An analytic hierarchy process based approach for evaluating renewable energy sources

Decision-making in energy planning can be approached as a problem of multicriteria decision analysis in which different types of factors are involved. This task must take into account several aspects due to the increasing complexity of social, technological and economic factors. In this context, thi...

Full description

Autores:
Robles Algarin, Carlos Arturo
Polo Llanos, Aura
Ospino Castro, Adalberto Jose
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/4605
Acceso en línea:
https://hdl.handle.net/11323/4605
https://repositorio.cuc.edu.co/
Palabra clave:
Renewable energy
Energy planning
Analytic hierarchy process
Energía renovable
Planificación energética
Proceso de jerarquía analítica
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_aec73298f08fd5ffdfedcbea6f71292a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/4605
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv An analytic hierarchy process based approach for evaluating renewable energy sources
dc.title.translated.spa.fl_str_mv Un enfoque basado en un proceso de jerarquía analítica para evaluar las fuentes de energía renovables.
title An analytic hierarchy process based approach for evaluating renewable energy sources
spellingShingle An analytic hierarchy process based approach for evaluating renewable energy sources
Renewable energy
Energy planning
Analytic hierarchy process
Energía renovable
Planificación energética
Proceso de jerarquía analítica
title_short An analytic hierarchy process based approach for evaluating renewable energy sources
title_full An analytic hierarchy process based approach for evaluating renewable energy sources
title_fullStr An analytic hierarchy process based approach for evaluating renewable energy sources
title_full_unstemmed An analytic hierarchy process based approach for evaluating renewable energy sources
title_sort An analytic hierarchy process based approach for evaluating renewable energy sources
dc.creator.fl_str_mv Robles Algarin, Carlos Arturo
Polo Llanos, Aura
Ospino Castro, Adalberto Jose
dc.contributor.author.spa.fl_str_mv Robles Algarin, Carlos Arturo
Polo Llanos, Aura
Ospino Castro, Adalberto Jose
dc.subject.spa.fl_str_mv Renewable energy
Energy planning
Analytic hierarchy process
Energía renovable
Planificación energética
Proceso de jerarquía analítica
topic Renewable energy
Energy planning
Analytic hierarchy process
Energía renovable
Planificación energética
Proceso de jerarquía analítica
description Decision-making in energy planning can be approached as a problem of multicriteria decision analysis in which different types of factors are involved. This task must take into account several aspects due to the increasing complexity of social, technological and economic factors. In this context, this paper uses the analytic hierarchy process (AHP) to prioritize a set of criteria, subcriteria and alternatives as a support for decision-making in the process of energy planning with renewable energies for rural areas in the Caribbean region of Colombia. Based on the participation of experts, 5 criteria, 20 subcriteria and 4 alternatives were defined. Using the AHP, the same group of experts was consulted in order to prioritize all aspects. The results showed that the most relevant criteria were the technical with 24.7%. Next were environmental (21.7%), social (19.6%), economic (17.8%) and risk (16.3%). The best renewable energy alternative was solar with 45.3%.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2019-05-21T13:28:03Z
dc.date.available.none.fl_str_mv 2019-05-21T13:28:03Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2146-4553
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/4605
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2146-4553
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/4605
