Implications of irrigation water quality in tropical farms

BACKGROUND AND OBJECTIVES: Irrigation system water quality is a complex issue that involves the combined effects of various surface water management parameters. Monitoring of irrigation water quality is essential for the sustainability of crop production and productivity. The department of Sucre, in...

Full description

Autores:
Guerra , Tamara
Torregroza Espinosa, Ana Carolina
Moreno Pallares, María Inés
Paternina Corrales, A
Osorio Pinto, D
Echeverría-González, Ana
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9332
Acceso en línea:
https://hdl.handle.net/11323/9332
https://repositorio.cuc.edu.co/
Palabra clave:
Crops yield
Physicochemical characteristics
Salinity
Water and soil pollution
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_aebe2b9d7e4792dd8dc239e73d7ed6ee
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9332
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Implications of irrigation water quality in tropical farms
title Implications of irrigation water quality in tropical farms
spellingShingle Implications of irrigation water quality in tropical farms
Crops yield
Physicochemical characteristics
Salinity
Water and soil pollution
title_short Implications of irrigation water quality in tropical farms
title_full Implications of irrigation water quality in tropical farms
title_fullStr Implications of irrigation water quality in tropical farms
title_full_unstemmed Implications of irrigation water quality in tropical farms
title_sort Implications of irrigation water quality in tropical farms
dc.creator.fl_str_mv Guerra , Tamara
Torregroza Espinosa, Ana Carolina
Moreno Pallares, María Inés
Paternina Corrales, A
Osorio Pinto, D
Echeverría-González, Ana
dc.contributor.author.spa.fl_str_mv Guerra , Tamara
Torregroza Espinosa, Ana Carolina
Moreno Pallares, María Inés
Paternina Corrales, A
Osorio Pinto, D
Echeverría-González, Ana
dc.subject.proposal.eng.fl_str_mv Crops yield
Physicochemical characteristics
Salinity
Water and soil pollution
topic Crops yield
Physicochemical characteristics
Salinity
Water and soil pollution
description BACKGROUND AND OBJECTIVES: Irrigation system water quality is a complex issue that involves the combined effects of various surface water management parameters. Monitoring of irrigation water quality is essential for the sustainability of crop production and productivity. The department of Sucre, in northern Colombia, is predominantly a ranching and agricultural region where agriculture is the main source for livelihoods. The purpose of this study was to assess the physicochemical quality of surface water in irrigation systems at 141 farms. METHODS: To this end, 141 water samples were taken to determine 22 physicochemical parameters. All in-situ measurements and laboratory analysis were performed using standard methods. The results obtained were compared with the international standards proposed by the United Nations’ Food and Agriculture Organization and the World Health Organization. Salinity and sodicity were measured using the irrigation water classification diagram, and the level of correlation between the 22 variables was assessed by means of correlation analysis. FINDINGS: The results obtained indicate that based on the measured parameters, the water is classified as appropriate for use in irrigation systems. The maximum and minimum pH values were 9.32 and 4.40, respectively; the maximum and minimum values of electrical conductivity were 669 and 19.80 µS/cm respectively; the maximum and minimum values of total dissolved solids were 478 and 11.80 mg/L respectively, and the maximum and minimum values of the sodium adsorption ratio were 1.72 and 0.01 mEq/L, respectively. CONCLUSION: Cation and anion concentrations were within the limits allowed by the Food and Agriculture Organization and the WHO. According to the irrigation water classification diagram, the waters were classified as C1S1 and C2S1, which implies that there are no restrictions for their use in irrigation systems, water type (I) and type (II).
