi.org/10.1016/j. seppur.2019.116152.
Jodeh, S., Amarah, J., Radi, S., Hamed, O., Warad, I., Salghi, R., Alkowni, R., 2015. Removal of Methylene Blue from Industrial Wastewater in Palestine Using Polysiloxane Surface Modified with Bipyrazolic Tripodal Receptor. Moroccan J. Chem. 1, 140–156.
Johnson, B.B., 1990. Effect of pH, Temperature, and Concentration on the Adsorption of Cadmium on Goethite. Environ. Sci. Tech. 24, 112–118. https://doi.org/10.1021/ es00071a014.
June Choi, H., Jo, D., Bong Hong, S., 2022. Effect of framework Si/Al ratio on the adsorption mechanism of CO2 on small-pore zeolites: II. Merlinoite. Chem. Eng. J. 446, 137100 https://doi.org/10.1016/j.cej.2022.137100.
Kaygun, A.K., Akyil, S., 2007. Study of the behaviour of thorium adsorption on PAN/ zeolite composite adsorbent. J. Hazard. Mater. 147, 357–362. https://doi.org/ 10.1016/j.jhazmat.2007.01.020.
Khan, S., Idrees, M., Bilal, M., 2021. Revealing and elucidating chemical speciation mechanisms for lead and nickel adsorption on zeolite in aqueous solutions. Colloids Surf. A Physicochem. Eng. Asp. 623, 126711 https://doi.org/10.1016/j. colsurfa.2021.126711.
Khanday, W.A., Asif, M., Hameed, B.H., 2017. Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes. Int. J. Biol. Macromol. 95, 895–902. https://doi.org/ 10.1016/j.ijbiomac.2016.10.075.
Khelifa, A., Derriche, Z., Bengueddach, A., 1999. Adsorption of propene on NaX zeolite exchanged with Zn2+ and Cu2+. Appl. Catal. A 178, 61–68. https://doi.org/ 10.1016/S0926-860X(98)00274-9.
Kim, J., Jung, T., Cho, D.W., Yoo, C.Y., 2022a. Comprehensive evaluation of 3A, 4A, 5A, and 13X zeolites for selective 1-octene adsorption over n-octane. J. Ind. Eng. Chem. 110, 274–285. https://doi.org/10.1016/j.jiec.2022.03.003.
Kim, M., Lee, J.W., Kim, S., Kang, Y.T., 2022b. CO2 adsorption on zeolite 13X modified with hydrophobic octadecyltrimethoxysilane for indoor application. J. Clean. Prod. 337, 130597 https://doi.org/10.1016/j.jclepro.2022.130597.
Kim, N.S., Numan, M., Nam, S.C., Park, S.E., Jo, C., 2021. Dynamic adsorption/ desorption of p-xylene on nanomorphic MFI zeolites: Effect of zeolite crystal thickness and mesopore architecture. J. Hazard. Mater. 403 https://doi.org/ 10.1016/j.jhazmat.2020.123659.
Kiwaan, H.A., Mohamed, F.S., El-Ghamaz, N.A., Beshry, N.M., El-Bindary, A.A., 2021. Experimental and electrical studies of Na-X zeolite for the adsorption of different dyes. J. Mol. Liq. 332, 115877 https://doi.org/10.1016/j.molliq.2021.115877.
Kouznetsova, T., Ivanets, A., Prozorovich, V., Hosseini-Bandegharaei, A., Tran, H.N., Srivastava, V., Sillanp¨ aa, ¨ M., 2020. Sorption and mechanism studies of Cu2þ, Sr2þ and Pb2þ ions on mesoporous aluminosilicates/zeolite composite sorbents. Water Sci. Technol. 82, 984–997. https://doi.org/10.2166/wst.2020.407.
Kragovi´c, M., Stojmenovi´c, M., Petrovi´c, J., Loredo, J., Paˇsali´c, S., Nedeljkovi´c, A., Ristovi´c, I., 2019. Influence of Alginate Encapsulation on Point of Zero Charge (pH pzc) and Thermodynamic Properties of the Natural and Fe(III)-Modified Zeolite. Procedia Manuf. 32, 286–293. https://doi.org/10.1016/j.promfg.2019.02.216.
Kwon, D., Numan, M., Kim, J., Yilmaz, M., Park, S.-E., Ihee, H., Jo, C., 2022. Tailoring the CO2 selective adsorption properties of MOR zeolites by post functionalization. J. CO2 Util. 62, 102064 https://doi.org/10.1016/j.jcou.2022.102064.
Lee, Z.S., Chin, S.Y., Lim, J.W., Witoon, T., Cheng, C.K., 2019. Treatment technologies of palm oil mill effluent (POME)and olive mill wastewater (OMW): A brief review. Environ. Technol. Innov. 15, 100377 https://doi.org/10.1016/j.eti.2019.100377.
Lepreux, S., 2005. Approche de d ́ eveloppement centr ́ e d ́ ecideur et a l ’ aide de patron de Syst ‘ emes Interactifs d ’ Aide ‘ a la D ́ ecision Application a 5–6.
Li, Z., Dotto, G.L., Bajahzar, A., Sellaoui, L., Belmabrouk, H., Ben Lamine, A., BonillaPetriciolet, A., 2019. Adsorption of indium (III) from aqueous solution on raw, ultrasound- and supercritical-modified chitin: Experimental and theoretical analysis. Chem. Eng. J. 373, 1247–1253. https://doi.org/10.1016/j.cej.2019.05.134.
Li, H., Zheng, F., Wang, J., Zhou, J., Huang, X., Chen, L., Hu, P., Gao, J. ming, Zhen, Q., Bashir, S., Liu, J.L., 2020. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance. Chemical Engineering Journal 390, 124513. https://doi.org/10.1016/j.cej.2020.124513.
Li, Y., Hu, X., Liu, X., Zhang, Y., Zhao, Q., Ning, P., Tian, S., 2017. Adsorption behavior of phenol by reversible surfactant-modified montmorillonite: Mechanism, thermodynamics, and regeneration. Chem. Eng. J. https://doi.org/10.1016/j. cej.2017.09.140.
Li, D., Wang, J., Peng, Z., Hu, Z., Li, W., Chen, C., Li, Y., Zhang, Y., 2022a. Adsorption of CdII by synthetic zeolite under multi-factor using response surface methodology. Colloids Surf. A Physicochem. Eng. Asp. 647, 129165 https://doi.org/10.1016/j. colsurfa.2022.129165.
Li, Y., Wei, W., Chen, J., Zu, L., Zhou, Y., Wu, J., Wu, X., 2022b. Atomic layer deposition precisely modified zeolite 13X: Physicochemical synergistic adsorption of space molecular contaminants. Appl. Surface Sci. 590, 153084 https://doi.org/10.1016/j. apsusc.2022.153084.
Lin, L., Lin, Y., Li, C., Wu, D., Kong, H., 2016. Synthesis of zeolite/hydrous metal oxide composites from coal fly ash as efficient adsorbents for removal of methylene blue from water. Int. J. Miner. Process. 148, 32–40. https://doi.org/10.1016/j. minpro.2016.01.010.
Lin, Z., Yuan, P., Yue, Y., Bai, Z., Zhu, H., Wang, T., Bao, X., 2020. Selective adsorption of Co(II)/Mn(II) by zeolites from purified terephthalic acid wastewater containing dissolved aromatic organic compounds and metal ions. Sci. Total Environ. 698, 134287 https://doi.org/10.1016/j.scitotenv.2019.134287.
Liu, Z., Hamad, I.A., Li, Y., Chen, Y., Wang, S., Jentoft, R.E., Jentoft, F.C., 2019. Poisoning and competitive adsorption effects during phenol hydrogenation on platinum in water-alcohol mixtures. Appl. Catal. A: General 585, 117199. https:// doi.org/10.1016/j.apcata.2019.117199.
Liu, X., Zhang, Y., Liu, Y., Zhang, T., 2022. Green method to synthesize magnetic zeolite/ chitosan composites and adsorption of hexavalent chromium from aqueous solutions. Int. J. Biol. Macromol. 194, 746–754. https://doi.org/10.1016/j. ijbiomac.2021.11.121.
Luis, G., 2006. Isopropanol adsorption-oxidation over V2O5 - A mass spectrometry study. J. Mol. Catal. A Chem. 247, 31–35. https://doi.org/10.1016/j.molcata.2005.11.005.
Lütke, S.F., Igansi, A.V., Pegoraro, L., Dotto, G.L., Pinto, L.A.A., Cadaval, T.R.S., 2019. Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J. Environ. Chem. Eng. 7, 103396 https://doi.org/10.1016/j. jece.2019.103396.
Lv, Y., Ma, B., Liu, Y., Wang, C., Chen, Y., 2022. Adsorption behavior and mechanism of mixed heavy metal ions by zeolite adsorbent prepared from lithium leach residue. Microporous Mesoporous Mater. 329, 111553 https://doi.org/10.1016/j. micromeso.2021.111553.
Ma, L., Chen, Q., Zhu, J., Xi, Y., He, H., Zhu, R., Tao, Q., Ayoko, G.A., 2016a. Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chem. Eng. J. 283, 880–888. https:// doi.org/10.1016/j.cej.2015.08.009.
Ma, X., Li, Y., Xu, D., Tian, H., Yang, H., 2022. Simultaneous adsorption of ammonia and phosphate using ferric sulfate modified carbon/zeolite composite from coal gasification slag. J. Environ. Manage. 305, 114404 https://doi.org/10.1016/j. jenvman.2021.114404.
Ma, L., Zhu, J., Xi, Y., Zhu, R., He, H., Liang, X., Ayoko, G.A., 2016b. Adsorption of phenol, phosphate and Cd(II) by inorganic-organic montmorillonites: A comparative study of single and multiple solute. Colloids Surf. A Physicochem. Eng. Asp. 497, 63–71. https://doi.org/10.1016/j.colsurfa.2016.02.032.
Madan, S., Shaw, R., Tiwari, S., Tiwari, S.K., 2019. Adsorption dynamics of Congo red dye removal using ZnO functionalized high silica zeolitic particles. Appl. Surf. Sci. 487, 907–917. https://doi.org/10.1016/j.apsusc.2019.04.273.
Madhu, J., Madurai Ramakrishnan, V., Palanichamy, P., Santhanam, A., Natarajan, M., Ponnaian, P., Brindhadevi, K., Pugazhendhi, A., Velauthapillai, D., 2022. Rubik’s cube shaped organic template free hydrothermal synthesis and characterization of zeolite NaA for CO2 adsorption. Fuel 317, 123492. https://doi.org/10.1016/j. fuel.2022.123492.
Majid, Z., AbdulRazak, A.A., Noori, W.A.H., 2019. Modification of Zeolite by Magnetic Nanoparticles for Organic Dye Removal. Arab. J. Sci. Eng. 44, 5457–5474. https:// doi.org/10.1007/s13369-019-03788-9.
Mandal, A., Das, S.K., 2019. Phenol adsorption from wastewater using clarified sludge from basic oxygen furnace. J. Environ. Chem. Eng. 7, 103259 https://doi.org/ 10.1016/j.jece.2019.103259.
Marszałek, A., Kaminska, ´ G., Abdel Salam, N.F., 2022. Simultaneous adsorption of organic and inorganic micropollutants from rainwater by bentonite and bentonitecarbon nanotubes composites. J. Water Process Eng. 46 https://doi.org/10.1016/j. jwpe.2021.102550.
Mauer, V., Petersen, H., Blaker, ¨ C., Pasel, C., Weidenthaler, C., Bathen, D., 2022. Combination of X-ray powder diffraction and adsorption calorimetry for the characterization of calcium exchanged LTA zeolites. Microporous Mesoporous Mater. 337 https://doi.org/10.1016/j.micromeso.2022.111940.
Mccusker, L.B., Baerlocher, C., 2019. 4.6. Zeolites 452–464.