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Abdullah, L., Najib, L. (2014), Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: Choosing energy technology in Malaysia. International Journal of Sustainable Energy, 35(4), 360-377. Ahmad, S., Tahar, R. (2014), Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable Energy, 63, 458-466. Amer, M., Daim, T. (2011), Selection of renewable energy technologies for a developing county: A case of Pakistan. Energy for Sustainable Development, 15(4), 420-435. Aragonés, P., Chaparro, F., Pastor, J., Pla, A. (2014), An AHP (analytic hierarchy process), ANP (analytic network process)-based multicriteria decision approach for the selection of solar-thermal power plant investment projects. Energy, 66, 222-238. Baris, K., Kucukali, S. (2012), Availability of renewable energy sources in Turkey: Current situation, potential, government policies and the EU perspective. Energy Policy, 42, 377-391. Certa, A., Enea, M., Hopps, F. (2015), A multi-criteria approach for the group assessment of an academic course: A case study. Studies in Educational Evaluation, 44, 16-22. Consorcio Energético Corpoema. (2010), Formulación de un Plan de Desarrollo para las Fuentes no Convencionales de Energía en Colombia. Vol. 2. Bogotá, Colombia: Diagnóstico de las FNCE en Colombia. p6-25. Daim, T., Yates, D., Peng, Y., Jimenez, B. (2009), Technology assessment for clean energy technologies: The case of the Pacific Northwest. Technology in Society, 31(3), 232-243. Demirtas, O. (2013), Evaluating the best renewable energy technology for sustainable energy planning. International Journal of Energy Economics and Policy, 3, 23-33. Diaz, L., González, A., Romero, C. (2017), Measuring systems sustainability with multi-criteria methods: Acritical review. European Journal of Operational Research, 258, 607-616. Gualtieri, G. (2016), An integrated wind resource assessment tool for wind farm planning: System’s upgrades and applications. International Journal of Renewable Energy Research, 6, 1464-1475. Guerrero, G., Sánchez, J., García, M., Lamata, M., Verdegay, J. (2016), Decision-making for risk management in sustainable renewable energy facilities: A case study in the Dominican republic. Sustainability, 8(5), 1-21. Gul, E. (2014), Qualitative assessment of energy initiative: Case study from Liberia. International Journal of Energy Economics and Policy, 4(3), 360-372. Gülçin, B., Sezin, G. (2014), A new GDM based AHP framework with linguistic interval fuzzy preference relations for renewable energy planning. Journal of Intelligent and Fuzzy Systems, 27, 3181-3195. Hein, N., Kroenke, A., Rodrigues, M. (2015), Professor assessment using multi-criteria decision analysis. Procedia Computer Science, 55, 539-548. Hernández, D., Urdaneta, A., de Oliveira, P. (2015), A hierarchical methodology for the integral net energy design of small-scale hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 52, 100-110. International Renewable Energy Agency. (2015), Renewables 2015: Global Status Report. Abu Dhabi: United Arab Emirates. p23-54. Kahraman, C., Kaya, İ., Cebi, S. (2009), A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy, 34(10), 1603-1616. Kang, H., Hung, M., Pearn, W., Lee, A., Kang, M. (2011), An integrated multi-criteria decision making model for evaluating wind farm performance. Energies, 4, 2002-2026. Kaya, T., Kahraman, C. (2010), Multicriteria renewable energy planning using an integrated fuzzy VIKOR and AHP methodology: The case of Istanbul. Energy, 35(6), 2517-2527. Khalili, N., Duecker, S. (2013), Application of multi-criteria decision analysis in design of sustainable environmental management system framework. Journal of Cleaner Production, 47, 188-198. Kon, S., Mogi, G., Hui, K. (2013), A fuzzy analytic hierarchy process (AHP)/data envelopment analysis (DEA) hybrid model for efficiently allocating energy R and D resources: In the case of energy technologies against high oil prices. Renewable and Sustainable Energy Reviews, 21, 347-355. Kumar, A., Deng, Y., He, X., Kumar, P. (2016), A multi criteria decision based rural electrification system. IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society. p4025-4030. Longo, G., Medeossi, G., Padoano, E. (2015), Multi-criteria analysis to support mobility management at a university campus. Transportation Research Procedia, 5, 175-185. Luthra, S., Kumar, S., Kharb, R. (2015), Sustainable assessment in energy planning and management in Indian perspective. Renewable and Sustainable Energy Reviews, 47, 58-73. Ma, X., Zeng, B., Zhang, Y., Li, Y., Liu, Z. (2015), Comprehensive evaluation of renewable energy for power projects based on CA-DEA model. 