A multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics: A real-world case
The impact of the pandemic and the lockdown has been more devastating than expected on the world economy. It is essential to formulate strategies in real-time. In this research, a multicriteria decision-making model for increasing the preparedness level of sales departments when facing COVID-19 wave...
- Autores:
-
Ortiz-Barrios, Miguel
Borrego-Areyanes, Arlen Alaine
Gómez-Villar, Iván Darío
De Felice, Fabio
Petrillo, Antonella
Gul, Muhammet
YUCESAN, Melih
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8467
- Acceso en línea:
- https://hdl.handle.net/11323/8467
https://doi.org/10.1016/j.ijdrr.2021.102411
https://repositorio.cuc.edu.co/
- Palabra clave:
- Multiple criteria analysis
Operational research
Disaster preparedness
Pandemics
COVID-19
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_af34f079b28da57ffa033f6cdc5f6ff8 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8467 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics: A real-world case |
title |
A multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics: A real-world case |
spellingShingle |
A multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics: A real-world case Multiple criteria analysis Operational research Disaster preparedness Pandemics COVID-19 |
title_short |
A multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics: A real-world case |
title_full |
A multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics: A real-world case |
title_fullStr |
A multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics: A real-world case |
title_full_unstemmed |
A multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics: A real-world case |
title_sort |
A multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics: A real-world case |
dc.creator.fl_str_mv |
Ortiz-Barrios, Miguel Borrego-Areyanes, Arlen Alaine Gómez-Villar, Iván Darío De Felice, Fabio Petrillo, Antonella Gul, Muhammet YUCESAN, Melih |
dc.contributor.author.spa.fl_str_mv |
Ortiz-Barrios, Miguel Borrego-Areyanes, Arlen Alaine Gómez-Villar, Iván Darío De Felice, Fabio Petrillo, Antonella Gul, Muhammet YUCESAN, Melih |
dc.subject.spa.fl_str_mv |
Multiple criteria analysis Operational research Disaster preparedness Pandemics COVID-19 |
topic |
Multiple criteria analysis Operational research Disaster preparedness Pandemics COVID-19 |
description |
The impact of the pandemic and the lockdown has been more devastating than expected on the world economy. It is essential to formulate strategies in real-time. In this research, a multicriteria decision-making model for increasing the preparedness level of sales departments when facing COVID-19 waves and future pandemics is proposed. The model is comprised of 8 criteria, 29 sub-criteria, and 7 alternatives. The study is based on the integration of the AHP and TOPSIS techniques. AHP is used for calculating the criteria and sub-criteria weights. While, TOPSIS is used for calculating the preparedness level, ranking the companies, and identifying the weaknesses that should be addressed for increasing their effectiveness in the current market scenario. The model is developed with the aid of an experts’ group from the electrical appliance sector and studies from the reported literature. This application is completely novel in the literature and has been applied in the wild with remarkable companies in Colombia. A case study in the electrical appliance sector is presented as a pilot study but it should be noted that the methodology is flexible and scalable in any scenario. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-14T13:05:20Z |
dc.date.available.none.fl_str_mv |
2021-07-14T13:05:20Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.embargoEnd.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2212-4209 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8467 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.ijdrr.2021.102411 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2212-4209 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8467 https://doi.org/10.1016/j.ijdrr.2021.102411 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] P. Amariles, J. Granados, M. Ceballos, C.J. Montoya COVID-19 in Colombia endpoints. Are we different, like Europe? Res. Soc. Adm. Pharm., 17 (1) (2020), pp. 2036-2039 [2] W. Novoa, H. Miller, S. Mattar, Á.A. Faccini-Martínez, R. Rivero, H. Serrano-Coll A first probable case of SARS-CoV-2 reinfection in Colombia Ann. Clin. Microbiol. Antimicrob., 20 (1) (2021), p. 7 [3] J. Arellana, L. Márquez, V. Cantillo