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-05T14:25:52Z
dc.date.available.none.fl_str_mv 2022-07-05T14:25:52Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Guerra Tamara, B., Torregroza-Espinosa, A., Pinto Osorio, D., Moreno Pallares, M., Corrales Paternina, A., Echeverría González, A. (2022). Implications of irrigation water quality in tropical farms. Global Journal of Environmental Science and Management, 8(1), 75-86. doi: 10.22034/GJESM.2022.01.06
dc.identifier.issn.spa.fl_str_mv 2383-3572
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9332
dc.identifier.doi.spa.fl_str_mv 10.22034/gjesm.2022.01.06
dc.identifier.eissn.spa.fl_str_mv 2383-3866
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Guerra Tamara, B., Torregroza-Espinosa, A., Pinto Osorio, D., Moreno Pallares, M., Corrales Paternina, A., Echeverría González, A. (2022). Implications of irrigation water quality in tropical farms. Global Journal of Environmental Science and Management, 8(1), 75-86. doi: 10.22034/GJESM.2022.01.06
2383-3572
10.22034/gjesm.2022.01.06
2383-3866
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9332
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Global Journal of Environmental Science and Management
dc.relation.references.spa.fl_str_mv Adeyemi, O.; Grove, I.; Peets, S.; Norton, T., (2017). Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation. Sustainability, 9: 353 (29 pages).
Afed Ullah, K.; Jiang, J.; Wang, P., (2018). Land use impacts on surface water quality by statistical approaches. Global J. Environ. Sci. Manage., 4(2): 231-250 (20 pages).
Ahmed, S.; Khurshid, S.; Madan, R.; Abu Amarah, B.A.; Naushad, M., (2020). Water quality assessment of shallow aquifer based on Canadian Council of Ministers of the environment index and its impact on irrigation of Mathura District, Uttar Pradesh. J. King Saud. Univ. - Sci., 32: 1218–1225 (8 pages).
American Public Health Association – APHA, (2017). Standard methods for examination of water and wastewater. 23rd Ed. Washington DC, USA (1546 pages).
Arhad, M.; Shakoor, A., (2017). Irrigation water quality. Water Int., 12(1-2): 145-160 (17 pages).
Bauder, T.A.; Waskom, R.M.; Sutherland, P.L.; Davis, J.G., (2019). Irrigation Water Quality Criteria. Irrigation With Reclaimed Municipal Wastewater - A Guidance Manual, 1-4 (4 pages).
Betancourt Aguilar, C.; Tartabull Puñales, T.; Labaut Betancourt, Y., (2017). El manejo integrado del agua en la agricultura: necesidad de implementación y aspectos vinculados. Revista para la Transformación Agraria Sostenible, 5: 40–54 (15 pages).
Bouaroudj, S.; Menad, A.; Bounamous, A.; Ali-Khodja, H.; Gherib, A.; Weigel, D.E.; Chenchouni, H., (2019). Assessment of water quality at the largest dam in Algeria (Beni Haroun Dam) and effects of irrigation on soil characteristics of agricultural lands. Chemosphere, 219: 76–88 (13 pages).
Bortolini, L.; Maucieri, C.; Borin, M., (2018). A Tool for the Evaluation of Irrigation Water Quality in the Arid and Semi-Arid Regions. Agronomy. 8: 23 (15 pages).
Bustamante, N.; Danoucaras, N.; McIntyre, N.; Díaz-Martínez J.; Restrepo-Baena, O.J., (2016). Review of improving the water management for the informal gold mining in Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, 79: 174-184 (11 pages).
DNP, (2003). Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). Programa de Desarrollo sostenible de la región de La Mojana, Bogotá. Departamento Nacional de Planeación (567 pages).
Douti, N.; Ebenezer, A.; Abanyie, S., (2021). Irrigation water quality and its impact on the physicochemical and icrobiological contamination of vegetables produced from market gardening: a case of the Vea Irrigation Dam, U.E.R. Ghana. J. Water Health, 19 (2): 203–215 (13 pages).
Dumago, S.W.L.; Puno, G.R.; Ingotan, S.S., (2018). Water quality assessment in various land use and land cover of Muleta Watershed Bukidnon, Philippines. J. Biodivers. Environ. Sci., 12(3): 201-209 (9 pages).