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). p1848-1853. Mardani, A., Kazimieras, E., Streimikiene, D., Jusoh, A., Nor, K., Khoshnoudi, M. (2016), Using fuzzy multiple criteria decision making approaches for evaluating energy saving technologies and solutions in five star hotels: A new hierarchical framework. Energy, 117, 131-148. Mizanur, M., Paatero, J., Lahdelma, R. (2013), Evaluation of choices for sustainable rural electrification in developing countries: A multicriteria approach. Energy Policy, 59, 589-599. Mourmouris, J., Potolias, C. (2013), A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece. Energy Policy, 52, 522-530. Mourmouris, J., Potolias, C., Fantidis, J. (2012), Evaluation of renewable energy sources exploitation at remote regions, using computing model and multi-criteria analysis: A case-study in Samothrace, Greece. International Journal of Renewable Energy Research, 2, 307-316. Muñoz, Y., Guerrero, J., Ospino, A. (2014), Evaluation of a hybrid system of renewable electricity generation for a remote area of Colombia using homer software. TECCIENCIA, 9, 45-54. Nadimi, A., Adabi, F. (2016), Optimized planning for hybrid microgrid in grid connected mode. International Journal of Renewable Energy Research, 6, 494-503. Naveed, M., Irfan, M., Naeem, M., Iqbal, M., Waseem, M., Haneef, M. (2017), Multicriteria decision making for resource management in renewable energy assisted microgrids. Renewable and Sustainable Energy Reviews, 71, 323-341. Nnaji, C., Chukwu, J., Moses, N. (2013), Electricity supply, fossil fuel consumption, Co2 emissions and economic growth: Implications and policy options for sustainable development in Nigeria. International Journal of Energy Economics and Policy, 3(3), 262-271. Pisani, C., Villacci, D. (2011), A novel AHP framework for decision making in power systems sustainable development. 21st International Conference on Electricity Distribution. p1-6. Popiolek, N., Thais, F. (2016), Multi-criteria analysis of innovation policies in favour of solar mobility in France by 2030. Energy Policy, 97, 202-219. Rojas, J., Yusta, J. (2014), Methodologies, technologies and applications for electric supply planning in rural remote areas. Energy for Sustainable Development, 20, 66-76. Rojas, J., Yusta, J. (2015), Application of multicriteria decision methods for electric supply planning in rural and remote areas. Renewable and Sustainable Energy Reviews, 52, 557-571. Rosso, M., Bottero, M., Pomarico, S., La Ferlita, S., Comino, E. (2014), Integrating multicriteria evaluation and stakeholders analysis for assessing hydropower projects. Energy Policy, 67, 870-881. Saaty, T. (2008), Decision making with the analytic hierarchy process. Services Sciences, 1(1), 83-98. Saaty, T., Vargas, L. (2012), Models, Methods, Concepts and Applications of the Analytic Hierarchy Process. 2nd ed. Berlin: Springer. Samal, R.K., Kansal, M.L. (2015), Sustainable Development Contribution Assessment of Renewable Energy Projects using AHP and Compromise Programming Techniques, 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE). p1-6. Shabbar, S., Janajreh, I., Ghenai, C. (2014), Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source. Applied Energy, 136, 909-920. Shen, Y., Lin, G., Li, K., Yuan, B. (2010), An assessment of exploiting renewable energy sources with concerns of policy and technology. Energy Policy, 38(8), 4604-4616. Siskos, E., Askounis, D., Psarras, J. (2014), Multicriteria decision support for global e-government evaluation. Omega, 46, 51-63. Tasri, A., Susilawati, A. (2014), Selection among