COVID-19 outbreak in Colombia: an analysis of its impacts on transport systems J. Adv. Transport., 2020 (2020), p. 8867316 [4] S.A. Meo, A.A. Abukhalaf, A.A. Alomar, A.M. Usmani, D.C. Klonoff Impact of lockdown on COVID-19 prevalence and mortality during 2020 pandemic: observational analysis of 27 countries Eur. J. Med. Res., 25 (1) (2020), p. 56 [5] E.E. Ramírez de la Cruz, E.J. Grin, P. Sanabria-Pulido, D. Cravacuore, A. Orellana The transaction costs of government responses to the COVID-19 emergency in Latin America Publ. Adm. Rev., 80 (4) (2020), pp. 683-695 [6] J.A. Rodríguez Economic situation, fiscal policy and pandemic in Colombia Rev. Econ. Inst., 23 (44) (2020), pp. 249-263 [7] Chicaíza Becerra, L., García Molina, M., Urrea, I.L., Economy or health? A global analysis of the covid-19 pandemic. Rev. Econ. Inst., 23(44), pp. 171-194. [8] A. Tarki, P. Levy, J. Weiss The coronavirus crisis doesn't have to lead to layoffs Harv. Bus. Rev. (2020) March 2020 [9] J.I. González Planning and uncertainty Rev. Econ. Inst., 23 (44) (2020), pp. 233-248 [10] A. Ferrannini, E. Barbieri, M. Biggeri, M.R. Di Tommaso Industrial policy for sustainable human development in the post-Covid19 era World Dev., 137 (2021), p. 105215 [11] M. Ortiz-Barrios, C. Miranda-De la Hoz, P. López-Meza, A. Petrillo, F. De Felice A case of food supply chain management with AHP, DEMATEL, and TOPSIS J. Multi-Criteria Decis. Anal., 27 (1–2) (2020), pp. 104-128, 10.1002/mcda.1693 [12] T.L. Saaty, L.G. Vargas The analytic hierarchy process: wash citeria should not be ignored Int. J. Manag. Decis. Making, 7 (2–3) (2006), pp. 180-188, 10.1504/IJMDM.2006.009142 [13] J.P. Pastor-Ferrando, P. Aragonés-Beltrán, A. Hospitaler-Pérez, M. García-Melón An ANP- and AHP-based approach for weighting criteria in public works bidding J. Oper. Res. Soc., 61 (6) (2010), pp. 905-916, 10.1057/jors.2010.13 [14] J. Sarkis Supply chain sustainability: learning from the COVID-19 pandemic Int. J. Oper. Prod. Manag., 41 (1) (2020), pp. 63-73, 10.1108/IJOPM-08-2020-0568 [15] M.P. Basilio, V. Pereira, H.G. Costa Classifying the integrated public safety areas (IPSAs): a multi-criteria based approach J. Model. Manag., 14 (1) (2019), pp. 106-133, 10.1108/JM2-01-2018-0001 [16] E.G. Carayannis, J.J.M. Ferreira, M.S. Jalali, F.A.F. Ferreira MCDA in knowledge-based economies: methodological developments and real world applications Technol. Forecast. Soc. Change, 131 (2018), pp. 1-3, 10.1016/j.techfore.2018.01.028 [17] S.H. Zyoud, D. Fuchs-Hanusch A bibliometric-based survey on AHP and TOPSIS techniques Expert Syst. Appl., 78 (2017), pp. 158-181, 10.1016/j.eswa.2017.02.016 [18] G. Riz, E.A.P. Santos, E. de Freitas Rocha Loures Interoperability Assessment in Health Systems Based on Process Mining and MCDA Methods (2017), 10.1007/978-3-319-56535-4_44 [19] M. Rajak, K. Shaw Evaluation and selection of mobile health (mHealth) applications using AHP and fuzzy TOPSIS Technol. Soc. (2019), p. 59, 10.1016/j.techsoc.2019.101186 [20] T.L. Saaty Applications of analytical hierarchies Math. Comput. Simulat., 21 (1) (1979), pp. 1-20, 10.1016/0378-4754(79)90101-0 [21] C.L. Hwang, K. Yoon Multiple Attribute Decision Making Methods and Applications: A State-Of-The-Art Survey Springer, Berlin, Heidelberg (1981) [22] G. Kumar, N. Parimala An integration of sentiment analysis and MCDM approach for smartphone recommendation Int. J. Inf. Technol. Decis. Making, 19 (4) (2020), pp. 1037-1063, 10.1142/S021962202050025X [23] R. Bhattacharya, R.D. Raut, B.B. Gardas, S.S. Kamble Sustainable partner selection: an integrated AHP-TOPSIS approach Int. J. Oper. Res., 39 (2) (2020), pp. 205-236, 10.1504/IJOR.2020.109755 [24] I.B. Huang, J. Keisler, I. Linkov Multi-criteria decision analysis in environmental sciences: ten years of applications and trends Sci. Total Environ., 409 (19) (2011), pp. 3578-3594, 10.1016/j.scitotenv.2011.06.022 [25] K. Nikolopoulos, S. Punia, A. Schäfers, C. Tsinopoulos, C. Vasilakis Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions Eur. J. Oper. Res., 290 (1) (2021), pp. 99-115 [26] R. Romero-Silva, S. de Leeuw Learning from the past to shape the future: a comprehensive text mining analysis of OR/MS reviews Omega (United Kingdom), 100 (2021), p. 102388 [27] M. Brunelli A study on the anonymity of pairwise comparisons in group decision making Eur. J. Oper. Res., 279 (2) (2019), pp. 502-510 [28] M. Abdel-Basset, M. Gunasekaran, M. Mohamed, N. Chilamkurti A framework for risk assessment, management and evaluation: economic tool for quantifying risks in supply chain Future Generat. Comput. Syst., 90 (2019), pp. 