Mehraban, Z., Farzaneh, F., Shafiekhani, A., 2007. Synthesis and characterization of a new organic – inorganic hybrid NiO – chlorophyll- a as optical material 29, 927–931. https://doi.org/10.1016/j.optmat.2006.02.007.
Mello, M., Ei´c, M., 1999. Breakthrough study of so2 and H2O adsorption on zeolites from ternary mixtures. Stud. Surf. Sci. Catal. 125, 657–666. https://doi.org/10.1016/ s0167-2991(99)80271-7.
Merrikhpour, H., Jalali, M., 2013. Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Techn. Environ. Policy 15, 303–316. https://doi.org/10.1007/s10098-012-0522-1.
Miller, S.E., Heath, G.R., Gonzalez, R.D., 1983. Effect of pressure on the sorption of Yb by montmorillonite. Clay Clay Miner. 31, 17–21. https://doi.org/10.1346/ CCMN.1983.0310103.
Mirmohamadsadeghi, S., Kaghazchi, T., Soleimani, M., Asasian, N., 2012. An efficient method for clay modification and its application for phenol removal from wastewater. Appl. Clay Sci. 59–60, 8–12. https://doi.org/10.1016/j. clay.2012.02.016.
Mittal, H., Al Alili, A., Alhassan, S.M., 2020a. High efficiency removal of methylene blue dye using κ-carrageenan-poly(acrylamide-co-methacrylic acid)/AQSOA-Z05 zeolite hydrogel composites. Cellul. 27, 8269–8285. https://doi.org/10.1007/s10570-020- 03365-6.
Mittal, H., Babu, R., Dabbawala, A.A., Stephen, S., Alhassan, S.M., 2020b. Zeolite-Y incorporated karaya gum hydrogel composites for highly effective removal of cationic dyes. Colloids Surf A Physicochem Eng Asp 586, 124161. https://doi.org/ 10.1016/j.colsurfa.2019.124161.
Moosavi, A., Amooey, A.A., Alinejad, A., Marzbali, M.H., 2020. Chinese Journal of Chemical Engineering Extraordinary adsorption of acidic fuchsine and malachite green onto cheap nano-adsorbent derived from eggshell. Chin. J. Chem. Eng. 28, 1591–1602. https://doi.org/10.1016/j.cjche.2020.02.031.
Mrunal, V.K., Vishnu, A.K., Momin, N., Manjanna, J., 2019. Cu2O nanoparticles for adsorption and photocatalytic degradation of methylene blue dye from aqueous medium. Environ. Nanotechnol. Monit. Manage. 12 https://doi.org/10.1016/j. enmm.2019.100265.
Mthombeni, N.H., Onyango, M.S., Aoyi, O., 2015. Adsorption of hexavalent chromium onto magnetic natural zeolite-polymer composite. J. Taiwan Inst. Chem. Eng. 50, 242–251. https://doi.org/10.1016/j.jtice.2014.12.037.
Mthombeni, N.H., Mbakop, S., Ochieng, A., Onyango, M.S., 2016. Vanadium (V) adsorption isotherms and kinetics using polypyrrole coated magnetized natural zeolite. J. Taiwan Inst. Chem. Eng. 66, 172–180. https://doi.org/10.1016/j. jtice.2016.06.016.
Muljadi, D., Posner, A.M., Quirk, J.P., 1966. THE MECHANISM OF PHOSPHATE ADSORPTION BY KAOLINITE, GIBBSITE, AND PSEUDOBOEHMITE: PART I. THE ISOTHERMS AND THE EFFECT OF pH ON ADSORPTION. J. Soil Sci. 17, 212–228. https://doi.org/10.1111/j.1365-2389.1966.tb01467.x.
Muscarella, S.M., Badalucco, L., Cano, B., Laudicina, V.A., Mannina, G., 2021. Ammonium adsorption, desorption and recovery by acid and alkaline treated zeolite. Bioresour. Technol. 341, 125812 https://doi.org/10.1016/j.biortech.2021.125812.
Na chat, N., Sangsuradet, S., Tobarameekul, P., Worathanakul, P., 2022. Modified hierarchical zeolite X derived from riceberry rice husk for propionic acid adsorption. Materials Chemistry and Physics 282, 125933. https://doi.org/10.1016/j. matchemphys.2022.125933.
Nah, I.W., Hwang, K.Y., Jeon, C., Choi, H.B., 2006. Removal of Pb ion from water by magnetically modified zeolite. Miner. Eng. 19, 1452–1455. https://doi.org/ 10.1016/j.mineng.2005.12.006.
Nakamoto, K., Ohshiro, M., Kobayashi, T., 2017. Mordenite zeolite - Polyethersulfone composite fibers developed for decontamination of heavy metal ions. J. Environ. Chem. Eng. 5, 513–525. https://doi.org/10.1016/j.jece.2016.12.031.
Nakhjiri, M.T., Bagheri Marandi, G., Kurdtabar, M., 2021. Preparation of magnetic double network nanocomposite hydrogel for adsorption of phenol and p-nitrophenol from aqueous solution. J. Environ. Chem. Eng. 9, 105039 https://doi.org/10.1016/j. jece.2021.105039.
Nguyen, T.D., Nguyen, T.M.P., Van, H.T., Nguyen, V.Q., Nguyen, L.H., Nguyen, T.D., Nguyen, T.H.V., Chu, T.H.H., Nguyen, T.H., Ha, L.T., Vinh, N.D., Thai, V.N., Nguyen, K.A., Thang, P.Q., 2022. Adsorption removal of ammonium from aqueous solution using Mg/Al layered double hydroxides-zeolite composite. Environ. Technol. Innov. 25 https://doi.org/10.1016/j.eti.2021.102244.
Ouyang, W., Zheng, S., Wu, C., Hu, X., Chen, R., Zhuo, L., Wang, Z., 2021. Dynamic ammonia adsorption by FAU zeolites to below 0.1 ppm for hydrogen energy applications. Int. J. Hydrogen Energy 46, 32559–32569. https://doi.org/10.1016/j. ijhydene.2021.07.107.
Panic, V.V., Velickovic, S.J., 2014. Removal of model cationic dye by adsorption onto poly(methacrylic acid)/zeolite hydrogel composites: Kinetics, equilibrium study and image analysis. Sep. Purif. Technol. 122, 384–394. https://doi.org/10.1016/j. seppur.2013.11.025.
Pei, Y., Mo, S., Xie, Q., Chen, N., Yang, Z., Huang, L., Ma, L., 2022. Article Stelleriteseeded facile synthesis of zeolite X with excellent aqueous Cd 2 + and Ni 2 + adsorption performance Article Stellerite-seeded facile synthesis of zeolite X with excellent aqueous Cd 2 + and Ni 2 + adsorption performance. Chin. J. Chem. Eng. https://doi.org/10.1016/j.cjche.2022.06.008.
Petrie, B., Barden, R., Kasprzyk-Hordern, B., 2015. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 72, 3–27. https://doi.org/ 10.1016/j.watres.2014.08.053.
Ping, W., Gao, W., Cui, X., Hong, J., Feng, R., 2016. Phenol adsorption equilibrium and kinetics on zeolite X / activated 0, 1–7. https://doi.org/10.1016/j.jtice.2016.02.004.
Piri, F., Mollahosseini, A., Khadir, A., Milani Hosseini, M., 2019. Enhanced adsorption of dyes on microwave-assisted synthesized magnetic zeolite-hydroxyapatite nanocomposite. J. Environ. Chem. Eng. 7, 103338 https://doi.org/10.1016/j. jece.2019.103338.
Radoor, S., Karayil, J., Parameswaranpillai, J., Siengchin, S., 2020. Removal of anionic dye Congo red from aqueous environment using polyvinyl alcohol/sodium alginate/ ZSM-5 zeolite membrane. Sci. Rep. 10, 1–15. https://doi.org/10.1038/s41598-020- 72398-5.
Radoor, S., Karayil, J., Jayakumar, A., Parameswaranpillai, J., Siengchin, S., 2021. An efficient removal of malachite green dye from aqueous environment using ZSM-5 zeolite/polyvinyl alcohol/carboxymethyl cellulose/sodium alginate bio composite. J. Polym. Environ. 29, 2126–2139. https://doi.org/10.1007/s10924-020-02024-y.
Rahman, M.M., Karmaker, S.C., Pal, A., Eljamal, O., Saha, B.B., 2021. Statistical techniques for the optimization of cesium removal from aqueous solutions onto ironbased nanoparticle-zeolite composites. Environ. Sci. Pollut. Res. 28, 12918–12931. https://doi.org/10.1007/s11356-020-11258-1.
Rajendran, S., Priya, A.K., Senthil Kumar, P., Hoang, T.K.A., Sekar, K., Chong, K.Y., Khoo, K.S., Ng, H.S., Show, P.L., 2022. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. Chemosphere 303, 135146. https://doi.org/10.1016/j.chemosphere.2022.135146.
Ramezani Shabolaghi, K., Irani, M., 2022. Ethanol adsorption in cation-exchanged linde type L zeolite, studied by molecular simulations. Comput. Theor. Chem. 1207, 113498 https://doi.org/10.1016/j.comptc.2021.113498.
Razavi, Z., Mirghaffari, N., Alemrajabi, A.A., Davar, F., Soleimani, M., 2021. Adsorption and photocatalytic removal of SO2 using natural and synthetic zeolites-supported TiO2 in a solar parabolic trough collector. J. Clean. Prod. 310, 127376 https://doi. org/10.1016/j.jclepro.2021.127376.
Rong, X., Qiu, F., Zhang, C., Fu, L., Wang, Y., Yang, D., 2015. Adsorptionphotodegradation synergetic removal of methylene blue from aqueous solution by NiO/graphene oxide nanocomposite. Powder Technol. 275, 322–328. https://doi. org/10.1016/j.powtec.2015.01.079.
Rouquerol, F., Rouquerol, J., Sing, K., 1999. Adsorption by Clays, Pillared Layer Structures and Zeolites. Adsorption by Powders and Porous Solids 355–399. https:// doi.org/10.1016/b978-012598920-6/50012-9.
Sabarish, R., Unnikrishnan, G., 2018a. Polyvinyl alcohol/carboxymethyl cellulose/ZSM5 zeolite biocomposite membranes for dye adsorption applications. Carbohydr. Polym. 199, 129–140. https://doi.org/10.1016/j.carbpol.2018.06.123.
Sabarish, R., Unnikrishnan, G., 2018b. PVA/PDADMAC/ZSM-5 zeolite hybrid matrix membranes for dye adsorption: Fabrication, characterization, adsorption, kinetics and antimicrobial properties. J. Environ. Chem. Eng. 6, 3860–3873. https://doi.org/ 10.1016/j.jece.2018.05.026.
Sabbatini, P., Rossi, F., Thern, G., Marajofsky, A., de Cortalezzi, M.M.F., 2009. Iron oxide adsorbers for arsenic removal: A low cost treatment for rural areas and mobile applications. Desalination 248, 184–192. https://doi.org/10.1016/j. desal.2008.05.104.
Sadki, H., Saidi, K.Z.M., 2014. Adsorption d ’ un colorant cationique d ’ un milieu aqueux sur une argile locale activ´ee (adsorption of dyes on activated local clay in aqueous solution). Mater. Environ. Sci. 5, 2060–2065.
Salehi, S., Alijani, S., Anbia, M., 2020. Enhanced adsorption properties of zirconium modified chitosan-zeolite nanocomposites for vanadium ion removal. Int. J. Biol. Macromol. 164, 105–120. https://doi.org/10.1016/j.ijbiomac.2020.07.055.
Scientific, S., 2017. Bulgarian Academy of Sciences. Space Research and Technology Institute. Aerospace Research in Bulgaria. 29, 2017. Sofia 2015, 10–29.