renewable energy alternatives based on a fuzzy analytic hierarchy process in Indonesia. Sustainable Energy Technologies and Assessments, 7, 34-44. Theodorou, S., Florides, G., Tassou, S. (2010), The use of multiple criteria decision making methodologies for the promotion of RES through funding schemes in Cyprus. A Review, Energy Policy, 38(12), 7783-7792. Unidad de Planeación Minero Energética-UPME. (2015), Integración de las Energías Renovables no Convencionales en Colombia. Bogotá, Colombia: Cundinamarca. p24-77. Wibowo, S., Deng, H. (2015), Multi-criteria group decision making for evaluating the performance of e-waste recycling Yeh, C., Xu, Y. (2013), Sustainable planning of e-waste recycling activities using fuzzy multicriteria decision making. Journal of Cleaner Production, 52, 194-204. Zanuttigh, B., Angelelli, E., Kortenhaus, A., Koca, K., Krontira, Y., Koundouri, P. (2016), A methodology for multi-criteria design of multi-use offshore platforms for marine renewable energy harvesting. Renewable Energy, 85, 1271-1289. Zhang, J., Lu, K., Liu, G. (2014), Multi-criteria decision making methods for enterprise energy planning under the constraint of carbon emissions. Advanced Materials Research, 962, 1690-1696. Zhang, Y., Xu, Q., Sun, M. (2012), Perspectives for utilization of multicriteria decision methods AHP/ANP to create a national energy strategy in terms of sustainable development. Advanced Materials Research, 616, 1585-1590.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv International Journal of Energy Economics and Policy
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/239b1673-2486-4f82-b62d-87e620ff79c7/download
https://repositorio.cuc.edu.co/bitstreams/c559327d-b402-4b02-bf92-cfb86e06fced/download
https://repositorio.cuc.edu.co/bitstreams/fd232bf4-99bb-43c3-b380-a22aac86b3ec/download
https://repositorio.cuc.edu.co/bitstreams/62d09f04-e977-4dc2-ae6f-7786e8e2a31b/download
https://repositorio.cuc.edu.co/bitstreams/c9c00750-3a5d-4592-96f4-f869e18c01db/download
bitstream.checksum.fl_str_mv 444071408d6228ba3571b76cc000b0d0
934f4ca17e109e0a05eaeaba504d7ce4
8a4605be74aa9ea9d79846c1fba20a33
321524fc1770721e091679bfb8a5dd87
7dcbe4e04e81a569b47816f557898225
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760777331212288
spelling Robles Algarin, Carlos ArturoPolo Llanos, AuraOspino Castro, Adalberto Jose2019-05-21T13:28:03Z2019-05-21T13:28:03Z20172146-4553https://hdl.handle.net/11323/4605Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Decision-making in energy planning can be approached as a problem of multicriteria decision analysis in which different types of factors are involved. This task must take into account several aspects due to the increasing complexity of social, technological and economic factors. In this context, this paper uses the analytic hierarchy process (AHP) to prioritize a set of criteria, subcriteria and alternatives as a support for decision-making in the process of energy planning with renewable energies for rural areas in the Caribbean region of Colombia. Based on the participation of experts, 5 criteria, 20 subcriteria and 4 alternatives were defined. Using the AHP, the same group of experts was consulted in order to prioritize all aspects. The results showed that the most relevant criteria were the technical with 24.7%. Next were environmental (21.7%), social (19.6%), economic (17.8%) and risk (16.3%). The best renewable energy alternative was solar with 45.3%.La toma de decisiones en la planificación energética se puede abordar como un problema del análisis de decisiones multicriterio en el que intervienen diferentes tipos de factores. Esta tarea debe tener en cuenta varios aspectos debido a la creciente complejidad de los factores sociales, tecnológicos y económicos. En este contexto, este documento utiliza el proceso de jerarquía analítica (AHP) para priorizar un conjunto de criterios, subcriterios y alternativas como apoyo para la toma de decisiones en el proceso de planificación energética con energías renovables para áreas rurales