489-502, 10.1016/j.future.2018.08.035 [29] J. Freeman, T. Chen Green supplier selection using an AHP-entropy-TOPSIS framework Supply Chain Manag., 20 (3) (2015), pp. 327-340, 10.1108/SCM-04-2014-0142 [30] D. Jothimani, S.P. Sarmah Supply chain performance measurement for third party logistics Benchmark, 21 (6) (2014), pp. 944-963, 10.1108/BIJ-09-2012-0064 [31] S. Carpitella, A. Certa, J. Izquierdo, C.M. La Fata A combined multi-criteria approach to support FMECA analyses: a real-world case Reliab. Eng. Syst. Saf., 169 (2018), pp. 394-402, 10.1016/j.ress.2017.09.017 [32] O.E. Demesouka, A.P. Vavatsikos, K.P. Anagnostopoulos Suitability analysis for siting MSW landfills and its multicriteria spatial decision support system: method, implementation and case study Waste Manag., 33 (5) (2013), pp. 1190-1206, 10.1016/j.wasman.2013.01.030 [33] I. Kaliszewski, D. Podkopaev Simple additive weighting - a metamodel for multiple criteria decision analysis methods Expert Syst. Appl., 54 (2016), pp. 155-161, 10.1016/j.eswa.2016.01.042 [34] H. Zhao, N. Li Performance evaluation for sustainability of strong smart grid by using stochastic AHP and fuzzy TOPSIS methods Sustainability, 8 (2) (2016), 10.3390/su8020129 [35] C.-N. Wang, N.-A.-T. Nguyen, T.-T. Dang, C.-M. Lu A compromised decision-making approach to third-party logistics selection in sustainable supply chain using fuzzy ahp and fuzzy vikor methods Mathematics, 9 (8) (2021), p. 886, 10.3390/math9080886 [36] A. Tošović-Stevanović, V. Ristanović, D. Ćalović, M. Žuža, G. Cvijanović Small farm business analysis using the ahp model for efficient assessment of distribution channels Sustainability, 12 (24) (2020), pp. 1-15, 10.3390/su12241047910479 [37] V. Ristanović, D. Primorac, G. Kozina Operational risk management using multi-criteria assessment (Ahp model) Teh. Vjesn., 28 (2) (2021), pp. 678-683, 10.17559/TV-20200907112351 [38] S. Yao Fuzzy-based multi-criteria decision analysis of environmental regulation and green economic efficiency in a post-COVID-19 scenario: the case of China Article in Press10 Environ. Sci. Pollut. Control Ser. (2021) 1007/s11356-021-12647-w [39] G.D. Batur Sir, E. Sir Pain treatment evaluation in COVID-19 patients with hesitant fuzzy linguistic multicriteria decision-making Journal of Healthcare Engineering (2021), p. 8831114, 10.1155/2021/8831114 [40] T.J. Mohammed, A.S. Albahri, A.A. Zaidan, R.T. Mohammed, S.M. Hadi Convalescent-plasma-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on AHP-group TOPSIS and matching component Appl. Intell. (2021), 10.1007/s10489-020-02169-2 [41] F. Samanlioglu, B.E. Kaya Evaluation of the COVID-19 pandemic intervention strategies with hesitant F-ahp Journal of Healthcare Engineering (2020), 10.1155/2020/8835258 Article in Press 8835258 [42] R.S. Bharsakade, P. Acharya, L. Ganapathy, M.K. Tiwari A lean approach to healthcare management using multi criteria decision making Opsearch (2021), 10.1007/s12597-020-00490-5 Article in Press [43] A.S. Albahri, J.R. Al-Obaidi, A.A. Zaidan, A.H. Alamoodi, M. Hashim Multi-biological laboratory examination framework for the prioritization of patients with COVID-19 based on integrated AHP and group VIKOR methods Int. J. Inf. Technol. Decis. Making, 19 (5) (2020), pp. 1247-1269, 10.1142/S0219622020500285 [44] S. Ghosh, A. Das, T.K. Hembram, B. Pradhan, A.M. Alamri Impact of COVID-19 induced lockdown on environmental quality in four Indian megacities Using Landsat 8 OLI and TIRS-derived data and Mamdani fuzzy logic modelling approach Sustainability, 12 (13) (2020), p. 5464, 10.3390/su12135464 [45] P. Amenta, A. Ishizaka, A. Lucadamo, G. Marcarelli, V. Vyas Computing a common preference vector in a complex multi-actor and multi-group decision system in analytic hierarchy process context Ann. Oper. Res., 284 (1) (2020), pp. 33-62, 10.1007/s10479-019-03258-3 [46] A. Lombardi Netto, V.A.P. Salomon, M.A. Ortiz-Barrios, A.K. Florek-Paszkowska, A. Petrillo, O.J. De Oliveira Multiple criteria assessment of sustainability programs in the textile industry Int. Trans. Oper. Res., 28 (3) (2021), pp. 1550-1572, 10.1111/itor.12871 [47] M. Ortiz-Barrios, C. Nugent, I. Cleland, M. Donnelly, A. Verikas Selecting the most suitable classification algorithm for supporting assistive technology adoption for people with dementia: a multicriteria framework J. Multi-Criteria Decis. Anal., 27 (1–2) (2020), pp. 20-38, 10.1002/mcda.1678 [48] R. Kumar, K. Singh, S.K. Jain A combined AHP and TOPSIS approach for prioritizing the attributes for successful implementation of agile manufacturing Int. J. Prod. Perform. Manag., 69 (7) (2020), pp. 1395-1417, 10.1108/IJPPM-05-2019-0221 [49] T.L. Saaty The Analytic Hierarchy Process McGraw-Hill, New York, USA (1980) [50] T.L. Saaty Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process, vol. 6, RWS publications (2000) [51] A. Ishizaka, M. Tasiou, L. Martínez Analytic hierarchy process-fuzzy sorting: an analytic hierarchy process–based method for fuzzy classification in sorting problems J. Oper. Res. Soc., 71 (6) (2020), pp. 928-947, 10.1080/01605682.2019.1595188 [52] M. Ortiz-Barrios, J. Cabarcas-Reyes, A. Ishizaka, M. Barbati, N. Jaramillo-Rueda, G. de Jesús Carrascal-Zambrano A hybrid fuzzy multi-criteria decision making model for selecting a sustainable supplier of forklift filters: a case study from the mining industry Ann. Oper. Res. (2020), 10.1007/s10479-020-03737-y [53] M. Ortiz-Barrios, M. Gul, P. López-Meza, M. Yucesan, E. Navarro-Jiménez Evaluation of hospital disaster preparedness by a multi-criteria decision making approach: the case of Turkish hospitals International Journal of Disaster Risk Reduction, 49 (2020), 10.1016/j.ijdrr.2020.101748 [54] L. Pecchia, J.L. Martin, A. Ragozzino, C. Vanzanella, A. Scognamiglio, L. Mirarchi, S.P. Morgan User needs elicitation via analytic hierarchy process (AHP). A case study on a computed tomography (CT) scanner BMC Med. Inf. Decis. Making, 13 (1) (2013), 10.1186/1472-6947-13-2 [55] G.H. Tzeng, J.J. Huang Multiple Attribute Decision Making: Methods and Applications CRC press, Boca Raton, FL, USA (2011) [56] V. Lahri, K. Shaw, A. Ishizaka Sustainable supply chain network design problem: using the integrated BWM, TOPSIS, possibilistic programming, and ε-constrained methods Expert Syst. Appl. (2021), p. 168, 10.1016/j.eswa.2020.114373 [57] Y. Çelikbilek, F. Tüysüz An in-depth review of theory of the TOPSIS method: an experimental analysis Journal of Management Analytics, 7 (2) (2020), pp. 281-300, 10.1080/23270012.2020.1748528 [58] Confecámaras Encuesta Nacional Impacto Económico Covid-19 (2020) https://www.ccb.org.co/observatorio/Economia/Economia-dinamica-incluyente-e-innovadora/Impacto-del-COVID-19, Accessed 12th Feb 2021 [59] Dane Tasa global de participación, ocupación y desempleo (2020) https://www.dane.gov.co/index.php/estadisticas-por-tema/mercado-laboral/empleo-y-desempleo, Accessed 12th Feb 2021 [60] N.N. Hartmann, B. Lussier Managing the sales force through the unexpected exogenous COVID-19 crisis Ind. Market. Manag., 88 (2020), pp. 101-111, 10.1016/j.indmarman.2020.05.005 [61] B. Avdiu, G. Nayyar When face-to-face interactions become an occupational hazard: jobs in the time of COVID-19 Econ. Lett., 197 (2020), 10.1016/j.econlet.2020.109648 [62] Y. Wang, A. Hong, X. Li, J. Gao Marketing innovations during a global crisis: a study of China firms' response to COVID-19 J. Bus. Res., 116 (2020), pp. 214-220, 10.1016/j.jbusres.2020.05.029 [63] M.A. Ortíz, L.E. Betancourt, K.P. Negrete, F. De Felice, A. Petrillo Dispatching algorithm for production programming of flexible job-shop systems in the smart factory industry Ann. Oper. Res., 264 (1–2) (2018), pp. 409-433, 10.1007/s10479-017-2678-x [64] S.Y. Chou, Y.H. Chang, C.Y. Shen A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes Eur. J. Oper. Res., 189 (1) (2008), pp. 132-145 [65] Y.J. Wang A fuzzy multi-criteria decision-making model based on simple additive weighting method and relative preference relation Appl. Soft Comput., 30 (2015), pp. 412-420 [66] E. Boltürk, A. Karaşan, C. Kahraman Simple additive weighting and weighted product methods using neutrosophic sets Fuzzy Multi-Criteria Decision-Making Using Neutrosophic Sets, Springer, Cham (2019), pp. 647-676 [67] M. Yazdani, P. Zarate, E.K. Zavadskas, Z. Turskis A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems Manag. Decis. (2019) [68] A.E. Torkayesh, D. Pamucar, F. Ecer, P. Chatterjee An integrated BWM-LBWA-CoCoSo framework for evaluation of healt hcare sectors in Eastern Europe Soc. Econ. Plann. Sci. (2021), p. 101052 [69] Z. Zhang, Y. Gao, Z. Li Consensus reaching for social network group decision making by considering leadership and bounded confidence Knowl. Base Syst., 204 (2020), p. 106240 [70] Z. Zhang, Z. Li, Y. Gao Consensus reaching for group decision making with multi-granular unbalanced linguistic information: a bounded confidence and minimum adjustment-based approach Inf. Fusion, 74 (2021), pp. 96-110 [71] W. Yu, Z. Zhang, Q. Zhong Consensus reaching for MAGDM with multi-granular hesitant fuzzy linguistic term sets: a minimum adjustment-based approach Ann. Oper. Res. (2019), pp. 1-24 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