Sellaoui, L., Hessou, E.P., Badawi, M., Netto, M.S., Dotto, G.L., Silva, L.F.O., Tielens, F., Ifthikar, J., Bonilla-Petriciolet, A., Chen, Z., 2021. Trapping of Ag+, Cu2+, and Co2 + by faujasite zeolite Y: New interpretations of the adsorption mechanism via DFT and statistical modeling investigation. Chem. Eng. J. 420, 127712 https://doi.org/ 10.1016/j.cej.2020.127712.
Shakir, K., Ghoneimy, H.F., Elkafrawy, A.F., Beheir, S.G., Refaat, M., 2008. Removal of catechol from aqueous solutions by adsorption onto organophilic-bentonite. J. Hazard. Mater. 150, 765–773. https://doi.org/10.1016/j.jhazmat.2007.05.037.
Shamsudin, M.S., Shahadat, M., 2019. Cellulose/bentonite-zeolite composite adsorbent material coating for treatment of N-based antiseptic cationic dye from water. J. Water Process Eng. 29, 100764 https://doi.org/10.1016/j.jwpe.2019.02.004.
Sharma, V.K., Feng, M., 2017. Water depollution using metal-organic frameworkscatalyzed advanced oxidation processes: A review. J. Hazard. Mater. https://doi. org/10.1016/j.jhazmat.2017.09.043.
Sharma, A., Kumar, N., Sillanpa¨a, ¨ M., Makgwane, P.R., Kumar, S., Kumari, K., 2022. Carbon nano-structures and functionalized associates: Adsorptive detoxification of organic and inorganic water pollutants. Inorg. Chem. Commun. 141, 109579 https://doi.org/10.1016/j.inoche.2022.109579.
Sheela, T., Nayaka, Y.A., 2012. Kinetics and thermodynamics of cadmium and lead ions adsorption on NiO nanoparticles. Chem. Eng. J. 191, 123–131. https://doi.org/ 10.1016/j.cej.2012.02.080.
Shui, Z., Yao, L., Pu, X., Yang, L., Jiang, W., Jiang, X., 2020. Synthesis of a novel zeoliteactivated carbon composite using lithium-silicon-powder waste for ammonianitrogen and methylene blue removal. Ind. Eng. Chem. Res. 59, 14616–14624. https://doi.org/10.1021/acs.iecr.0c00617.
Suazo-Hernandez, J., Sepúlveda, P., Manquian-Cerda, ´ K., Ramírez-Tagle, R., Rubio, M. A., Bolan, N., Sarkar, B., Arancibia-Miranda, N., 2019. Synthesis and characterization of zeolite-based composites functionalized with nanoscale zerovalent iron for removing arsenic in the presence of selenium from water. J. Hazard. Mater. 373, 810–819. https://doi.org/10.1016/j.jhazmat.2019.03.125.
Sun, Y., Tang, J., Li, G., Hua, Y., Sun, Y., Hu, S., Wen, X., 2022. Adsorption, separation and regeneration of cation-exchanged X zeolites for LNG purification: Li+, K+, Mg2 + and Ca2+. Microporous Mesoporous Mater. 340, 112032 https://doi.org/ 10.1016/j.micromeso.2022.112032.
Sun, X., Wang, C., Li, Y., Wang, W., Wei, J., 2015. Treatment of phenolic wastewater by combined UF and NF/RO processes. Desalination 355, 68–74. https://doi.org/ 10.1016/j.desal.2014.10.018.
Tatlier, M., Erdem-S¸ enatalar, A., 1999. Effects of thermal gradients in a solar adsorption heat pump utilizing the zeolite-water pair. Appl. Therm. Eng. 19, 1157–1172. https://doi.org/10.1016/S1359-4311(98)00113-6.
Timonen, J.T., Pakkanen, T.T., 1999. A qualitative 1H NMR study of CHCl3 adsorption on conjugated acid-base pairs in cation exchanged Y-zeolites. Microporous Mesoporous Mater. 30, 327–333. https://doi.org/10.1016/S1387-1811(99)00044- X.
Vikrant, K., Kim, K., Peng, W., Ge, S., Ok, Y.S., 2019. Adsorption performance of standard biochar materials against volatile organic compounds in air: A case study using benzene and methyl ethyl ketone. Chem. Eng. J. 123943 https://doi.org/10.1016/j. cej.2019.123943.
Vuppala, S., Bavasso, I., Stoller, M., Di Palma, L., Vilardi, G., 2019. Olive mill wastewater integrated purification through pre-treatments using coagulants and biological methods: Experimental, modelling and scale-up. J. Clean. Prod. 236, 117622 https://doi.org/10.1016/j.jclepro.2019.117622.
Wang, X., Chen, A., Chen, B., Wang, L., 2020. Adsorption of phenol and bisphenol A on river sediments: Effects of particle size, humic acid, pH and temperature. Ecotoxicol. Environ. Saf. 204, 111093 https://doi.org/10.1016/j.ecoenv.2020.111093.
Wang, Z., Chen, X.F., 2021. A periodic density functional theory study on methanol adsorption in HSAPO-34 zeolites. Chem. Phys. Lett. 771, 138532 https://doi.org/ 10.1016/j.cplett.2021.138532.
Wang, G., Li, G., Xing, X., Zhang, Z., Hao, Z., 2021a. Unraveling the adsorption and diffusion properties of hexamethyldisiloxane on zeolites by static gravimetric analysis. Water Res. 197 https://doi.org/10.1016/j.watres.2021.117097.
Wang, Z., Li, W., Zhu, J., Wang, D., Meng, H., Wang, H., Li, J., 2021b. Simultaneous adsorption of phosphate and zinc by lanthanum modified zeolite. Environ. Technol. Innov. 24, 101906 https://doi.org/10.1016/j.eti.2021.101906.
Yang, S., Li, W., Zhang, H., Wen, Y., Ni, Y., 2019a. Treatment of paper mill wastewater using a composite inorganic coagulant prepared from steel mill waste pickling liquor. Sep. Purif. Technol. 209, 238–245. https://doi.org/10.1016/j. seppur.2018.07.049.
Yang, Y., Yang, J., Du, Y., Li, C., Wei, K., Lu, J., Chen, W., Yang, L., 2019b. Preparation and Characterization of Cationic Water-Soluble Pillar[5]arene-Modified Zeolite for Adsorption of Methyl Orange. ACS Omega 4, 17741–17751. https://doi.org/ 10.1021/acsomega.9b02180.
Yao, D., Shi, Y., Pan, H., Zhong, D., Hou, H., Wu, X., Chen, J., Wang, L., Hu, Y., Crittenden, J.C., 2020. Promotion mechanism of natural clay colloids in the adsorption of arsenite on iron oxide particles in water. Chem. Eng. J. 392, 123637 https://doi.org/10.1016/j.cej.2019.123637.
Yousef, R.I., El-Eswed, B., 2009. The effect of pH on the adsorption of phenol and chlorophenols onto natural zeolite. Colloids Surf. A Physicochem. Eng. Asp. 334, 92–99. https://doi.org/10.1016/j.colsurfa.2008.10.004.
Yousef, R.I., El-Eswed, B., Al-Muhtaseb, A.H., 2011. Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies. Chem. Eng. J. 171, 1143–1149. https:// doi.org/10.1016/j.cej.2011.05.012.
Yusan, S., Erenturk, S., 2011. Adsorption Characterization of Strontium on PAN/Zeolite Composite Adsorbent. World J. Nuclear Sci. Technol. 01, 6–12. https://doi.org/ 10.4236/wjnst.2011.11002.
Zhan, Y., Lin, J., Li, J., 2013. Preparation and characterization of surfactant-modified hydroxyapatite/zeolite composite and its adsorption behavior toward humic acid and copper(II). Environ. Sci. Pollut. Res. 20, 2512–2526. https://doi.org/10.1007/ s11356-012-1136-1.
Zhang, Y.-H., Cai, X.-L., Li, Y.-L., Liu, M.-M., Ding, C.-L., Chen, J.-L., Fang, S.-M., 2019b. Facile synthesis of hollow p-Cu2O/n-ZnO microspheres with enhanced photocatalytic H2 production. Chem. Phys. Lett. 734, 136748 https://doi.org/ 10.1016/j.cplett.2019.136748.
Zhang, Y., Chen, Y., Kang, W., Han, H., Song, H., Zhang, C., Wang, H., Yang, X., Gong, X., Zhai, C., Deng, J., Ai, L., 2020. Excellent adsorption of Zn(II) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment. J. Clean. Prod. 258, 120736 https://doi.org/10.1016/j.jclepro.2020.120736.
Zhang, S., Cui, M., Chen, J., Ding, Z., Wang, X., Mu, Y., Meng, C., 2019a. Modification of synthetic zeolite X by thiourea and its adsorption for Cd (II). Mater. Lett. 236, 233–235. https://doi.org/10.1016/j.matlet.2018.10.100.
Zhang, K., Li, H., Xu, X., Yu, H., 2017. Synthesis of reduced graphene oxide/NiO nanonanocomposites for the removal of Cr(VI) from aqueous water by adsorption. Microporous Mesoporous Mater. 255, 7–14. https://doi.org/10.1016/j. micromeso.2017.07.037.
Zhang, F., Zhang, S., Chen, L., Liu, Z., Qin, J., 2021. Utilization of bark waste of Acacia mangium: The preparation of activated carbon and adsorption of phenolic wastewater. Ind. Crop. Prod. 160, 113157 https://doi.org/10.1016/j. indcrop.2020.113157.
Zhao, F., Zou, Y., Lv, X., Liang, H., Jia, Q., Ning, W., 2015. Synthesis of CoFe2O4-zeolite materials and application to the adsorption of gallium and indium. J. Chem. Eng. Data 60, 1338–1344. https://doi.org/10.1021/je501039u.
Zhu, J., Wang, Y., Liu, J., Zhang, Y., 2014. Facile one-pot synthesis of novel spherical zeolite-reduced graphene oxide composites for cationic dye adsorption. Ind. Eng. Chem. Res. https://doi.org/10.1021/ie502030w.
dc.relation.citationendpage.spa.fl_str_mv 13
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 17
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier B.V.