en la región del Caribe de Colombia. Sobre la base de la participación de expertos, se definieron 5 criterios, 20 subcriterios y 4 alternativas. Usando el AHP, se consultó al mismo grupo de expertos para priorizar todos los aspectos. Los resultados mostraron que los criterios más relevantes fueron los técnicos con un 24,7%. Los siguientes fueron: ambiental (21.7%), social (19.6%), económico (17.8%) y riesgo (16.3%). La mejor alternativa de energía renovable fue la solar con un 45,3%.Robles Algarin, Carlos Arturo-9289f664-b72e-4d79-98c9-4f5d2aa70c08-0Polo Llanos, Aura-eb49cea8-1246-457f-9f92-6f833f1975bb-0Ospino Castro, Adalberto Jose-0000-0003-1466-0424-600engInternational Journal of Energy Economics and PolicyAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Renewable energyEnergy planningAnalytic hierarchy processEnergía renovablePlanificación energéticaProceso de jerarquía analíticaAn analytic hierarchy process based approach for evaluating renewable energy sourcesUn enfoque basado en un proceso de jerarquía analítica para evaluar las fuentes de energía renovables.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAbdullah, L., Najib, L. (2014), Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: Choosing energy technology in Malaysia. International Journal of Sustainable Energy, 35(4), 360-377. Ahmad, S., Tahar, R. (2014), Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable Energy, 63, 458-466. Amer, M., Daim, T. (2011), Selection of renewable energy technologies for a developing county: A case of Pakistan. Energy for Sustainable Development, 15(4), 420-435. Aragonés, P., Chaparro, F., Pastor, J., Pla, A. (2014), An AHP (analytic hierarchy process), ANP (analytic network process)-based multicriteria decision approach for the selection of solar-thermal power plant investment projects. Energy, 66, 222-238. Baris, K., Kucukali, S. (2012), Availability of renewable energy sources in Turkey: Current situation, potential, government policies and the EU perspective. Energy Policy, 42, 377-391. Certa, A., Enea, M., Hopps, F. (2015), A multi-criteria approach for the group assessment of an academic course: A case study. Studies in Educational Evaluation, 44, 16-22. Consorcio Energético Corpoema. (2010), Formulación de un Plan de Desarrollo para las Fuentes no Convencionales de Energía en Colombia. Vol. 2. Bogotá, Colombia: Diagnóstico de las FNCE en Colombia. p6-25. Daim, T., Yates, D., Peng, Y., Jimenez, B. (2009), Technology assessment for clean energy technologies: The case of the Pacific Northwest. Technology in Society, 31(3), 232-243. Demirtas, O. (2013), Evaluating the best renewable energy technology for sustainable energy planning. International Journal of Energy Economics and Policy, 3, 23-33. Diaz, L., González, A., Romero, C. (2017), Measuring systems sustainability with multi-criteria methods: Acritical review. European Journal of Operational Research, 258, 607-616. Gualtieri, G. (2016), An integrated wind resource assessment tool for wind farm planning: System’s upgrades and applications. International Journal of Renewable Energy Research, 6, 1464-1475. Guerrero, G., Sánchez, J., García, M., Lamata, M., Verdegay, J. (2016), Decision-making for risk management in sustainable renewable energy facilities: A case study in the Dominican republic. Sustainability, 8(5), 1-21. Gul, E. (2014), Qualitative assessment of energy initiative: Case study from Liberia. International Journal of Energy Economics and Policy, 4(3), 360-372. Gülçin, B., Sezin, G. (2014), A new GDM based AHP framework with linguistic interval fuzzy preference relations for renewable energy planning. Journal of Intelligent and Fuzzy Systems, 27, 3181-3195. Hein, N., Kroenke, A., Rodrigues, M. (2015), Professor assessment using multi-criteria decision analysis. Procedia Computer Science, 55, 539-548. Hernández, D., Urdaneta, A., de Oliveira, P. (2015), A hierarchical methodology for the integral net energy design of small-scale hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 52, 100-110. International