International Journal of Disaster Risk Reduction |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2212420921003721 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/ff4d4d45-1864-4ee7-918f-ac213b0d1e89/download https://repositorio.cuc.edu.co/bitstreams/a68f40b8-1c24-4205-b222-8eb8f681716b/download https://repositorio.cuc.edu.co/bitstreams/65e32365-98fd-46c6-9c01-c49261eca9c1/download https://repositorio.cuc.edu.co/bitstreams/5ac6d629-14a3-4064-a572-bc7ed4aff998/download https://repositorio.cuc.edu.co/bitstreams/68ab7d31-2b46-498d-9f2a-b7585217e631/download |
bitstream.checksum.fl_str_mv |
ed0b7ea5f99a3739752b63cfc7f2606e 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 8d2bcc7a16ffc5f434c96ab4b229f9f9 da83a04e1ba51d8247f63e87cccc3212 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760676245340160 |
spelling |
Ortiz-Barrios, MiguelBorrego-Areyanes, Arlen AlaineGómez-Villar, Iván DaríoDe Felice, FabioPetrillo, AntonellaGul, MuhammetYUCESAN, Melih2021-07-14T13:05:20Z2021-07-14T13:05:20Z202120232212-4209https://hdl.handle.net/11323/8467https://doi.org/10.1016/j.ijdrr.2021.102411Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The impact of the pandemic and the lockdown has been more devastating than expected on the world economy. It is essential to formulate strategies in real-time. In this research, a multicriteria decision-making model for increasing the preparedness level of sales departments when facing COVID-19 waves and future pandemics is proposed. The model is comprised of 8 criteria, 29 sub-criteria, and 7 alternatives. The study is based on the integration of the AHP and TOPSIS techniques. AHP is used for calculating the criteria and sub-criteria weights. While, TOPSIS is used for calculating the preparedness level, ranking the companies, and identifying the weaknesses that should be addressed for increasing their effectiveness in the current market scenario. The model is developed with the aid of an experts’ group from the electrical appliance sector and studies from the reported literature. This application is completely novel in the literature and has been applied in the wild with remarkable companies in Colombia. A case study in the electrical appliance sector is presented as a pilot study but it should be noted that the methodology is flexible and scalable in any scenario.Ortiz-Barrios, MiguelBorrego-Areyanes, Arlen AlaineGómez-Villar, Iván DaríoDe Felice, Fabio-will be generated-orcid-0000-0002-2138-2103-600Petrillo, Antonella-will be generated-orcid-0000-0003-2465-5370-600Gul, Muhammet-will be generated-orcid-0000-0002-5319-4289-600YUCESAN, Melih-will be generated-orcid-0000-0001-6148-4959-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Disaster Risk Reductionhttps://www.sciencedirect.com/science/article/pii/S2212420921003721Multiple criteria analysisOperational researchDisaster preparednessPandemicsCOVID-19A multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics: A real-world casePre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] P. Amariles, J. Granados, M. Ceballos, C.J. Montoya COVID-19 in Colombia endpoints. Are we different, like Europe? Res. Soc. Adm. Pharm., 17 (1) (2020), pp. 2036-2039[2] W. Novoa, H. Miller, S. Mattar, Á.A. Faccini-Martínez, R. Rivero, H. Serrano-Coll A first probable case of SARS-CoV-2 reinfection in Colombia Ann. Clin. Microbiol. Antimicrob., 20 (1) (2021), p. 7[3] J. Arellana, L. Márquez, V. Cantillo COVID-19 outbreak in Colombia: an analysis of its impacts on transport systems J. Adv. Transport., 2020 (2020), p. 8867316[4] S.A. Meo, A.A. Abukhalaf, A.A. Alomar, A.M. Usmani, D.C. Klonoff Impact of lockdown on COVID-19 prevalence and mortality during 2020 pandemic: observational analysis of 27 countries Eur. J. Med. Res., 25 (1) (2020), p. 56[5] E.E. Ramírez de la Cruz, E.J. Grin, P. Sanabria-Pulido, D. Cravacuore, A. Orellana The transaction costs of government responses to the COVID-19 emergency in Latin America Publ. Adm. Rev., 80 (4) (2020), pp. 683-695[6] J.A. Rodríguez Economic situation, fiscal policy and pandemic in Colombia Rev. Econ. Inst., 23 (44) (2020), pp. 249-263[7] Chicaíza Becerra, L., García Molina, M., Urrea, I.L., Economy or health? A global analysis of the covid-19 pandemic. Rev. Econ. Inst., 23(44), pp. 171-194.