dc.publisher.place.spa.fl_str_mv Netherlands
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S187853522300936X?pes=vor
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/dfc55ddc-5f3b-4185-b8b1-ff81124e880f/download
https://repositorio.cuc.edu.co/bitstreams/a70fc5cc-8194-4940-a4e7-f42a9d8bd97e/download
https://repositorio.cuc.edu.co/bitstreams/9650376d-415e-42c9-9e3d-5948a0eecc8b/download
https://repositorio.cuc.edu.co/bitstreams/d58cb075-ad4c-4772-9584-9bf6ebf43910/download
bitstream.checksum.fl_str_mv 58d47d3fac22ed6db0820ef4cb774e41
2f9959eaf5b71fae44bbf9ec84150c7a
5fff27761fc018b9d192694d86d55497
86dd714a8dc3dff428233930c09677f5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166809629491200
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dehmani, YounesBa Mohammed, BouchraOUKHRIB, RachidDEHBI, AliLAMHASNI, TaibiBRAHMI, YounesEl-KORDY, Abderrazek Dison S.P., Francogeorgin, jordanaLima, Eder C.Alrashdi, Awad A.TIJANI, NAJIBSadik, Abouarnadasse2024-09-12T19:16:18Z2024-09-12T19:16:18Z2024-01Younes Dehmani, Bouchra Ba Mohammed, Rachid Oukhrib, Ali Dehbi, Taibi Lamhasni, Younes Brahmi, Abderrazek El-Kordy, Dison S.P. Franco, Jordana Georgin, Eder C. Lima, Awad A. Alrashdi, Najib Tijani, Sadik Abouarnadasse, Adsorption of various inorganic and organic pollutants by natural and synthetic zeolites: A critical review, Arabian Journal of Chemistry, Volume 17, Issue 1, 2024, 105474, ISSN 1878-5352, https://doi.org/10.1016/j.arabjc.2023.105474.1878-5352https://hdl.handle.net/11323/1331410.1016/j.arabjc.2023.1054741878-5379Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Zeolites are microporous crystalline aluminosilicates with high surface area and uniform pore size. Natural and synthetic zeolites have been used to adsorb organic and inorganic compounds in aqueous media due to thier particular physicochemical properties and the low cost of the process. The flexibility of zeolites to remove pollutants from water, such as dyes, heavy metal ions, and phenolic compounds, is discussed in this document in the context of contemporary research. This review briefly consolidates the currently available literature to comprehend the structure of zeolites and their synthesized by hydrothermal method. Later, this manuscript is present different parameters to study the adsorption mechanisms of organic and inorganic contaminants using the zeolites. The main adsorption processes using zeolites as adsorbents include chelation, surface adsorption, natural processes, diffusion, electrostatic interaction and complexation. In addition, the research demonstrates that the dominant models in the isothermal and kinetic study of adsorption are the Langmuir and the pseudo-second-order models. We can assess the beneficial applicability of zeolite materials for real wastewater treatment in the future by comparing their adsorption capacities for removing harmful substances from water to those of other adsorbents and crude zeolites.13 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www.sciencedirect.com/science/article/pii/S187853522300936X?pes=vorAdsorption of various inorganic and organic pollutants by natural and synthetic zeolites: a critical reviewArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Arabian Journal of ChemistryAazza, M., Ahlafi, H., Moussout, H., Maghat, H., 2017. Ortho-Nitro-Phenol adsorption onto alumina and surfactant modified alumina: kinetic, isotherm and mechanism. J. Environ. Chem. Eng. 5, 3418–3428. https://doi.org/10.1016/j.jece.2017.06.051.Abbas-Ghaleb, R., Chlala, D., Assaf, J.C., 2019. Isopropyl Alcohol Total Oxidation Over Platinum Supported on Alumina and Mullite. Chem. Afr. 2, 335–341. https://doi. org/10.1007/s42250-019-00066-x.Abbasi, A., 2019. Adsorption of phenol, hydrazine and thiophene on stanene monolayers : A computational investigation. Synth. Met. 247, 26–36. https://doi.org/10.1016/j. synthmet.2018.11.012.Abdellaoui, Y., Abou Oualid, H., Hsini, A., El Ibrahimi, B., Laabd, M., El Ouardi, M., Giacoman-Vallejos, ´ G., Gamero-Melo, P., 2020. Synthesis of zirconium-modified merlinoite from fly ash for enhanced removal of phosphate in aqueous medium : Experimental studies supported by Monte Carlo/SA Simulations. Chem. Eng. J. 404, 126600 https://doi.org/10.1016/j.cej.2020.126600.Abou Oualid, H., Abdellaoui, Y., Laabd, M., Ouardi, M.E., Brahmi, Y., Iazza, M., Oualid, J.A., 2020. Eco-Efficient Green Seaweed Codium decorticatum Biosorbent for Textile Dyes : Characterization, Mechanism, Recyclability, and RSM Optimization. ACS Omega. https://doi.org/10.1021/acsomega.0c02311.Afiqah, N., Mohamad, H., Biaw, L., Lim, L., Usman, A., 2019. Environmental Technology & Innovation Enhancing adsorption of malachite green dye using base-modified Artocarpus odoratissimus leaves as adsorbents. Environ. Technol. Innov. 13, 211–223. https://doi.org/10.1016/j.eti.2018.12.002.Ahali Abadeh, Z., Irannajad, M., 2017. Removal of Ni and Cd ions from aqueous solution using iron dust-zeolite composite: Analysis by thermodynamic, kinetic and isotherm studies. Chem. Res. Chin. Univer. 33, 318–326. https://doi.org/10.1007/s40242- 017-6150-x.Ahmad, A.A., Ahmad, M.A., Yahaya, N.K.E.M., Karim, J., 2021. Adsorption of malachite green by activated carbon derived from gasified Hevea brasiliensis root. Arab. J. Chem. 14, 103104 https://doi.org/10.1016/j.arabjc.2021.103104.Ahmed, M.J., Hameed, B.H., 2020. Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review. J. Clean. Prod. 265, 121762 https://doi.org/10.1016/j. jclepro.2020.121762.Akani, N.P., Nwankwo, C.E.I., 2018. Monitoring the Microbial Load at Chosen Critical Control Points in the Production of Kunun-zaki. IOSR J. Environ. Sci. 12, 41–46. https://doi.org/10.9790/2402-1209034146.Aksu, Z., Yener, J., 1999. The usage of dried activated sludge and fly ash wastes in phenol biosorption/adsorption: Comparison with granular activated carbon. J. Environ. Sci. Health - Part A Toxic/hazardous Subst. Environmen. Eng. 34, 1777–1796. https://doi.org/10.1080/10934529909376928.Alborzi, E., Flyagina, I.S., Mielczarek, D.C., Blakey, S.G., Pourkashanian, M., 2022. A theoretical investigation into the comparative adsorption between dissolved oxygen and oxygenate species on zeolite 3.7 Å during aviation fuel treatment for thermal stability improvement. Fuel 317, 123451. https://doi.org/10.1016/j. fuel.2022.123451.Alkaim, A.F., Aljeboree, A.M., Alrazaq, N.A., Baqir, S.J., Hussein, F.H., Lilo, A.J., 2014. Effect of pH on adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue. Asian J. Chem. 26, 8445–8448. https://doi. org/10.14233/ajchem.2014.17908.Alshabib, M., Onaizi, S.A., 2019. A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes : Current status and potential challenges. Sep. Purif. Technol. 219, 186–207. https://doi.org/10.1016/j. seppur.2019.03.028.Ameh, A.E., Oyekola, O.O., Petrik, L.F., 2022. Column adsorption of Rhodamine 6G over Na–P/SOD zeolite synthesised from aluminosilicate secondary waste. J. Clean. Prod. 338, 130571 https://doi.org/10.1016/j.jclepro.2022.130571.Angaru, G.K.R., Lingamdinne, L.P., Choi, Y.L., Koduru, J.R., Yang, J.K., Chang, Y.Y., 2021. Encapsulated zerovalent iron/nickel-fly ash zeolite foam for treating industrial wastewater contaminated by heavy metals. Mater. Today Chem. 22, 100577 https:// doi.org/10.1016/j.mtchem.2021.100577.Armaroli, T., Finocchio, E., Busca, G., Rossini, S., 1999. A FT-IR study of the adsorption of C5 olefinic compounds on NaX zeolite. Vib. Spectrosc 20, 85–94. https://doi.org/ 10.1016/S0924-2031(99)00024-7.Ba Mohammed, B., Yamni, K., Tijani, N., Alrashdi, A.A., Zouihri, H., Dehmani, Y., Chung, I.-M., Kim, S.-H., Lgaz, H., 2019a. Adsorptive removal of phenol using faujasite-type Y zeolite: Adsorption isotherms, kinetics and grand canonical Monte Carlo simulation studies. J. Mol. Liq. 296, 111997 https://doi.org/10.1016/j. molliq.2019.111997.Ba Mohammed, B., Yamni, K., Tijani, N., Alrashdi, A.A., Zouihri, H., Dehmani, Y., Chung, I.M., Kim, S.H., Lgaz, H., 2019b. Adsorptive removal of phenol using faujasite-type Y zeolite: Adsorption isotherms, kinetics and grand canonical Monte Carlo simulation studies. J. Mol. Liq. 296 https://doi.org/10.1016/j. molliq.2019.111997.Ba Mohammed, B., Hsini, A., Abdellaoui, Y., Abou Oualid, H., Laabd, M., El Ouardi, M., Ait Addi, A., Yamni, K., Tijani, N., 2020. Fe-ZSM-5 zeolite for efficient removal of basic Fuchsin dye from aqueous solutions: Synthesis, characterization and adsorption process optimization using BBD-RSM modeling. J. Environ. Chem. Eng. 8, 104419 https://doi.org/10.1016/j.jece.2020.104419.Ba Mohammed, B., Yamni, K., Tijani, N., Lee, H.S., Dehmani, Y., El Hamdani, H., Alrashdi, A.A., Ramola, S., Belwal, T., Lgaz, H., 2021. Enhanced removal efficiency of NaY zeolite toward phenol from aqueous solution by modification with nickel (NiNaY). J. Saudi Chem. Soc. 25, 101224 https://doi.org/10.1016/j.jscs.2021.101224.Bas¸kan, G., Açıkel, Ü., Levent, M., 2022. Investigation of adsorption properties of oxytetracycline hydrochloride on magnetic zeolite/Fe3O4 particles. Adv. Powder Technol. 33 https://doi.org/10.1016/j.apt.2022.103600.Beauchet, R., Mijoin, J., Batonneau-Gener, I., Magnoux, P., 2010. Catalytic oxidation of VOCs on NaX zeolite: Mixture effect with isopropanol and o-xylene. Appl. Catal. B 100, 91–96. https://doi.org/10.1016/j.apcatb.2010.07.017.Bhaskar, M., Surekha, M., Suma, N., 2020. Evaluation on the Activity of Surfactant Immobilized and Metal Cation Exchanged Impregnated Montmorillonite Nanoclays on Oxidation of Benzyl Alcohol. Chem. Afr. 3, 351–361. https://doi.org/10.1007/ s42250-020-00125-8.Chaibi, A., Boucheffa, Y., Bendjaballah-Lalaoui, N., 2021. TGA investigation of water and ethanol adsorption over LTA zeolites. Micropor. Mesopor. Mater. 324, 111285 https://doi.org/10.1016/j.micromeso.2021.111285.Chaouati, N., Soualah, A., Chater, M., 2013. Adsorption of phenol from aqueous solution onto zeolites y modified by silylation. C. R. Chim. 16, 222–228. https://doi.org/ 10.1016/j.crci.2012.10.010.Cheng, W.P., Gao, W., Cui, X., Ma, J.H., Li, R.F., 2016. Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite. J. Taiwan Inst. Chem. Eng. 62, 192–198. https://doi.org/10.1016/j.jtice.2016.02.004.Cheng, Z.L., Li, Y.X., Liu, Z., 2017. Novel adsorption materials based on graphene oxide/ Beta zeolite composite materials and their adsorption performance for rhodamine B. J. Alloy. Compd. 708, 255–263. https://doi.org/10.1016/j.jallcom.2017.03.004.Cheng, Y., Xu, L., Liu, C., 2021. NaP1 zeolite synthesized via effective extraction of Si and Al from red mud for methylene blue adsorption. Adv. Powder Technol. 32, 3904–3914. https://doi.org/10.1016/j.apt.2021.08.036.Choi, S., Johnston, M., Wang, G.S., Huang, C.P., 2018. A seasonal observation on the distribution of engineered nanoparticles in municipal wastewater treatment systems exemplified by TiO 2 and ZnO. Sci. Total Environ. 625, 1321–1329. https://doi.org/ 10.1016/j.scitotenv.2017.12.326.Clark, L.A., Snurr, R.Q., 1999. Adsorption isotherm sensitivity to small changes in zeolite structure. Chem. Phys. Lett. 308, 155–159. https://doi.org/10.1016/S0009-2614 (99)00568-0.de Aquino, T.F., Estevam, S.T., Viola, V.O., Marques, C.R.M., Zancan, F.L., Vasconcelos, L.B., Riella, H.G., Pires, M.J.R., Morales-Ospino, R., Torres, A.E.B., Bastos-Neto, M., Cavalcante, C.L., 2020. CO2 adsorption capacity of zeolites synthesized from coal fly ashes. Fuel 276, 118143. https://doi.org/10.1016/j. fuel.2020.118143.Dehbi, A., Dehmani, Y., Omari, H., Lammini, A., Elazhari, K., Abdallaoui, A., 2019. Hematite Iron Oxide Nanoparticles (α-Fe2O3): Synthesis and Modelling Adsorption of Malachite Green. J. Environ. Chem. Eng. 103394 https://doi.org/10.1016/j. jece.2019.103394.Dehghani, M.H., Dehghan, A., Najafpoor, A., 2017. Removing Reactive Red 120 and 196 using chitosan/zeolite composite from aqueous solutions: Kinetics, isotherms, and process optimization. J. Ind. Eng. Chem. 51, 185–195. https://doi.org/10.1016/j. jiec.2017.03.001.Dehmani, Y., Alrashdi, A.A., Lgaz, H., Lamhasni, T., Abouarnadasse, S., Chung, I.M., 2020a. Removal of phenol from aqueous solution by adsorption onto hematite (α-Fe2O3): Mechanism exploration from both experimental and theoretical studies. Arab. J. Chem. 13, 5474–5486. https://doi.org/10.1016/j.arabjc.2020.03.026.Dehmani, Y., Sellaoui, L., Alghamdi, Y., Lain´e, J., Badawi, M., Amhoud, A., BonillaPetriciolet, A., Lamhasni, T., Abouarnadasse, S., 2020b. Kinetic, thermodynamic and mechanism study of the adsorption of phenol on Moroccan clay. J. Mol. Liq. 312, 113383 https://doi.org/10.1016/j.molliq.2020.113383.Dinu, M.V., Dragan, E.S., 2010. Evaluation of Cu2+, Co2+ and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: Kinetics and isotherms. Chem. Eng. J. 160, 157–163. https://doi.org/10.1016/j.cej.2010.03.029.dos Santos, G.C., Bleyer, G.C., Martins, L.S., Padoin, N., Watzko, E.S., de Aquino, T.F., Vasconcelos, L.B., 2021. CO2 adsorption in a zeolite-based bench scale moving bed prototype: Experimental and theoretical investigation. Chem. Eng. Res. Des. 171, 225–236. https://doi.org/10.1016/j.cherd.2021.05.006.Du, Z., Dunne, L.J., Chaplin, M.F., Manos, G., 1999. Comparative study of mean-field theory and Monte Carlo simulation of supercritical methane adsorption in zeolites. Chem. Phys. Lett. 307, 413–418. https://doi.org/10.1016/S0009-2614(99)00534-5.El Alouani, M., Saufi, H., Moutaoukil, G., Alehyen, S., Nematollahi, B., Belmaghraoui, W., Taibi, M., 2021. Application of geopolymers for treatment of water contaminated with organic and inorganic pollutants: State-of-the-art review. J. Environ. Chem. Eng. 9, 105095 https://doi.org/10.1016/j.jece.2021.105095.Elhakim, A.A., El-Kemary, M., Ibrahim, M.M., El-Mehasseb, I.M., El-Sheshtawy, H.S., 2021. Direct Z-scheme of WO3/GO decorated with silver nanoparticles for synergetic adsorption and photocatalytic activity for organic and inorganic water pollutants removal. Appl. Surf. Sci. 564, 150410 https://doi.org/10.1016/j. apsusc.2021.150410.Eljamal, O., Shubair, T., Tahara, A., Sugihara, Y., Matsunaga, N., 2019. Iron based nanoparticles-zeolite composites for the removal of cesium from aqueous solutions. J. Mol. Liq. 277, 613–623. https://doi.org/10.1016/j.molliq.2018.12.115.El-Kordy, A., Dehmani, Y., Douma, M., Bouazizi, A., El Moustansiri, H., El Abbadi, S., Tijani, N., 2022a. Experimental study of phenol removal from aqueous solution by adsorption onto synthesized Faujasite-type Y zeolite. Desalin. Water Treat. 277, 144–154. https://doi.org/10.5004/dwt.2022.28958.El-Kordy, A., Elgamouz, A., Lemdek, E.M., Tijani, N., Alharthi, S.S., Kawde, A.N., Shehadi, I., 2022b. Preparation of sodalite and faujasite clay composite membranes and their utilization in the decontamination of dye effluents. Membranes 12, 1–18. https://doi.org/10.3390/membranes12010012.Eltaweil, A.S., Mohamed, H.A., El-monaem, E.M.A., 2020. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye : Characterization, adsorption kinetics, thermodynamics and isotherms. Adv. Powder Technol. 31, 1253–1263. https://doi.org/10.1016/j.apt.2020.01.005.Elwakeel, K.Z., El-Bindary, A.A., Kouta, E.Y., 2017. Retention of copper, cadmium and lead from water by Na-Y-Zeolite confined in methyl methacrylate shell. J. Environ. Chem. Eng. 5, 3698–3710. https://doi.org/10.1016/j.jece.2017.06.049.Erkonak, H., So¨ǧüt, O.O., ¨ Akgün, M., 2008. Treatment of olive mill wastewater by supercritical water oxidation. J. Supercrit. Fluids 46, 142–148. https://doi.org/ 10.1016/j.supflu.2008.04.006.Feng, D., Guo, D., Zhang, Y., Sun, S., Zhao, Y., Shang, Q., Sun, H., Wu, J., Tan, H., 2020. Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption. Chem. Eng. J. 410, 127707 https:// doi.org/10.1016/j.cej.2020.127707.Feng, A., Yu, Y., Mi, L., Cao, Y., Yu, Y., Song, L., 2022. Synthesis and VOCs adsorption performance of surfactant-templated USY zeolites with controllable mesopores. Chem. Phys. Lett. 798 https://doi.org/10.1016/j.cplett.2022.139578.Frost, R.R., Griffin, R.A., 1977. Effect of pH on Adsorption of Arsenic and Selenium from Landfill Leachate by Clay Minerals. Soil Sci. Soc. Am. J. 41, 53–57. https://doi.org/ 10.2136/sssaj1977.03615995004100010019x.Fungaro, D.A., Graciano, J.E.A., 2007. Adsorption of zinc ions from water using zeolite/ iron oxide composites. Adsorpt. Sci. Technol. 25, 729–740. https://doi.org/ 10.1260/026361707785284185.Ghanavati, L., Hekmati, A.H., Rashidi, A., Shafiekhani, A., 2021. Application of electrospun Polyamide-6/Modified zeolite nanofibrous composite to remove Acid Blue 74 dye from textile dyeing wastewater. J. Text. Inst. 112, 1730–1742. https:// doi.org/10.1080/00405000.2020.1840691.Griffin, R.A., Au, A.K., Frost, R.R., 1977. The Capture Threshold Of Male Pink Bollworm1/ Moth With Gossyplure, And Its Effect On Boll Infestation And Frequency Of Insecticidal Treatment. J. Environ. Sci. Health Part A: Environ. Sci. Eng. 12, 431–449. https://doi.org/10.1080/10934527709374769.Guan, Y., Zhou, Y., Jiang, C., Xu, X., Yang, Z., Zhang, J., Fan, X., Jiao, Y., 2021. Catalytic combustion of volatile organic compounds (VOCs) over structured Co3O4 nanoflowers on silicalite-1/SiC foam catalysts. Micropor. Mesopor. Mater. 323, 111173 https://doi.org/10.1016/j.micromeso.2021.111173.Gupta, N., Kushwaha, A.K., Chattopadhyaya, M.C., 2011. Adsorption of cobalt(II) from aqueous solution onto hydroxyapatite/zeolite composite. Adv. Mater. Lett. 2, 309–312. https://doi.org/10.5185/amlett.indias.201.Habiba, U., Siddique, T.A., Talebian, S., Lee, J.J.L., Salleh, A., Ang, B.C., Afifi, A.M., 2017. Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe(III) and Cr(VI) ions. Carbohydrate Polymers 177, 32–39. https://doi.org/10.1016/j.carbpol.2017.08.115.Haffane, S., Achak, O., Chafik, T., 2016. Etude de l ’ effet de purification et de modification d ’ une argile locale sur les propri´et´es structurales et texturales (Investigation of the effect of purification and modification of a local clay on its structural and textural properties). J. Mater. Environ. Science 7, 525–530.Hailu, S.L., Nair, B.U., Redi-Abshiro, M., DIaz, I., Tessema, M., 2017. Preparation and characterization of cationic surfactant modified zeolite adsorbent material for adsorption of organic and inorganic industrial pollutants. J. Environ. Chem. Eng. 5, 3319–3329. https://doi.org/10.1016/j.jece.2017.06.039.Hassan, O., Youne, D., Lahcen, M., Mohamed, A., n.d. The phenol adsorption in an aqueous environment by Moroccan clay Summary : 1–22.He, P., Wang, Q., Fu, S., Wang, M., Zhao, S., Liu, X., Jiang, Y., Jia, D., Zhou, Y., 2021. Hydrothermal transformation of geopolymers to bulk zeolite structures for efficient hazardous elements adsorption. Sci. Total Environ. 767, 144973 https://doi.org/ 10.1016/j.scitotenv.2021.144973.Hernandez-Huesca, R., Díaz, L., Aguilar-Armenta, G., 1999. Adsorption equilibria and kinetics of CO2, CH4 and N2 in natural zeolites. Sep. Purif. Technol. 15, 163–173. https://doi.org/10.1016/S1383-5866(98)00094-X.Hosseini, A., karimi, H., Foroughi, J., Sabzehmeidani, M.M., Ghaedi, M., 2021. Heterogeneous photoelectro-Fenton using ZnO and TiO2 thin film as photocatalyst for photocatalytic degradation Malachite Green. Appl. Surface Sci. Adv. 6, 100126 https://doi.org/10.1016/j.apsadv.2021.100126.Huang, T., Yan, M., He, K., Huang, Z., Zeng, G., Chen, A., Peng, M., Li, H., Yuan, L., Chen, G., 2019. Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite. J. Colloid Interface Sci. 543, 43–51. https://doi.org/10.1016/j.jcis.2019.02.030.Huang, C., Zhang, B., Wu, Y., Ruan, Q., Liu, L., Su, J., Tang, Y., Liu, R., Chu, P.K., 2021. Experimental and theoretical investigation of reconstruction and active phases on honeycombed Ni3N-Co3N/C in water splitting. Appl Catal B 297, 120461. https:// doi.org/10.1016/j.apcatb.2021.120461.Huber, S., Knozinger, ¨ H., 1999. Adsorption of CO on sodium containing X- and Y-zeolites and determination of the aluminum distribution. Appl. Catal. A 181, 239–244. https://doi.org/10.1016/S0926-860X(98)00407-4.Humelnicu, D., Dinu, M.V., Drǎgan, E.S., 2011. Adsorption characteristics of UO22+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. J. Hazard. Mater. 