Renewable Energy Agency. (2015), Renewables 2015: Global Status Report. Abu Dhabi: United Arab Emirates. p23-54. Kahraman, C., Kaya, İ., Cebi, S. (2009), A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy, 34(10), 1603-1616. Kang, H., Hung, M., Pearn, W., Lee, A., Kang, M. (2011), An integrated multi-criteria decision making model for evaluating wind farm performance. Energies, 4, 2002-2026. Kaya, T., Kahraman, C. (2010), Multicriteria renewable energy planning using an integrated fuzzy VIKOR and AHP methodology: The case of Istanbul. Energy, 35(6), 2517-2527. Khalili, N., Duecker, S. (2013), Application of multi-criteria decision analysis in design of sustainable environmental management system framework. Journal of Cleaner Production, 47, 188-198. Kon, S., Mogi, G., Hui, K. (2013), A fuzzy analytic hierarchy process (AHP)/data envelopment analysis (DEA) hybrid model for efficiently allocating energy R and D resources: In the case of energy technologies against high oil prices. Renewable and Sustainable Energy Reviews, 21, 347-355. Kumar, A., Deng, Y., He, X., Kumar, P. (2016), A multi criteria decision based rural electrification system. IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society. p4025-4030. Longo, G., Medeossi, G., Padoano, E. (2015), Multi-criteria analysis to support mobility management at a university campus. Transportation Research Procedia, 5, 175-185. Luthra, S., Kumar, S., Kharb, R. (2015), Sustainable assessment in energy planning and management in Indian perspective. Renewable and Sustainable Energy Reviews, 47, 58-73. Ma, X., Zeng, B., Zhang, Y., Li, Y., Liu, Z. (2015), Comprehensive evaluation of renewable energy for power projects based on CA-DEA model. 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). p1848-1853. Mardani, A., Kazimieras, E., Streimikiene, D., Jusoh, A., Nor, K., Khoshnoudi, M. (2016), Using fuzzy multiple criteria decision making approaches for evaluating energy saving technologies and solutions in five star hotels: A new hierarchical framework. Energy, 117, 131-148. Mizanur, M., Paatero, J., Lahdelma, R. (2013), Evaluation of choices for sustainable rural electrification in developing countries: A multicriteria approach. Energy Policy, 59, 589-599. Mourmouris, J., Potolias, C. (2013), A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece. Energy Policy, 52, 522-530. Mourmouris, J., Potolias, C., Fantidis, J. (2012), Evaluation of renewable energy sources exploitation at remote regions, using computing model and multi-criteria analysis: A case-study in Samothrace, Greece. International Journal of Renewable Energy Research, 2, 307-316. Muñoz, Y., Guerrero, J., Ospino, A. (2014), Evaluation of a hybrid system of renewable electricity generation for a remote area of Colombia using homer software. TECCIENCIA, 9, 45-54. Nadimi, A., Adabi, F. (2016), Optimized planning for hybrid microgrid in grid connected mode. International Journal of Renewable Energy Research, 6, 494-503. Naveed, M., Irfan, M., Naeem, M., Iqbal, M., Waseem, M., Haneef, M. (2017), Multicriteria decision making for resource management in renewable energy assisted microgrids. Renewable and Sustainable Energy Reviews, 71, 323-341. Nnaji, C., Chukwu, J., Moses, N. (2013), Electricity supply, fossil fuel consumption, Co2 emissions and economic growth: Implications and policy options for sustainable development in Nigeria. International Journal of Energy Economics and Policy, 3(3), 262-271. Pisani, C., Villacci, D. (2011), A novel AHP framework for decision making in power systems sustainable development. 