[8] A. Tarki, P. Levy, J. Weiss The coronavirus crisis doesn't have to lead to layoffs Harv. Bus. Rev. (2020) March 2020[9] J.I. González Planning and uncertainty Rev. Econ. Inst., 23 (44) (2020), pp. 233-248[10] A. Ferrannini, E. Barbieri, M. Biggeri, M.R. Di Tommaso Industrial policy for sustainable human development in the post-Covid19 era World Dev., 137 (2021), p. 105215[11] M. Ortiz-Barrios, C. Miranda-De la Hoz, P. López-Meza, A. Petrillo, F. De Felice A case of food supply chain management with AHP, DEMATEL, and TOPSIS J. Multi-Criteria Decis. Anal., 27 (1–2) (2020), pp. 104-128, 10.1002/mcda.1693[12] T.L. Saaty, L.G. Vargas The analytic hierarchy process: wash citeria should not be ignored Int. J. Manag. Decis. Making, 7 (2–3) (2006), pp. 180-188, 10.1504/IJMDM.2006.009142[13] J.P. Pastor-Ferrando, P. Aragonés-Beltrán, A. Hospitaler-Pérez, M. García-Melón An ANP- and AHP-based approach for weighting criteria in public works bidding J. Oper. Res. Soc., 61 (6) (2010), pp. 905-916, 10.1057/jors.2010.13[14] J. Sarkis Supply chain sustainability: learning from the COVID-19 pandemic Int. J. Oper. Prod. Manag., 41 (1) (2020), pp. 63-73, 10.1108/IJOPM-08-2020-0568[15] M.P. Basilio, V. Pereira, H.G. Costa Classifying the integrated public safety areas (IPSAs): a multi-criteria based approach J. Model. Manag., 14 (1) (2019), pp. 106-133, 10.1108/JM2-01-2018-0001[16] E.G. Carayannis, J.J.M. Ferreira, M.S. Jalali, F.A.F. Ferreira MCDA in knowledge-based economies: methodological developments and real world applications Technol. Forecast. Soc. Change, 131 (2018), pp. 1-3, 10.1016/j.techfore.2018.01.028[17] S.H. Zyoud, D. Fuchs-Hanusch A bibliometric-based survey on AHP and TOPSIS techniques Expert Syst. Appl., 78 (2017), pp. 158-181, 10.1016/j.eswa.2017.02.016[18] G. Riz, E.A.P. Santos, E. de Freitas Rocha Loures Interoperability Assessment in Health Systems Based on Process Mining and MCDA Methods (2017), 10.1007/978-3-319-56535-4_44[19] M. Rajak, K. Shaw Evaluation and selection of mobile health (mHealth) applications using AHP and fuzzy TOPSIS Technol. Soc. (2019), p. 59, 10.1016/j.techsoc.2019.101186[20] T.L. Saaty Applications of analytical hierarchies Math. Comput. Simulat., 21 (1) (1979), pp. 1-20, 10.1016/0378-4754(79)90101-0[21] C.L. Hwang, K. Yoon Multiple Attribute Decision Making Methods and Applications: A State-Of-The-Art Survey Springer, Berlin, Heidelberg (1981)[22] G. Kumar, N. Parimala An integration of sentiment analysis and MCDM approach for smartphone recommendation Int. J. Inf. Technol. Decis. Making, 19 (4) (2020), pp. 1037-1063, 10.1142/S021962202050025X[23] R. Bhattacharya, R.D. Raut, B.B. Gardas, S.S. Kamble Sustainable partner selection: an integrated AHP-TOPSIS approach Int. J. Oper. Res., 39 (2) (2020), pp. 205-236, 10.1504/IJOR.2020.109755[24] I.B. Huang, J. Keisler, I. Linkov Multi-criteria decision analysis in environmental sciences: ten years of applications and trends Sci. Total Environ., 409 (19) (2011), pp. 3578-3594, 10.1016/j.scitotenv.2011.06.022[25] K. Nikolopoulos, S. Punia, A. Schäfers, C. Tsinopoulos, C. Vasilakis Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions Eur. J. Oper. Res., 290 (1) (2021), pp. 99-115[26] R. Romero-Silva, S. de Leeuw Learning from the past to shape the future: a comprehensive text mining analysis of OR/MS reviews Omega (United Kingdom), 100 (2021), p. 102388[27] M. Brunelli A study on the anonymity of pairwise comparisons in group decision making Eur. J. Oper. Res., 279 (2) (2019), pp. 502-510[28] M. Abdel-Basset, M. Gunasekaran, M. Mohamed, N. Chilamkurti A framework for risk assessment, management and evaluation: economic tool for quantifying risks in supply chain Future Generat. Comput. Syst., 90 (2019), pp. 489-502, 10.1016/j.future.2018.08.035[29] J. Freeman, T. Chen Green supplier selection using an AHP-entropy-TOPSIS framework Supply Chain Manag., 20 (3) (2015), pp. 327-340, 10.1108/SCM-04-2014-0142[30] D. Jothimani, S.P. Sarmah Supply chain performance measurement for third party logistics Benchmark, 21 (6) (2014), pp. 944-963, 10.1108/BIJ-09-2012-0064[31] S. Carpitella, A. Certa, J. Izquierdo, C.M. La Fata A combined multi-criteria approach to support FMECA analyses: a real-world case Reliab. Eng. Syst. Saf., 169 (2018), pp. 394-402, 10.1016/j.ress.2017.09.017[32] O.E. Demesouka, A.P. Vavatsikos, K.P. Anagnostopoulos Suitability analysis for siting MSW landfills and its multicriteria spatial decision support system: method, implementation and case study Waste Manag., 33 (5) (2013), pp. 1190-1206, 10.1016/j.wasman.2013.01.030[33] I. Kaliszewski, D. Podkopaev Simple additive weighting - a metamodel for multiple criteria decision analysis methods Expert Syst. Appl., 54 (2016), pp. 155-161, 10.1016/j.eswa.2016.01.042[34] H. Zhao, N. Li Performance evaluation for sustainability of strong smart grid by using stochastic AHP and fuzzy TOPSIS methods Sustainability, 8 (2) (2016), 10.3390/su8020129[35] C.