Etteieb, S.; Cherif, S.; Tarhouni, J., (2017). Hydrochemical assessment of water quality for irrigation: a case study of the Medjerda River in Tunisia. Appl. Water Sci., 7: 469–480 (11 pages).
Ewaid, S.H.; Kadhum, S.A.; Abed, S.A.; Salih, R.M., (2019). Development and evaluation of irrigation water quality guide using IWQG V.1 software: A case study of Al-Gharraf Canal, Southern Iraq. Environ. Technol. Innov., 13: 224–232 (8 pages).
FAO, (2015). AQUASTAT Perfil de país – Colombia. Food and Agriculture Organization of the United Nations (21 pages).
FAO, (2021). Water quality land and water. Food and Agriculture Organization of the United Nations Land and Water. Faye, C., (2019). Water Resources and Their Management in an Increasing Urban Demography: The Case of Dakar City in Senegal, Resources of Water, Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq. IntechOpen (20 pages).
Gómez, C.; José, J.; Muñoz, B.; Rodríguez, H.; Lourdes, M., (2015). Calidad del agua para riego en la agricultura protegida en Tlaxcala. Revista Académica de la FI-UDAY, 19(1): 39–50 (12 pages).
González Castillo, L.; Thomas Manzano, J.; Hernández Tabaco, B., (2020). Caracterización del agua de riego en 90 fincas propuestas para 18 modelos agroecológicos en Norte de Santander, Colombia. Inge CUC, 16(2): 1–15 (15 pages).
Guerrero Guio, J.; Castillo González, L.; Rodríguez Cely, N., (2021). Calidad de agua para riego de 60 finca agroecológicas de 4 municipios del departamento de Boyacá. Inge CUC, 17(1): 1-16 (16 pages).
Haritash, A.K.; Gaur, S.; Garg, S., (2016). Assessment of water quality and suitability analysis of River Ganga in Rishikesh, India. Appl. Water Sci., 6: 383–392 (10 pages).
IDEAM, (2002). Guide for the monitoring of discharges, surface water and groundwater. Bogotá D.C. nstituto de Hidrología, Meteorología y Estudios Ambientales (587 pages).
IDEAM, (2012). Demanda agua - Instituto de Hidrología, Meteorología y Estudios Ambientales.
INTAGRI, (2018). Clasificación de agua para riego Agrícola. Serie de Agua y Riego. No. 20. Artículo técnico de Instituto para la Innovación Tecnológica en Agricultura , 5: 1-5 (5 pages).
IPCC, (2019). Climate Change and Land. Intergovernmental Panel on Climate Change (41 pages).
Jahin, H.S.; Abuzaid, A.S.; Abdellatif, A.D., (2020). Using multivariate analysis to develop irrigation water quality index for surface water in Kafr El-Sheikh Governorate, Egypt. Environ. Technol. Innov., 17: 100532 (12 pages).
Kushal, R., (2015). Irrigation water quality assessment and identification of river pollution sources in Bangladesh: Implications in policy and management. J. Water Resour. Hydraul. Eng., 4: 303–317 (14 pages).
Lamont, B., (2012). Maintaining Drip Irrigation Systems. Penn State Extension (6 pages).
Li, X.; Kang, Y., (2020). Agricultural utilization and vegetation establishment on saline-sodic soils using a water–salt regulation method for scheduled drip irrigation. Agric. Water Manage., 231: 105995 (11 pages).
Lissbrant, S.; Espitia, P.J.P.; Mendoza, A., (2018). Challenges faced by smallholder farmers in a former conflict area in Colombia: the case of Montes de María. Investigación y Desarrollo, 26(2): 6-39 (34 pages).
Medina Valdovinos, E.K.; Mancilla Villa, O.R.; Larios, M.M.; Guevara Gutiérrez, R.D.; Olguín López, J.L.; Barreto García, O.A., (2016). Quality water for irrigation and agricultural land in tuxcacuesco, jalisco. Idesia, 34(6): 51–59 (6 pages).