185, 447–455. https://doi.org/10.1016/j. jhazmat.2010.09.053.Ioannou, Z., Simitzis, J., 2009. Adsorption kinetics of phenol and 3-nitrophenol from aqueous solutions on conventional and novel carbons. J. Hazard. Mater. 171, 954–964. https://doi.org/10.1016/j.jhazmat.2009.06.098.Ismagilov, I.Z., Michurin, E.M., Sukhova, O.B., Tsykoza, L.T., Matus, E.V., Kerzhentsev, M.A., Ismagilov, Z.R., Zagoruiko, A.N., Rebrov, E.V., de Croon, M.H.J. M., Schouten, J.C., 2007. Oxidation of organic compounds in a microstructured catalytic reactor. Chem. Eng. J. 135 https://doi.org/10.1016/j.cej.2007.07.036.Ivanov, A.V., Graham, G.W., Shelef, M., 1999. Adsorption of hydrocarbons by ZSM-5 zeolites with different SiO2/Al2O3 ratios: A combined FTIR and gravimetric study. Appl. Catal. B 21, 243–258. https://doi.org/10.1016/S0926-3373(99)00021-1.Jedli, H., Almoneef, M.M., Mbarek, M., Jbara, A., Slimi, K., 2022. Adsorption of CO2 onto zeolite ZSM-5: Kinetic, equilibrium and thermodynamic studies. Fuel 321, 124097. https://doi.org/10.1016/j.fuel.2022.124097.Jeguirim, M., Belhachemi, M., Limousy, L., Bennici, S., 2018. Adsorption/reduction of nitrogen dioxide on activated carbons: Textural properties versus surface chemistry – A review. Chem. Eng. J. 347, 493–504. https://doi.org/10.1016/j.cej.2018.04.063.Ji, B., Zhang, W., 2022. Adsorption of cerium (III) by zeolites synthesized from kaolinite after rare earth elements (REEs) recovery. Chemosphere 303, 134941. https://doi. org/10.1016/j.chemosphere.2022.134941.Jia, J., Wang, C., Li, Y., Wu, D., Yu, J., Gao, T., Li, F., 2022. Water-Insoluble Cyclodextrin-based nanocubes for highly efficient adsorption toward diverse organic and inorganic pollutants. Sep. Purif. Technol. 291, 120970 https://doi.org/10.1016/ j.seppur.2022.120970.Jiang, N., Shang, R., Heijman, S.G.J., Rietveld, L.C., 2020. Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms. Sep. Purif. Technol. 235, 1–9. https://doi.org/10.1016/j. seppur.2019.116152.Jodeh, S., Amarah, J., Radi, S., Hamed, O., Warad, I., Salghi, R., Alkowni, R., 2015. Removal of Methylene Blue from Industrial Wastewater in Palestine Using Polysiloxane Surface Modified with Bipyrazolic Tripodal Receptor. Moroccan J. Chem. 1, 140–156.Johnson, B.B., 1990. Effect of pH, Temperature, and Concentration on the Adsorption of Cadmium on Goethite. Environ. Sci. Tech. 24, 112–118. https://doi.org/10.1021/ es00071a014.June Choi, H., Jo, D., Bong Hong, S., 2022. Effect of framework Si/Al ratio on the adsorption mechanism of CO2 on small-pore zeolites: II. Merlinoite. Chem. Eng. J. 446, 137100 https://doi.org/10.1016/j.cej.2022.137100.Kaygun, A.K., Akyil, S., 2007. Study of the behaviour of thorium adsorption on PAN/ zeolite composite adsorbent. J. Hazard. Mater. 147, 357–362. https://doi.org/ 10.1016/j.jhazmat.2007.01.020.Khan, S., Idrees, M., Bilal, M., 2021. Revealing and elucidating chemical speciation mechanisms for lead and nickel adsorption on zeolite in aqueous solutions. Colloids Surf. A Physicochem. Eng. Asp. 623, 126711 https://doi.org/10.1016/j. colsurfa.2021.126711.Khanday, W.A., Asif, M., Hameed, B.H., 2017. Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes. Int. J. Biol. Macromol. 95, 895–902. https://doi.org/ 10.1016/j.ijbiomac.2016.10.075.Khelifa, A., Derriche, Z., Bengueddach, A., 1999. Adsorption of propene on NaX zeolite exchanged with Zn2+ and Cu2+. Appl. Catal. A 178, 61–68. https://doi.org/ 10.1016/S0926-860X(98)00274-9.Kim, J., Jung, T., Cho, D.W., Yoo, C.Y., 2022a. Comprehensive evaluation of 3A, 4A, 5A, and 13X zeolites for selective 1-octene adsorption over n-octane. J. Ind. Eng. Chem. 110, 274–285. https://doi.org/10.1016/j.jiec.2022.03.003.Kim, M., Lee, J.W., Kim, S., Kang, Y.T., 2022b. CO2 adsorption on zeolite 13X modified with hydrophobic octadecyltrimethoxysilane for indoor application. J. Clean. Prod. 337, 130597 https://doi.org/10.1016/j.jclepro.2022.130597.Kim, N.S., Numan, M., Nam, S.C., Park, S.E., Jo, C., 2021. Dynamic adsorption/ desorption of p-xylene on nanomorphic MFI zeolites: Effect of zeolite crystal thickness and mesopore architecture. J. Hazard. Mater. 403 https://doi.org/ 10.1016/j.jhazmat.2020.123659.Kiwaan, H.A., Mohamed, F.S., El-Ghamaz, N.A., Beshry, N.M., El-Bindary, A.A., 2021. Experimental and electrical studies of Na-X zeolite for the adsorption of different dyes. J. Mol. Liq. 332, 115877 https://doi.org/10.1016/j.molliq.2021.115877.Kouznetsova, T., Ivanets, A., Prozorovich, V., Hosseini-Bandegharaei, A., Tran, H.N., Srivastava, V., Sillanp¨ aa, ¨ M., 2020. Sorption and mechanism studies of Cu2þ, Sr2þ and Pb2þ ions on mesoporous aluminosilicates/zeolite composite sorbents. Water Sci. Technol. 82, 984–997. https://doi.org/10.2166/wst.2020.407.Kragovi´c, M., Stojmenovi´c, M., Petrovi´c, J., Loredo, J., Paˇsali´c, S., Nedeljkovi´c, A., Ristovi´c, I., 2019. Influence of Alginate Encapsulation on Point of Zero Charge (pH pzc) and Thermodynamic Properties of the Natural and Fe(III)-Modified Zeolite. Procedia Manuf. 32, 286–293. https://doi.org/10.1016/j.promfg.2019.02.216.Kwon, D., Numan, M., Kim, J., Yilmaz, M., Park, S.-E., Ihee, H., Jo, C., 2022. Tailoring the CO2 selective adsorption properties of MOR zeolites by post functionalization. J. CO2 Util. 62, 102064 https://doi.org/10.1016/j.jcou.2022.102064.Lee, Z.S., Chin, S.Y., Lim, J.W., Witoon, T., Cheng, C.K., 2019. Treatment technologies of palm oil mill effluent (POME)and olive mill wastewater (OMW): A brief review. Environ. Technol. Innov. 15, 100377 https://doi.org/10.1016/j.eti.2019.100377.Lepreux, S., 2005. Approche de d ́ eveloppement centr ́ e d ́ ecideur et a l ’ aide de patron de Syst ‘ emes Interactifs d ’ Aide ‘ a la D ́ ecision Application a 5–6.Li, Z., Dotto, G.L., Bajahzar, A., Sellaoui, L., Belmabrouk, H., Ben Lamine, A., BonillaPetriciolet, A., 2019. Adsorption of indium (III) from aqueous solution on raw, ultrasound- and supercritical-modified chitin: Experimental and theoretical analysis. Chem. Eng. J. 373, 1247–1253. https://doi.org/10.1016/j.cej.2019.05.134.Li, H., Zheng, F., Wang, J., Zhou, J., Huang, X., Chen, L., Hu, P., Gao, J. ming, Zhen, Q., Bashir, S., Liu, J.L., 2020. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance. Chemical Engineering Journal 390, 124513. https://doi.org/10.1016/j.cej.2020.124513.Li, Y., Hu, X., Liu, X., Zhang, Y., Zhao, Q., Ning, P., Tian, S., 2017. Adsorption behavior of phenol by reversible surfactant-modified montmorillonite: Mechanism, thermodynamics, and regeneration. Chem. Eng. J. https://doi.org/10.1016/j. cej.2017.09.140.Li, D., Wang, J., Peng, Z., Hu, Z., Li, W., Chen, C., Li, Y., Zhang, Y., 2022a. Adsorption of CdII by synthetic zeolite under multi-factor using response surface methodology. Colloids Surf. A Physicochem. Eng. Asp. 647, 129165 https://doi.org/10.1016/j. colsurfa.2022.129165.Li, Y., Wei, W., Chen, J., Zu, L., Zhou, Y., Wu, J., Wu, X., 2022b. Atomic layer deposition precisely modified zeolite 13X: Physicochemical synergistic adsorption of space molecular contaminants. Appl. Surface Sci. 590, 153084 https://doi.org/10.1016/j. apsusc.2022.153084.Lin, L., Lin, Y., Li, C., Wu, D., Kong, H., 2016. Synthesis of zeolite/hydrous metal oxide composites from coal fly ash as efficient adsorbents for removal of methylene blue from water. Int. J. Miner. Process. 148, 32–40. https://doi.org/10.1016/j. minpro.2016.01.010.Lin, Z., Yuan, P., Yue, Y., Bai, Z., Zhu, H., Wang, T., Bao, X., 2020. Selective adsorption of Co(II)/Mn(II) by zeolites from purified terephthalic acid wastewater containing dissolved aromatic organic compounds and metal ions. Sci. Total Environ. 698, 134287 https://doi.org/10.1016/j.scitotenv.2019.134287.Liu, Z., Hamad, I.A., Li, Y., Chen, Y., Wang, S., Jentoft, R.E., Jentoft, F.C., 2019. Poisoning and competitive adsorption effects during phenol hydrogenation on platinum in water-alcohol mixtures. Appl. Catal. A: General 585, 117199. https:// doi.org/10.1016/j.apcata.2019.117199.Liu, X., Zhang, Y., Liu, Y., Zhang, T., 2022. Green method to synthesize magnetic zeolite/ chitosan composites and adsorption of hexavalent chromium from aqueous solutions. Int. J. Biol. Macromol. 194, 746–754. https://doi.org/10.1016/j. ijbiomac.2021.11.121.Luis, G., 2006. Isopropanol adsorption-oxidation over V2O5 - A mass spectrometry study. J. Mol. Catal. A Chem. 247, 31–35. https://doi.org/10.1016/j.molcata.2005.11.005.Lütke, S.F., Igansi, A.V., Pegoraro, L., Dotto, G.L., Pinto, L.A.A., Cadaval, T.R.S., 2019. Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J. Environ. Chem. Eng. 7, 103396 https://doi.org/10.1016/j. jece.2019.103396.Lv, Y., Ma, B., Liu, Y., Wang, C., Chen, Y., 2022. Adsorption behavior and mechanism of mixed heavy metal ions by zeolite adsorbent prepared from lithium leach residue. Microporous Mesoporous Mater. 329, 111553 https://doi.org/10.1016/j. micromeso.2021.111553.Ma, L., Chen, Q., Zhu, J., Xi, Y., He, H., Zhu, R., Tao, Q., Ayoko, G.A., 2016a. Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chem. Eng. J. 283, 880–888. https:// doi.org/10.1016/j.cej.2015.08.009.Ma, X., Li, Y., Xu, D., Tian, H., Yang, H., 2022. Simultaneous adsorption of ammonia and phosphate using ferric sulfate modified carbon/zeolite composite from coal gasification slag. J. Environ. Manage. 305, 114404 https://doi.org/10.1016/j. jenvman.2021.114404.Ma, L., Zhu, J., Xi, Y., Zhu, R., He, H., Liang, X., Ayoko, G.A., 2016b. Adsorption of phenol, phosphate and Cd(II) by inorganic-organic montmorillonites: A comparative study of single and multiple solute. Colloids Surf. A Physicochem. Eng. Asp. 497, 63–71. https://doi.org/10.1016/j.colsurfa.2016.02.032.Madan, S., Shaw, R., Tiwari, S., Tiwari, S.K., 2019. Adsorption dynamics of Congo red dye removal using ZnO functionalized high silica zeolitic particles. Appl. Surf. Sci. 487, 907–917. https://doi.org/10.1016/j.apsusc.2019.04.273.Madhu, J., Madurai Ramakrishnan, V., Palanichamy, P., Santhanam, A., Natarajan, M., Ponnaian, P., Brindhadevi, K., Pugazhendhi, A., Velauthapillai, D., 2022. Rubik’s cube shaped organic template free hydrothermal synthesis and characterization of zeolite NaA for CO2 adsorption. Fuel 317, 123492. https://doi.org/10.1016/j. fuel.2022.123492.Majid, Z., AbdulRazak, A.A., Noori, W.A.H., 2019. Modification of Zeolite by Magnetic Nanoparticles for Organic Dye Removal. Arab. J. Sci. Eng. 44, 5457–5474. https:// doi.org/10.1007/s13369-019-03788-9.Mandal, A., Das, S.K., 2019. Phenol adsorption from wastewater using clarified sludge from basic oxygen furnace. J. Environ. Chem. Eng. 7, 103259 https://doi.org/ 10.1016/j.jece.2019.103259.Marszałek, A., Kaminska, ´ G., Abdel Salam, N.F., 2022. Simultaneous adsorption of organic and inorganic micropollutants from rainwater by bentonite and bentonitecarbon nanotubes composites. J. Water Process Eng. 46 https://doi.org/10.1016/j. jwpe.2021.102550.Mauer, V., Petersen, H., Blaker, ¨ C., Pasel, C., Weidenthaler, C., Bathen, D., 2022. Combination of X-ray powder diffraction and adsorption calorimetry for the characterization of calcium exchanged LTA zeolites. Microporous Mesoporous Mater. 337 https://doi.org/10.1016/j.micromeso.2022.111940.Mccusker, L.B., Baerlocher, C., 2019. 4.6. Zeolites 452–464.Mehraban, Z., Farzaneh, F., Shafiekhani, A., 2007. Synthesis and characterization of a new organic – inorganic hybrid NiO – chlorophyll- a as optical material 29, 927–931. https://doi.org/10.1016/j.optmat.2006.02.007.Mello, M., Ei´c, M., 1999. Breakthrough study of so2 and H2O adsorption on zeolites from ternary mixtures. Stud. Surf. Sci. Catal. 125, 657–666. https://doi.org/10.1016/ s0167-2991(99)80271-7.Merrikhpour, H., Jalali, M., 2013. Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Techn. Environ. Policy 15, 303–316. https://doi.org/10.1007/s10098-012-0522-1.Miller, S.E., Heath, G.R., Gonzalez, R.D., 1983. Effect of pressure on the sorption of Yb by montmorillonite. Clay Clay Miner. 31, 17–21. https://doi.org/10.1346/ CCMN.1983.0310103.Mirmohamadsadeghi, S., Kaghazchi, T., Soleimani, M., Asasian, N., 2012. An efficient method for clay modification and its application for phenol removal from wastewater. Appl. Clay Sci. 59–60, 8–12. https://doi.org/10.1016/j. clay.2012.02.016.Mittal, H., Al Alili, A., Alhassan, S.M., 2020a. High efficiency removal of methylene blue dye using κ-carrageenan-poly(acrylamide-co-methacrylic acid)/AQSOA-Z05 zeolite hydrogel composites. Cellul. 27, 8269–8285. https://doi.org/10.1007/s10570-020- 03365-6.Mittal, H., Babu, R., Dabbawala, A.A., Stephen, S., Alhassan, S.M., 2020b. Zeolite-Y incorporated karaya gum hydrogel composites for highly effective removal of cationic dyes. Colloids Surf A Physicochem Eng Asp 586, 124161. https://doi.org/ 10.1016/j.colsurfa.2019.124161.Moosavi, A., Amooey, A.A., Alinejad, A., Marzbali, M.H., 2020. Chinese Journal of Chemical Engineering Extraordinary adsorption of acidic fuchsine and malachite green onto cheap nano-adsorbent derived from eggshell. Chin. J. Chem. Eng. 28, 1591–1602. https://doi.org/10.1016/j.cjche.2020.02.031.Mrunal, V.K., Vishnu, A.K., Momin, N., Manjanna, J., 2019. Cu2O nanoparticles for adsorption and photocatalytic degradation of methylene blue dye from aqueous medium. Environ. Nanotechnol. Monit. Manage. 12 https://doi.org/10.1016/j. enmm.2019.100265.Mthombeni, N.H., Onyango, M.S., Aoyi, O., 2015. Adsorption of hexavalent chromium onto magnetic natural zeolite-polymer composite. J. Taiwan Inst. Chem. Eng. 50, 242–251. https://doi.org/10.1016/j.jtice.2014.12.037.Mthombeni, N.H., Mbakop, S., Ochieng, A., Onyango, M.S., 2016. Vanadium (V) adsorption isotherms and kinetics using polypyrrole coated magnetized natural zeolite. J. Taiwan Inst. Chem. Eng. 66, 172–180. https://doi.org/10.1016/j. jtice.2016.06.016.Muljadi, D., Posner, A.M., Quirk, J.P., 1966. THE MECHANISM OF PHOSPHATE ADSORPTION BY KAOLINITE, GIBBSITE, AND PSEUDOBOEHMITE: PART I. THE ISOTHERMS AND THE EFFECT OF pH ON ADSORPTION. J. Soil Sci. 17, 212–228. https://doi.org/10.1111/j.1365-2389.1966.tb01467.x.Muscarella, S.M., Badalucco, L., Cano, B., Laudicina, V.A., Mannina, G., 2021. Ammonium adsorption, desorption and recovery by acid and alkaline treated zeolite. Bioresour. Technol. 341, 125812 https://doi.org/10.1016/j.biortech.2021.125812.Na chat, N., Sangsuradet, S., Tobarameekul, P., Worathanakul, P., 2022. Modified hierarchical zeolite X derived from riceberry rice husk for propionic acid adsorption. Materials Chemistry and Physics 282, 125933. https://doi.org/10.1016/j. matchemphys.2022.125933.Nah, I.W., Hwang, K.Y., Jeon, C., Choi, H.B., 2006. Removal of Pb ion from water by magnetically modified zeolite. Miner. Eng. 19, 1452–1455. https://doi.org/ 10.1016/j.mineng.2005.12.006.Nakamoto, K., Ohshiro, M., Kobayashi, T., 2017. Mordenite zeolite - Polyethersulfone composite fibers developed for decontamination of heavy metal ions. J. Environ. Chem. Eng. 5, 513–525. https://doi.org/10.1016/j.jece.2016.12.031.Nakhjiri, M.T., Bagheri Marandi, G., Kurdtabar, M., 2021. Preparation of magnetic double network nanocomposite hydrogel for adsorption of phenol and p-nitrophenol from aqueous solution. J. Environ. Chem. Eng. 9, 105039 https://doi.org/10.1016/j. jece.2021.105039.Nguyen, T.D., Nguyen, T.M.P., Van, H.T., Nguyen, V.Q., Nguyen, L.H., Nguyen, T.D., Nguyen, T.H.V., Chu, T.H.H., Nguyen, T.H., Ha, L.T., Vinh, N.D., Thai, V.N., Nguyen, K.A., Thang, P.Q., 2022. Adsorption removal of ammonium from aqueous solution using Mg/Al layered double hydroxides-zeolite composite. Environ. Technol. Innov. 25 https://doi.org/10.1016/j.eti.2021.102244.Ouyang, W., Zheng, S., Wu, C., Hu, X., Chen, R., Zhuo, L., Wang, Z., 2021. Dynamic ammonia adsorption by FAU zeolites to below 0.1 ppm for hydrogen energy applications. Int. J. Hydrogen Energy 46, 32559–32569. https://doi.org/10.1016/j. ijhydene.2021.07.107.Panic, V.V., Velickovic, S.J., 2014. Removal of model cationic dye by adsorption onto poly(methacrylic acid)/zeolite hydrogel composites: Kinetics, equilibrium study and image analysis. Sep. Purif. Technol. 122, 384–394. https://doi.org/10.1016/j. seppur.2013.11.025.Pei, Y., Mo, S., Xie, Q., Chen, N., Yang, Z., Huang, L., Ma, L., 2022. Article Stelleriteseeded facile synthesis of zeolite X with excellent aqueous Cd 2 + and Ni 2 + adsorption performance Article Stellerite-seeded facile synthesis of zeolite X with excellent aqueous Cd 2 + and Ni 2 + adsorption performance. Chin. J. Chem. Eng. https://doi.org/10.1016/j.cjche.2022.06.008.Petrie, B., Barden, R., Kasprzyk-Hordern, B., 2015. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 72, 3–27. https://doi.org/ 10.1016/j.watres.2014.08.053.Ping, W., Gao, W., Cui, X., Hong, J., Feng, R., 2016. Phenol adsorption equilibrium and kinetics on zeolite X / activated 0, 1–7. https://doi.org/10.1016/j.jtice.2016.02.004.Piri, F., Mollahosseini, A., Khadir, A., Milani Hosseini, M., 2019. Enhanced adsorption of dyes on microwave-assisted synthesized magnetic zeolite-hydroxyapatite nanocomposite. J. Environ. Chem. Eng. 7, 103338 https://doi.org/10.1016/j. jece.2019.103338.Radoor, S., Karayil, J., Parameswaranpillai, J., Siengchin, S., 2020. Removal of anionic dye Congo red from aqueous environment using polyvinyl alcohol/sodium alginate/ ZSM-5 zeolite membrane. Sci. Rep. 10, 1–15. https://doi.org/10.1038/s41598-020- 72398-5.Radoor, S., Karayil, J., Jayakumar, A., Parameswaranpillai, J., Siengchin, S., 2021. An efficient removal of malachite green dye from aqueous environment using ZSM-5 zeolite/polyvinyl alcohol/carboxymethyl cellulose/sodium alginate bio composite. J. Polym. Environ. 29, 2126–2139. https://doi.org/10.1007/s10924-020-02024-y.Rahman, M.M., Karmaker, S.C., Pal, A., Eljamal, O., Saha, B.B., 2021. Statistical techniques for the optimization of cesium removal from aqueous solutions onto ironbased nanoparticle-zeolite composites. Environ. Sci. Pollut. Res. 28, 12918–12931. https://doi.org/10.1007/s11356-020-11258-1.Rajendran, S., Priya, A.K., Senthil Kumar, P., Hoang, T.K.A., Sekar, K., Chong, K.Y., Khoo, K.S., Ng, H.S., Show, P.L., 2022. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. Chemosphere 303, 135146. https://doi.org/10.1016/j.chemosphere.2022.135146.Ramezani Shabolaghi, K., Irani, M., 2022. Ethanol adsorption in cation-exchanged linde type L zeolite, studied by molecular simulations. Comput. Theor. Chem. 1207, 113498 https://doi.org/10.1016/j.comptc.2021.113498.Razavi, Z., Mirghaffari, N., Alemrajabi, A.A., Davar, F., Soleimani, M., 2021. Adsorption and photocatalytic removal of SO2 using natural and synthetic zeolites-supported TiO2 in a solar parabolic trough collector. J. Clean. Prod. 310, 127376 https://doi. org/10.1016/j.jclepro.2021.127376.Rong, X., Qiu, F., Zhang, C., Fu, L., Wang, Y., Yang, D., 2015. Adsorptionphotodegradation synergetic removal of methylene blue from aqueous solution by NiO/graphene oxide nanocomposite. Powder Technol. 275, 322–328. https://doi. org/10.1016/j.powtec.2015.01.079.Rouquerol, F., Rouquerol, J., Sing, K., 1999. Adsorption by Clays, Pillared Layer Structures and Zeolites. Adsorption by Powders and Porous Solids 355–399. https:// doi.org/10.1016/b978-012598920-6/50012-9.Sabarish, R., Unnikrishnan, G., 2018a. Polyvinyl alcohol/carboxymethyl cellulose/ZSM5 zeolite biocomposite membranes for dye adsorption applications. Carbohydr. Polym. 199, 129–140. https://doi.org/10.1016/j.carbpol.2018.06.123.Sabarish, R., Unnikrishnan, G., 2018b. PVA/PDADMAC/ZSM-5 zeolite hybrid matrix membranes for dye adsorption: Fabrication, characterization, adsorption, kinetics and antimicrobial properties. J. Environ. Chem. Eng. 6, 3860–3873. https://doi.org/ 10.1016/j.jece.2018.05.026.Sabbatini, P., Rossi, F., Thern, G., Marajofsky, A., de Cortalezzi, M.M.F., 2009. Iron oxide adsorbers for arsenic removal: A low cost treatment for rural areas and mobile applications. Desalination 248, 184–192. https://doi.org/10.1016/j. desal.2008.05.104.Sadki, H., Saidi, K.Z.M., 2014. Adsorption d ’ un colorant cationique d ’ un milieu aqueux sur une argile locale activ´ee (adsorption of dyes on activated local clay in aqueous solution). Mater. Environ. Sci. 5, 2060–2065.Salehi, S., Alijani, S., Anbia, M., 2020. Enhanced adsorption properties of zirconium modified chitosan-zeolite nanocomposites for vanadium ion removal. Int. J. Biol. Macromol. 164, 105–120. https://doi.org/10.1016/j.ijbiomac.2020.07.055.Scientific, S., 2017. Bulgarian Academy of Sciences. Space Research and Technology Institute. Aerospace Research in Bulgaria. 29, 2017. Sofia 2015, 10–29.Sellaoui, L., Hessou, E.P., Badawi, M., Netto, M.S., Dotto, G.L., Silva, L.F.O., Tielens, F., Ifthikar, J., Bonilla-Petriciolet, A., Chen, Z., 2021. Trapping of Ag+, Cu2+, and Co2 + by faujasite zeolite Y: New interpretations of the adsorption mechanism via DFT and statistical modeling investigation. Chem. Eng. J. 420, 127712 https://doi.org/ 10.1016/j.cej.2020.127712.Shakir, K., Ghoneimy, H.F., Elkafrawy, A.F., Beheir, S.G., Refaat, M., 2008. Removal of catechol from aqueous solutions by adsorption onto organophilic-bentonite. J. Hazard. Mater. 150, 765–773. https://doi.org/10.1016/j.jhazmat.2007.05.037.Shamsudin, M.S., Shahadat, M., 2019. Cellulose/bentonite-zeolite composite adsorbent material coating for treatment of N-based antiseptic cationic dye from water. J. Water Process Eng. 29, 100764 https://doi.org/10.1016/j.jwpe.2019.02.004.Sharma, V.K., Feng, M., 2017. Water depollution using metal-organic frameworkscatalyzed advanced oxidation processes: A review. J. Hazard. Mater. https://doi. org/10.1016/j.jhazmat.2017.09.043.Sharma, A., Kumar, N., Sillanpa¨a, ¨ M., Makgwane, P.R., Kumar, S., Kumari, K., 2022. Carbon nano-structures and functionalized associates: Adsorptive detoxification of organic and inorganic water pollutants. Inorg. Chem. Commun. 141, 109579 https://doi.org/10.1016/j.inoche.2022.109579.Sheela, T., Nayaka, Y.A., 2012. Kinetics and thermodynamics of cadmium and lead ions adsorption on NiO nanoparticles. Chem. Eng. J. 191, 123–131. https://doi.org/ 10.1016/j.cej.2012.02.080.Shui, Z., Yao, L., Pu, X., Yang, L., Jiang, W., Jiang, X., 2020. Synthesis of a novel zeoliteactivated carbon composite using lithium-silicon-powder waste for ammonianitrogen and methylene blue removal. Ind. Eng. Chem. Res. 59, 14616–14624. https://doi.org/10.1021/acs.iecr.0c00617.Suazo-Hernandez, J., Sepúlveda, P., Manquian-Cerda, ´ K., Ramírez-Tagle, R., Rubio, M. A., Bolan, N., Sarkar, B., Arancibia-Miranda, N., 2019. Synthesis and characterization of zeolite-based composites functionalized with nanoscale zerovalent iron for removing arsenic in the presence of selenium from water. J. Hazard. Mater. 373, 810–819. https://doi.org/10.1016/j.jhazmat.2019.03.125.Sun, Y., Tang, J., Li, G., Hua, Y., Sun, Y., Hu, S., Wen, X., 2022. Adsorption, separation and regeneration of cation-exchanged X zeolites for LNG purification: Li+, K+, Mg2 + and Ca2+. Microporous Mesoporous Mater. 340, 112032 https://doi.org/ 10.1016/j.micromeso.2022.112032.Sun, X., Wang, C., Li, Y., Wang, W., Wei, J., 2015. Treatment of phenolic wastewater by combined UF and NF/RO processes. Desalination 355, 68–74. https://doi.org/ 10.1016/j.desal.2014.10.018.Tatlier, M., Erdem-S¸ enatalar, A., 1999. Effects of thermal gradients in a solar adsorption heat pump utilizing the zeolite-water pair. Appl. Therm. Eng. 19, 1157–1172. https://doi.org/10.1016/S1359-4311(98)00113-6.Timonen, J.T., Pakkanen, T.T., 1999. A qualitative 1H NMR study of CHCl3 adsorption on conjugated acid-base pairs in cation exchanged Y-zeolites. Microporous Mesoporous Mater. 30, 327–333. https://doi.org/10.1016/S1387-1811(99)00044- X.Vikrant, K., Kim, K., Peng, W., Ge, S., Ok, Y.S., 2019. Adsorption performance of standard biochar materials against volatile organic compounds in air: A case study using benzene and methyl ethyl ketone. Chem. Eng. J. 123943 https://doi.org/10.1016/j. cej.2019.123943.Vuppala, S., Bavasso, I., Stoller, M., Di Palma, L., Vilardi, G., 2019. Olive mill wastewater integrated purification through pre-treatments using coagulants and biological methods: Experimental, modelling and scale-up. J. Clean. Prod. 236, 117622 https://doi.org/10.1016/j.jclepro.2019.117622.Wang, X., Chen, A., Chen, B., Wang, L., 2020. Adsorption of phenol and bisphenol A on river sediments: Effects of particle size, humic acid, pH and temperature. Ecotoxicol. Environ. Saf. 204, 111093 https://doi.org/10.1016/j.ecoenv.2020.111093.Wang, Z., Chen, X.F., 2021. A periodic density functional theory study on methanol adsorption in HSAPO-34 zeolites. Chem. Phys. Lett. 771, 138532 https://doi.org/ 10.1016/j.cplett.2021.138532.Wang, G., Li, G., Xing, X., Zhang, Z., Hao, Z., 2021a. Unraveling the adsorption and diffusion properties of hexamethyldisiloxane on zeolites by static gravimetric analysis. Water Res. 197 https://doi.org/10.1016/j.watres.2021.117097.Wang, Z., Li, W., Zhu, J., Wang, D., Meng, H., Wang, H., Li, J., 2021b. Simultaneous adsorption of phosphate and zinc by lanthanum modified zeolite. Environ. Technol. Innov. 24, 101906 https://doi.org/10.1016/j.eti.2021.101906.Yang, S., Li, W., Zhang, H., Wen, Y., Ni, Y., 2019a. Treatment of paper mill wastewater using a composite inorganic coagulant prepared from steel mill waste pickling liquor. Sep. Purif. Technol. 209, 238–245. https://doi.org/10.1016/j. seppur.2018.07.049.Yang, Y., Yang, J., Du, Y., Li, C., Wei, K., Lu, J., Chen, W., Yang, L., 2019b. Preparation and Characterization of Cationic Water-Soluble Pillar[5]arene-Modified Zeolite for Adsorption of Methyl Orange. ACS Omega 4, 17741–17751. https://doi.org/ 10.1021/acsomega.9b02180.Yao, D., Shi, Y., Pan, H., Zhong, D., Hou, H., Wu, X., Chen, J., Wang, L., Hu, Y., Crittenden, J.C., 2020. Promotion mechanism of natural clay colloids in the adsorption of arsenite on iron oxide particles in water. Chem. Eng. J. 392, 123637 https://doi.org/10.1016/j.cej.2019.123637.Yousef, R.I., El-Eswed, B., 2009. The effect of pH on the adsorption of phenol and chlorophenols onto natural zeolite. Colloids Surf. A Physicochem. Eng. Asp. 334, 92–99. https://doi.org/10.1016/j.colsurfa.2008.10.004.Yousef, R.I., El-Eswed, B., Al-Muhtaseb, A.H., 2011. Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies. Chem. Eng. J. 171, 1143–1149. https:// doi.org/10.1016/j.cej.2011.05.012.Yusan, S., Erenturk, S., 2011. Adsorption Characterization of Strontium on PAN/Zeolite Composite Adsorbent. World J. Nuclear Sci. Technol. 01, 6–12. https://doi.org/ 10.4236/wjnst.2011.11002.Zhan, Y., Lin, J., Li, J., 2013. Preparation and characterization of surfactant-modified hydroxyapatite/zeolite composite and its adsorption behavior toward humic acid and copper(II). Environ. Sci. Pollut. Res. 20, 2512–2526. https://doi.org/10.1007/ s11356-012-1136-1.Zhang, Y.-H., Cai, X.-L., Li, Y.-L., Liu, M.-M., Ding, C.-L., Chen, J.-L., Fang, S.-M., 2019b. Facile synthesis of hollow p-Cu2O/n-ZnO microspheres with enhanced photocatalytic H2 production. Chem. Phys. Lett. 734, 136748 https://doi.org/ 10.1016/j.cplett.2019.136748.Zhang, Y., Chen, Y., Kang, W., Han, H., Song, H., Zhang, C., Wang, H., Yang, X., Gong, X., Zhai, C., Deng, J., Ai, L., 2020. Excellent adsorption of Zn(II) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment. J. Clean. Prod. 258, 120736 https://doi.org/10.1016/j.jclepro.2020.120736.Zhang, S., Cui, M., Chen, J., Ding, Z., Wang, X., Mu, Y., Meng, C., 2019a. Modification of synthetic zeolite X by thiourea and its adsorption for Cd (II). Mater. Lett. 236, 233–235. https://doi.org/10.1016/j.matlet.2018.10.100.Zhang, K., Li, H., Xu, X., Yu, H., 2017. Synthesis of reduced graphene oxide/NiO nanonanocomposites for the removal of Cr(VI) from aqueous water by adsorption. Microporous Mesoporous Mater. 255, 7–14. https://doi.org/10.1016/j. micromeso.2017.07.037.Zhang, F., Zhang, S., Chen, L., Liu, Z., Qin, J., 2021. Utilization of bark waste of Acacia mangium: The preparation of activated carbon and adsorption of phenolic wastewater. Ind. Crop. Prod. 160, 113157 https://doi.org/10.1016/j. indcrop.2020.113157.Zhao, F., Zou, Y., Lv, X., Liang, H., Jia, Q., Ning, W., 2015. Synthesis of CoFe2O4-zeolite materials and application to the adsorption of gallium and indium. J. Chem. Eng. Data 60, 1338–1344. https://doi.org/10.1021/je501039u.Zhu, J., Wang, Y., Liu, J., Zhang, Y., 2014. Facile one-pot synthesis of novel spherical zeolite-reduced graphene oxide composites for cationic dye adsorption. Ind. Eng. Chem. Res. https://doi.org/10.1021/ie502030w.131117AdsorptionSynthetized zeolitesOrganic and inorganic pollutantsPublicationORIGINALAdsorption of various inorganic and organic pollutants by natural and.pdfAdsorption of various inorganic and organic pollutants by natural and.pdfArtículoapplication/pdf2342266https://repositorio.cuc.edu.co/bitstreams/dfc55ddc-5f3b-4185-b8b1-ff81124e880f/download58d47d3fac22ed6db0820ef4cb774e41MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/a70fc5cc-8194-4940-a4e7-f42a9d8bd97e/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTAdsorption of various inorganic and organic pollutants by natural and.pdf.txtAdsorption of various inorganic and organic pollutants by natural and.pdf.txtExtracted texttext/plain99335https://repositorio.cuc.edu.co/bitstreams/9650376d-415e-42c9-9e3d-5948a0eecc8b/download5fff27761fc018b9d192694d86d55497MD53THUMBNAILAdsorption of various inorganic and organic pollutants by natural and.pdf.jpgAdsorption of various inorganic and organic pollutants by natural and.pdf.jpgGenerated Thumbnailimage/jpeg14728https://repositorio.cuc.edu.co/bitstreams/d58cb075-ad4c-4772-9584-9bf6ebf43910/download86dd714a8dc3dff428233930c09677f5MD5411323/13314oai:repositorio.cuc.edu.co:11323/133142024-09-17 14:12:23.44https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=