-N. Wang, N.-A.-T. Nguyen, T.-T. Dang, C.-M. Lu A compromised decision-making approach to third-party logistics selection in sustainable supply chain using fuzzy ahp and fuzzy vikor methods Mathematics, 9 (8) (2021), p. 886, 10.3390/math9080886[36] A. Tošović-Stevanović, V. Ristanović, D. Ćalović, M. Žuža, G. Cvijanović Small farm business analysis using the ahp model for efficient assessment of distribution channels Sustainability, 12 (24) (2020), pp. 1-15, 10.3390/su12241047910479[37] V. Ristanović, D. Primorac, G. Kozina Operational risk management using multi-criteria assessment (Ahp model) Teh. Vjesn., 28 (2) (2021), pp. 678-683, 10.17559/TV-20200907112351[38] S. Yao Fuzzy-based multi-criteria decision analysis of environmental regulation and green economic efficiency in a post-COVID-19 scenario: the case of China Article in Press10 Environ. Sci. Pollut. Control Ser. (2021) 1007/s11356-021-12647-w[39] G.D. Batur Sir, E. Sir Pain treatment evaluation in COVID-19 patients with hesitant fuzzy linguistic multicriteria decision-making Journal of Healthcare Engineering (2021), p. 8831114, 10.1155/2021/8831114[40] T.J. Mohammed, A.S. Albahri, A.A. Zaidan, R.T. Mohammed, S.M. Hadi Convalescent-plasma-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on AHP-group TOPSIS and matching component Appl. Intell. (2021), 10.1007/s10489-020-02169-2[41] F. Samanlioglu, B.E. Kaya Evaluation of the COVID-19 pandemic intervention strategies with hesitant F-ahp Journal of Healthcare Engineering (2020), 10.1155/2020/8835258 Article in Press 8835258[42] R.S. Bharsakade, P. Acharya, L. Ganapathy, M.K. Tiwari A lean approach to healthcare management using multi criteria decision making Opsearch (2021), 10.1007/s12597-020-00490-5 Article in Press[43] A.S. Albahri, J.R. Al-Obaidi, A.A. Zaidan, A.H. Alamoodi, M. Hashim Multi-biological laboratory examination framework for the prioritization of patients with COVID-19 based on integrated AHP and group VIKOR methods Int. J. Inf. Technol. Decis. Making, 19 (5) (2020), pp. 1247-1269, 10.1142/S0219622020500285[44] S. Ghosh, A. Das, T.K. Hembram, B. Pradhan, A.M. Alamri Impact of COVID-19 induced lockdown on environmental quality in four Indian megacities Using Landsat 8 OLI and TIRS-derived data and Mamdani fuzzy logic modelling approach Sustainability, 12 (13) (2020), p. 5464, 10.3390/su12135464[45] P. Amenta, A. Ishizaka, A. Lucadamo, G. Marcarelli, V. Vyas Computing a common preference vector in a complex multi-actor and multi-group decision system in analytic hierarchy process context Ann. Oper. Res., 284 (1) (2020), pp. 33-62, 10.1007/s10479-019-03258-3[46] A. Lombardi Netto, V.A.P. Salomon, M.A. Ortiz-Barrios, A.K. Florek-Paszkowska, A. Petrillo, O.J. De Oliveira Multiple criteria assessment of sustainability programs in the textile industry Int. Trans. Oper. Res., 28 (3) (2021), pp. 1550-1572, 10.1111/itor.12871[47] M. Ortiz-Barrios, C. Nugent, I. Cleland, M. Donnelly, A. Verikas Selecting the most suitable classification algorithm for supporting assistive technology adoption for people with dementia: a multicriteria framework J. Multi-Criteria Decis. Anal., 27 (1–2) (2020), pp. 20-38, 10.1002/mcda.1678[48] R. Kumar, K. Singh, S.K. Jain A combined AHP and TOPSIS approach for prioritizing the attributes for successful implementation of agile manufacturing Int. J. Prod. Perform. Manag., 69 (7) (2020), pp. 1395-1417, 10.1108/IJPPM-05-2019-0221[49] T.L. Saaty The Analytic Hierarchy Process McGraw-Hill, New York, USA (1980)[50] T.L. Saaty Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process, vol. 6, RWS publications (2000)[51] A. Ishizaka, M. Tasiou, L. Martínez Analytic hierarchy process-fuzzy sorting: an analytic hierarchy process–based method for fuzzy classification in sorting problems J. Oper. Res. Soc., 71 (6) (2020), pp. 928-947, 10.1080/01605682.2019.1595188[52] M. Ortiz-Barrios, J. Cabarcas-Reyes, A. Ishizaka, M. Barbati, N. Jaramillo-Rueda, G. de Jesús Carrascal-Zambrano A hybrid fuzzy multi-criteria decision making model for selecting a sustainable supplier of forklift filters: a case study from the mining industry Ann. Oper. Res. (2020), 10.1007/s10479-020-03737-y[53] M. Ortiz-Barrios, M. Gul, P. López-Meza, M. Yucesan, E. Navarro-Jiménez Evaluation of hospital disaster preparedness by a multi-criteria decision making approach: the case of Turkish hospitals International Journal of Disaster Risk Reduction, 49 (2020), 10.1016/j.ijdrr.2020.101748[54] L. Pecchia, J.L. Martin, A. Ragozzino, C. Vanzanella, A. Scognamiglio, L. Mirarchi, S.P. Morgan User needs elicitation via analytic