MINIAMBIENTE, (2015). Decreto 1076. Ministerio del Medio Ambiente y Desarrollo Sostenible (654 pages).
Miranda, D.; Carranza, C.; Fischer, G., (2008). Calidad de agua de riego en la sabana de Bogotá. 1rd. Ed. Gente Nueva Editorial (252 pages).
Quinteros Carabalí, J.A.; Gómez-García, J.; Solano, M.; Llumiquinga, G.; Burgos, C.; Carrera-Villacrés, D., (2019).
Evaluación de la calidad de agua para riego y aprovechamiento del recurso hídrico de la quebrada Togllahuayco. Siembra, 6: 46-57 (12 pages).
R Core Team, (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Saaltink, R.M.; Dekker, S.C.; Eppinga, M.B.; Griffioen, J.; Wassen, M.J., (2017). Plant-specific effects of iron-toxicity in wetlands. Plant Soil, 416: 83–96 (14 pages).
Sekhon, K.S.; Kaur, A.; Thaman, S.; Sidhu, A.S.; Garg, N.; Choudhary, O.P.; Buttar, G.S.; Chawla, N., (2020). Irrigation water quality and mulching effects on tuber yield and soil properties in potato (Solanum tuberosum L.) under semi-arid conditions of Indian Punjab. F. Crop. Res., 247:107544 (11 pages).
Shah, B.; Kansara, B.; Shankar, J.; Soni, M.; Bhimjiyani, P.; Bhanushali, T.; Shah, M.; Sircar, A., (2019). Reckoning of water quality for irrigation and drinking purposes in the konkan geothermal provinces, Maharashtra, India. Groundw. Sustainable Dev., 9: 1-10 (10 pages).
Shahid, S. A.; Mahmoudi, H. (2014). National strategy to improve plant and animal production in the United Arab Emirates. Soil and water resources Annexes.
Shahid, S.A.; Zaman, M.; Heng, L., (2018). Introduction to Soil Salinity, Sodicity and Diagnostics Techniques. In: Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. 1st. Ed. Springer open (183 pages).
Taghizadehghasab, A.; Safadoust, A.; Mosaddeghi, M.R., (2021). Effects of salinity and sodicity of water on friability of two texturally-different soils at different matric potentials. Soil Tillage Res., 209: 104950 (11 pages).
Tartabull Puñales, T.; Betancourt Aguilar, C., (2016). La calidad del agua para el riego. Principales indicadores de medida y procesos que la impactan. Agro-ecosistemas. 4: 46-60 (15 pages).
Valles-Aragón, M.C.; Ojeda-Barrios, D.L.; Guerrero-Prieto, V.M.; Prieto-Amparan, J.A.; Sánchez-Chávez, E., (2017). Calidad del agua para riego en una zona nogalera del estado de Chihuahua. Rev. Int. Contam. Ambient., 33: 85–97 (13 pages).
WHO, (2016). Guías para la calidad del agua potable: Recomendaciones. World Health Organization (408 pages).
Yan, S.; Gao, Y.; Tian, M.; Tian, Y.; Li, J.,(2021). Comprehensive evaluation of effects of various carbon-rich amendments on tomato production under continuous saline water irrigation: Overall soil quality, plant nutrient uptake, crop yields and fruit quality. Agric. Water Manage., 255: 106995 (12 pages).
Zakir, H. M; Sharmin, S; Rahman, S., (2020). Assessment of health risk of heavy metals and water quality indices for irrigation and drinking suitability of waters: a case study of Jamalpur Sadar are, Bangladesh. Environ. Adv., 2: 100005 (14 pages).
Zaman, M.; Shahid, S. A.; Heng, L., (2018). Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. In: Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. 1st. Ed. Springer open (183 pages).
dc.relation.citationendpage.spa.fl_str_mv 86
dc.relation.citationstartpage.spa.fl_str_mv 75
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 8
dc.rights.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© Journal Management System. Powered by ejournalplus.
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© Journal Management System. Powered by ejournalplus.
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Global Journal of Environmental Science and Management
dc.publisher.place.spa.fl_str_mv Iran
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.gjesm.net/article_244642.html
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/929909cc-f16e-498b-8008-42b28a4eeb03/download
https://repositorio.cuc.edu.co/bitstreams/7ef1c031-f0bf-49cf-8fc2-bc5f57c44862/download
https://repositorio.cuc.edu.co/bitstreams/f1fc3a5a-1413-4711-8e07-89237053bec6/download
https://repositorio.cuc.edu.co/bitstreams/712a0cce-33bf-400a-95ad-acdb4659c9bd/download
bitstream.checksum.fl_str_mv 0e2043d1982940e7d7a34f1e2af0aacf
e30e9215131d99561d40d6b0abbe9bad
87f609699a967295ef4e319afa1f824d
6f8b6f2d531dbbe3524533fdbf2b5145
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760672483049472
spelling Guerra , Tamara Torregroza Espinosa, Ana CarolinaMoreno Pallares, María InésPaternina Corrales, AOsorio Pinto, DEcheverría-González, Ana2022-07-05T14:25:52Z2022-07-05T14:25:52Z2022Guerra Tamara, B., Torregroza-Espinosa, A., Pinto Osorio, D., Moreno Pallares, M., Corrales Paternina, A., Echeverría González, A. (2022). Implications of irrigation water quality in tropical farms. Global Journal of Environmental Science and Management, 8(1), 75-86. doi: 10.22034/GJESM.2022.01.062383-3572https://hdl.handle.net/11323/933210.22034/gjesm.2022.01.062383-3866Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/BACKGROUND AND OBJECTIVES: Irrigation system water quality is a complex issue that involves the combined effects of various surface water management parameters. Monitoring of irrigation water quality is essential for the sustainability of crop production and productivity. The department of Sucre, in northern Colombia, is predominantly a ranching and agricultural region where agriculture is the main source for livelihoods. The purpose of this study was to assess the physicochemical quality of surface water in irrigation systems at 141 farms. METHODS: To this end, 141 water samples were taken to determine 22 physicochemical parameters. All in-situ measurements and laboratory analysis were performed using standard methods. The results obtained were compared with the international standards proposed by the United Nations’ Food and Agriculture Organization and the World Health Organization. Salinity and sodicity were measured using the irrigation water classification diagram, and the level of correlation between the 22 variables was assessed by means of correlation analysis. FINDINGS: The results obtained indicate that based on the measured parameters, the water is classified as appropriate for use in irrigation systems. The maximum and minimum pH values were 9.32 and 4.40, respectively; the maximum and minimum values of electrical conductivity were 669 and 19.80 µS/cm respectively; the maximum and minimum values of total dissolved solids were 478 and 11.80 mg/L respectively, and the maximum and minimum values of the sodium adsorption ratio were 1.72 and 0.01 mEq/L, respectively. CONCLUSION: Cation and anion concentrations were within the limits allowed by the Food and Agriculture Organization and the WHO. According to the irrigation water classification diagram, the waters were classified as C1S1 and C2S1, which implies that there are no restrictions for their use in irrigation systems, water type (I) and type (II).12 páginasapplication/pdfengGlobal Journal of Environmental Science and ManagementIranAtribución 4.0 Internacional (CC BY 4.0)© Journal Management System. Powered by ejournalplus.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Implications of irrigation water quality in tropical farmsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.gjesm.net/article_244642.htmlGlobal Journal of Environmental Science and ManagementAdeyemi, O.; Grove, I.; Peets, S.; Norton, T., (2017). Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation. Sustainability, 9: 353 (29 pages).Afed Ullah, K.; Jiang, J.; Wang, P., (2018). Land use impacts on surface water quality by statistical approaches. Global J. Environ. Sci. Manage., 4(2): 231-250 (20 pages).Ahmed, S.; Khurshid, S.; Madan, R.; Abu Amarah, B.A.; Naushad, M., (2020). Water quality assessment of shallow aquifer based on Canadian Council of Ministers of the environment index and its impact on irrigation of Mathura District, Uttar Pradesh. J. King Saud. Univ. - Sci., 32: 1218–1225 (8 pages).American Public Health Association – APHA, (2017). Standard methods for examination of water and wastewater. 23rd Ed. Washington DC, USA (1546 pages).Arhad, M.; Shakoor, A., (2017). Irrigation water quality. Water Int., 12(1-2): 145-160 (17 pages).Bauder, T.A.; Waskom, R.M.; Sutherland, P.L.; Davis, J.G., (2019). Irrigation Water Quality Criteria. Irrigation With Reclaimed Municipal Wastewater - A Guidance Manual, 1-4 (4 pages).Betancourt Aguilar, C.; Tartabull Puñales, T.; Labaut Betancourt, Y., (2017). El manejo integrado del agua en la agricultura: necesidad de implementación y aspectos vinculados. Revista para la Transformación Agraria Sostenible, 5: 40–54 (15 pages).Bouaroudj, S.; Menad, A.; Bounamous, A.; Ali-Khodja, H.; Gherib, A.; Weigel, D.E.; Chenchouni, H., (2019). Assessment of water quality at the largest dam in Algeria (Beni Haroun Dam) and effects of irrigation on soil characteristics of agricultural lands. Chemosphere, 219: 76–88 (13 pages).Bortolini, L.; Maucieri, C.; Borin, M., (2018). A Tool for the Evaluation of Irrigation Water Quality in the Arid and Semi-Arid Regions. Agronomy. 8: 23 (15 pages).Bustamante, N.; Danoucaras, N.; McIntyre, N.; Díaz-Martínez J.; Restrepo-Baena, O.J., (2016). Review of improving the water management for the informal gold mining in Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, 79: 174-184 (11 pages).DNP, (2003). Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). Programa de Desarrollo sostenible de la región de La Mojana, Bogotá. Departamento Nacional de Planeación (567 pages).Douti, N.; Ebenezer, A.; Abanyie, S., (2021). Irrigation water quality and its impact on the physicochemical and icrobiological contamination of vegetables produced from market gardening: a case of the Vea Irrigation Dam, U.E.R. Ghana. J. Water Health, 19 (2): 203–215 (13 pages).Dumago, S.W.L.; Puno, G.R.; Ingotan, S.S., (2018). Water quality assessment in various land use and land cover of Muleta Watershed Bukidnon, Philippines. J. Biodivers. Environ. Sci., 12(3): 201-209 (9 pages).Etteieb, S.; Cherif, S.; Tarhouni, J., (2017). Hydrochemical assessment of water quality for irrigation: a case study of the Medjerda River in Tunisia. Appl. Water Sci., 7: 469–480 (11 pages).Ewaid, S.H.; Kadhum, S.A.; Abed, S.A.; Salih, R.M., (2019). Development and evaluation of irrigation water quality guide using IWQG V.1 software: A case study of Al-Gharraf Canal, Southern Iraq. Environ. Technol. Innov., 13: 224–232 (8 pages).FAO, (2015). AQUASTAT Perfil de país – Colombia. Food and Agriculture Organization of the United Nations (21 pages).FAO, (2021). Water quality land and water. Food and Agriculture Organization of the United Nations Land and Water. Faye, C., (2019). Water Resources and Their Management in an Increasing Urban Demography: The Case of Dakar City in Senegal, Resources of Water, Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq. IntechOpen (20 pages).Gómez, C.; José, J.; Muñoz, B.; Rodríguez, H.; Lourdes, M., (2015). Calidad del agua para riego en la agricultura protegida en Tlaxcala. Revista Académica de la FI-UDAY, 19(1): 39–50 (12 pages).González Castillo, L.; Thomas Manzano, J.; Hernández Tabaco, B., (2020). Caracterización del agua de riego en 90 fincas propuestas para 18 modelos agroecológicos en Norte de Santander, Colombia. Inge CUC, 16(2): 1–15 (15 pages).Guerrero Guio, J.; Castillo González, L.; Rodríguez Cely, N., (2021). Calidad de agua para riego de 60 finca agroecológicas de 4 municipios del departamento de Boyacá. Inge CUC, 17(1): 1-16 (16 pages).Haritash, A.K.; Gaur, S.; Garg, S., (2016). Assessment of water quality and suitability analysis of River Ganga in Rishikesh, India. Appl. Water Sci., 6: 383–392 (10 pages).IDEAM, (2002). Guide for the monitoring of discharges, surface water and groundwater. Bogotá D.C. nstituto de Hidrología, Meteorología y Estudios Ambientales (587 pages).IDEAM, (2012). Demanda agua - Instituto de Hidrología, Meteorología y Estudios Ambientales.INTAGRI, (2018). Clasificación de agua para riego Agrícola. Serie de Agua y Riego. No. 20. Artículo técnico de Instituto para la Innovación Tecnológica en Agricultura , 5: 1-5 (5 pages).IPCC, (2019). Climate Change and Land. Intergovernmental Panel on Climate Change (41 pages).Jahin, H.S.; Abuzaid, A.S.; Abdellatif, A.D., (2020). Using multivariate analysis to develop irrigation water quality index for surface water in Kafr El-Sheikh Governorate, Egypt. Environ. Technol. Innov., 17: 100532 (12 pages).Kushal, R., (2015). Irrigation water quality assessment and identification of river pollution sources in Bangladesh: Implications in policy and management. J. Water Resour. Hydraul. Eng., 4: 303–317 (14 pages).Lamont, B., (2012). Maintaining Drip Irrigation Systems. Penn State Extension (6 pages).Li, X.; Kang, Y., (2020). Agricultural utilization and vegetation establishment on saline-sodic soils using a water–salt regulation method for scheduled drip irrigation. Agric. Water Manage., 231: 105995 (11 pages).Lissbrant, S.; Espitia, P.J.P.; Mendoza, A., (2018). Challenges faced by smallholder farmers in a former conflict area in Colombia: the case of Montes de María. Investigación y Desarrollo, 26(2): 6-39 (34 pages).Medina Valdovinos, E.K.; Mancilla Villa, O.R.; Larios, M.M.; Guevara Gutiérrez, R.D.; Olguín López, J.L.; Barreto García, O.A., (2016). Quality water for irrigation and agricultural land in tuxcacuesco, jalisco. Idesia, 34(6): 51–59 (6 pages).MINIAMBIENTE, (2015). Decreto 1076. Ministerio del Medio Ambiente y Desarrollo Sostenible (654 pages).Miranda, D.; Carranza, C.; Fischer, G., (2008). Calidad de agua de riego en la sabana de Bogotá. 1rd. Ed. Gente Nueva Editorial (252 pages).Quinteros Carabalí, J.A.; Gómez-García, J.; Solano, M.; Llumiquinga, G.; Burgos, C.; Carrera-Villacrés, D., (2019).Evaluación de la calidad de agua para riego y aprovechamiento del recurso hídrico de la quebrada Togllahuayco. Siembra, 6: 46-57 (12 pages).R Core Team, (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Saaltink, R.M.; Dekker, S.C.; Eppinga, M.B.; Griffioen, J.; Wassen, M.J., (2017). Plant-specific effects of iron-toxicity in wetlands. Plant Soil, 416: 83–96 (14 pages).Sekhon, K.S.; Kaur, A.; Thaman, S.; Sidhu, A.S.; Garg, N.; Choudhary, O.P.; Buttar, G.S.; Chawla, N., (2020). Irrigation water quality and mulching effects on tuber yield and soil properties in potato (Solanum tuberosum L.) under semi-arid conditions of Indian Punjab. F. Crop. Res., 247:107544 (11 pages).Shah, B.; Kansara, B.; Shankar, J.; Soni, M.; Bhimjiyani, P.; Bhanushali, T.; Shah, M.; Sircar, A., (2019). Reckoning of water quality for irrigation and drinking purposes in the konkan geothermal provinces, Maharashtra, India. Groundw. Sustainable Dev., 9: 1-10 (10 pages).Shahid, S. A.; Mahmoudi, H. (2014). National strategy to improve plant and animal production in the United Arab Emirates. Soil and water resources Annexes.Shahid, S.A.; Zaman, M.; Heng, L., (2018). Introduction to Soil Salinity, Sodicity and Diagnostics Techniques. In: Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. 1st. Ed. Springer open (183 pages).Taghizadehghasab, A.; Safadoust, A.; Mosaddeghi, M.R., (2021). Effects of salinity and sodicity of water on friability of two texturally-different soils at different matric potentials. Soil Tillage Res., 209: 104950 (11 pages).Tartabull Puñales, T.; Betancourt Aguilar, C., (2016). La calidad del agua para el riego. Principales indicadores de medida y procesos que la impactan. Agro-ecosistemas. 4: 46-60 (15 pages).Valles-Aragón, M.C.; Ojeda-Barrios, D.L.; Guerrero-Prieto, V.M.; Prieto-Amparan, J.A.; Sánchez-Chávez, E., (2017). Calidad del agua para riego en una zona nogalera del estado de Chihuahua. Rev. Int. Contam. Ambient., 33: 85–97 (13 pages).WHO, (2016). Guías para la calidad del agua potable: Recomendaciones. World Health Organization (408 pages).Yan, S.; Gao, Y.; Tian, M.; Tian, Y.; Li, J.,(2021). Comprehensive evaluation of effects of various carbon-rich amendments on tomato production under continuous saline water irrigation: Overall soil quality, plant nutrient uptake, crop yields and fruit quality. Agric. Water Manage., 255: 106995 (12 pages).Zakir, H. M; Sharmin, S; Rahman, S., (2020). Assessment of health risk of heavy metals and water quality indices for irrigation and drinking suitability of waters: a case study of Jamalpur Sadar are, Bangladesh. Environ. Adv., 2: 100005 (14 pages).Zaman, M.; Shahid, S. A.; Heng, L., (2018). Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. In: Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. 1st. Ed. Springer open (183 pages).867518Crops yieldPhysicochemical characteristicsSalinityWater and soil pollutionPublicationORIGINALImplications of irrigation water quality in tropical farms.pdfImplications of irrigation water quality in tropical farms.pdfapplication/pdf748929https://repositorio.cuc.edu.co/bitstreams/929909cc-f16e-498b-8008-42b28a4eeb03/download0e2043d1982940e7d7a34f1e2af0aacfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/7ef1c031-f0bf-49cf-8fc2-bc5f57c44862/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTImplications of irrigation water quality in tropical farms.pdf.txtImplications of irrigation water quality in tropical farms.pdf.txttext/plain52876https://repositorio.cuc.edu.co/bitstreams/f1fc3a5a-1413-4711-8e07-89237053bec6/download87f609699a967295ef4e319afa1f824dMD53THUMBNAILImplications of irrigation water quality in tropical farms.pdf.jpgImplications of irrigation water quality in tropical farms.pdf.jpgimage/jpeg11512https://repositorio.cuc.edu.co/bitstreams/712a0cce-33bf-400a-95ad-acdb4659c9bd/download6f8b6f2d531dbbe3524533fdbf2b5145MD5411323/9332oai:repositorio.cuc.edu.co:11323/93322024-09-16 16:42:18.983https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==