21st International Conference on Electricity Distribution. p1-6. Popiolek, N., Thais, F. (2016), Multi-criteria analysis of innovation policies in favour of solar mobility in France by 2030. Energy Policy, 97, 202-219. Rojas, J., Yusta, J. (2014), Methodologies, technologies and applications for electric supply planning in rural remote areas. Energy for Sustainable Development, 20, 66-76. Rojas, J., Yusta, J. (2015), Application of multicriteria decision methods for electric supply planning in rural and remote areas. Renewable and Sustainable Energy Reviews, 52, 557-571. Rosso, M., Bottero, M., Pomarico, S., La Ferlita, S., Comino, E. (2014), Integrating multicriteria evaluation and stakeholders analysis for assessing hydropower projects. Energy Policy, 67, 870-881. Saaty, T. (2008), Decision making with the analytic hierarchy process. Services Sciences, 1(1), 83-98. Saaty, T., Vargas, L. (2012), Models, Methods, Concepts and Applications of the Analytic Hierarchy Process. 2nd ed. Berlin: Springer. Samal, R.K., Kansal, M.L. (2015), Sustainable Development Contribution Assessment of Renewable Energy Projects using AHP and Compromise Programming Techniques, 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE). p1-6. Shabbar, S., Janajreh, I., Ghenai, C. (2014), Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source. Applied Energy, 136, 909-920. Shen, Y., Lin, G., Li, K., Yuan, B. (2010), An assessment of exploiting renewable energy sources with concerns of policy and technology. Energy Policy, 38(8), 4604-4616. Siskos, E., Askounis, D., Psarras, J. (2014), Multicriteria decision support for global e-government evaluation. Omega, 46, 51-63. Tasri, A., Susilawati, A. (2014), Selection among renewable energy alternatives based on a fuzzy analytic hierarchy process in Indonesia. Sustainable Energy Technologies and Assessments, 7, 34-44. Theodorou, S., Florides, G., Tassou, S. (2010), The use of multiple criteria decision making methodologies for the promotion of RES through funding schemes in Cyprus. A Review, Energy Policy, 38(12), 7783-7792. Unidad de Planeación Minero Energética-UPME. (2015), Integración de las Energías Renovables no Convencionales en Colombia. Bogotá, Colombia: Cundinamarca. p24-77. Wibowo, S., Deng, H. (2015), Multi-criteria group decision making for evaluating the performance of e-waste recycling Yeh, C., Xu, Y. (2013), Sustainable planning of e-waste recycling activities using fuzzy multicriteria decision making. Journal of Cleaner Production, 52, 194-204. Zanuttigh, B., Angelelli, E., Kortenhaus, A., Koca, K., Krontira, Y., Koundouri, P. (2016), A methodology for multi-criteria design of multi-use offshore platforms for marine renewable energy harvesting. Renewable Energy, 85, 1271-1289. Zhang, J., Lu, K., Liu, G. (2014), Multi-criteria decision making methods for enterprise energy planning under the constraint of carbon emissions. Advanced Materials Research, 962, 1690-1696. Zhang, Y., Xu, Q., Sun, M. (2012), Perspectives for utilization of multicriteria decision methods AHP/ANP to create a national energy strategy in terms of sustainable development. Advanced Materials Research, 616, 1585-1590.PublicationORIGINALAn analytic hierarchy process based approach for evaluating renewable energy sources.pdfAn analytic hierarchy process based approach for evaluating renewable energy sources.pdfapplication/pdf1076064https://repositorio.cuc.edu.co/bitstreams/239b1673-2486-4f82-b62d-87e620ff79c7/download444071408d6228ba3571b76cc000b0d0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/c559327d-b402-4b02-bf92-cfb86e06fced/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/fd232bf4-99bb-43c3-b380-a22aac86b3ec/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILAn analytic hierarchy process based approach for evaluating renewable energy sources.pdf.jpgAn analytic hierarchy process based approach for evaluating renewable energy sources.pdf.jpgimage/jpeg71711https://repositorio.cuc.edu.co/bitstreams/62d09f04-e977-4dc2-ae6f-7786e8e2a31b/download321524fc1770721e091679bfb8a5dd87MD55TEXTAn analytic hierarchy process based approach for evaluating renewable energy sources.pdf.txtAn analytic hierarchy process based approach for evaluating renewable energy sources.pdf.txttext/plain47501https://repositorio.cuc.edu.co/bitstreams/c9c00750-3a5d-4592-96f4-f869e18c01db/download7dcbe4e04e81a569b47816f557898225MD5611323/4605oai:repositorio.cuc.edu.co:11323/46052024-09-17 11:06:15.182http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=