hierarchy process (AHP). A case study on a computed tomography (CT) scanner BMC Med. Inf. Decis. Making, 13 (1) (2013), 10.1186/1472-6947-13-2[55] G.H. Tzeng, J.J. Huang Multiple Attribute Decision Making: Methods and Applications CRC press, Boca Raton, FL, USA (2011)[56] V. Lahri, K. Shaw, A. Ishizaka Sustainable supply chain network design problem: using the integrated BWM, TOPSIS, possibilistic programming, and ε-constrained methods Expert Syst. Appl. (2021), p. 168, 10.1016/j.eswa.2020.114373[57] Y. Çelikbilek, F. Tüysüz An in-depth review of theory of the TOPSIS method: an experimental analysis Journal of Management Analytics, 7 (2) (2020), pp. 281-300, 10.1080/23270012.2020.1748528[58] Confecámaras Encuesta Nacional Impacto Económico Covid-19 (2020) https://www.ccb.org.co/observatorio/Economia/Economia-dinamica-incluyente-e-innovadora/Impacto-del-COVID-19, Accessed 12th Feb 2021[59] Dane Tasa global de participación, ocupación y desempleo (2020) https://www.dane.gov.co/index.php/estadisticas-por-tema/mercado-laboral/empleo-y-desempleo, Accessed 12th Feb 2021[60] N.N. Hartmann, B. Lussier Managing the sales force through the unexpected exogenous COVID-19 crisis Ind. Market. Manag., 88 (2020), pp. 101-111, 10.1016/j.indmarman.2020.05.005[61] B. Avdiu, G. Nayyar When face-to-face interactions become an occupational hazard: jobs in the time of COVID-19 Econ. Lett., 197 (2020), 10.1016/j.econlet.2020.109648[62] Y. Wang, A. Hong, X. Li, J. Gao Marketing innovations during a global crisis: a study of China firms' response to COVID-19 J. Bus. Res., 116 (2020), pp. 214-220, 10.1016/j.jbusres.2020.05.029[63] M.A. Ortíz, L.E. Betancourt, K.P. Negrete, F. De Felice, A. Petrillo Dispatching algorithm for production programming of flexible job-shop systems in the smart factory industry Ann. Oper. Res., 264 (1–2) (2018), pp. 409-433, 10.1007/s10479-017-2678-x[64] S.Y. Chou, Y.H. Chang, C.Y. Shen A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes Eur. J. Oper. Res., 189 (1) (2008), pp. 132-145[65] Y.J. Wang A fuzzy multi-criteria decision-making model based on simple additive weighting method and relative preference relation Appl. Soft Comput., 30 (2015), pp. 412-420[66] E. Boltürk, A. Karaşan, C. Kahraman Simple additive weighting and weighted product methods using neutrosophic sets Fuzzy Multi-Criteria Decision-Making Using Neutrosophic Sets, Springer, Cham (2019), pp. 647-676[67] M. Yazdani, P. Zarate, E.K. Zavadskas, Z. Turskis A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems Manag. Decis. (2019)[68] A.E. Torkayesh, D. Pamucar, F. Ecer, P. Chatterjee An integrated BWM-LBWA-CoCoSo framework for evaluation of healt hcare sectors in Eastern Europe Soc. Econ. Plann. Sci. (2021), p. 101052[69] Z. Zhang, Y. Gao, Z. Li Consensus reaching for social network group decision making by considering leadership and bounded confidence Knowl. Base Syst., 204 (2020), p. 106240[70] Z. Zhang, Z. Li, Y. Gao Consensus reaching for group decision making with multi-granular unbalanced linguistic information: a bounded confidence and minimum adjustment-based approach Inf. Fusion, 74 (2021), pp. 96-110[71] W. Yu, Z. Zhang, Q. Zhong Consensus reaching for MAGDM with multi-granular hesitant fuzzy linguistic term sets: a minimum adjustment-based approach Ann. Oper. Res. (2019), pp. 1-24PublicationORIGINALA multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics.pdfA multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics.pdfapplication/pdf175802https://repositorio.cuc.edu.co/bitstreams/ff4d4d45-1864-4ee7-918f-ac213b0d1e89/downloaded0b7ea5f99a3739752b63cfc7f2606eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a68f40b8-1c24-4205-b222-8eb8f681716b/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/65e32365-98fd-46c6-9c01-c49261eca9c1/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILA multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics.pdf.jpgA multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics.pdf.jpgimage/jpeg55797https://repositorio.cuc.edu.co/bitstreams/5ac6d629-14a3-4064-a572-bc7ed4aff998/download8d2bcc7a16ffc5f434c96ab4b229f9f9MD54TEXTA multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics.pdf.txtA multiple criteria decision-making approach for increasing the preparedness level of sales departments against COVID-19 and future pandemics.pdf.txttext/plain16475https://repositorio.cuc.edu.co/bitstreams/68ab7d31-2b46-498d-9f2a-b7585217e631/downloadda83a04e1ba51d8247f63e87cccc3212MD5511323/8467oai:repositorio.cuc.edu.co:11323/84672024-09-16 16:43:31.611http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |