Predicting toxicity properties through machine learning

It is currently known that the high power of a drug does not fully determine its efficacy. Several properties must also be considered, including absorption, distribution, metabolism, excretion and toxicity [8]. These are the ADME-Tox properties, which are fundamental in the discovery of new effectiv...

Full description

Autores:
Borrero, Luz Adriana
Sanchez Guette, Lilibeth
Lopez, Enrique
Pineda, Omar
BUELVAS CASTRO, EDGARDO MANUEL
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7802
Acceso en línea:
https://hdl.handle.net/11323/7802
https://doi.org/10.1016/j.procs.2020.03.093
https://repositorio.cuc.edu.co/
Palabra clave:
Supervised
unsupervised learning machines
support vector machine (SVM)
artificial neural networks (ANN)
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_adf09259133e66a7527f5832506ca5ea
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7802
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Predicting toxicity properties through machine learning
title Predicting toxicity properties through machine learning
spellingShingle Predicting toxicity properties through machine learning
Supervised
unsupervised learning machines
support vector machine (SVM)
artificial neural networks (ANN)
title_short Predicting toxicity properties through machine learning
title_full Predicting toxicity properties through machine learning
title_fullStr Predicting toxicity properties through machine learning
title_full_unstemmed Predicting toxicity properties through machine learning
title_sort Predicting toxicity properties through machine learning
dc.creator.fl_str_mv Borrero, Luz Adriana
Sanchez Guette, Lilibeth
Lopez, Enrique
Pineda, Omar
BUELVAS CASTRO, EDGARDO MANUEL
dc.contributor.author.spa.fl_str_mv Borrero, Luz Adriana
Sanchez Guette, Lilibeth
Lopez, Enrique
Pineda, Omar
BUELVAS CASTRO, EDGARDO MANUEL
dc.subject.spa.fl_str_mv Supervised
unsupervised learning machines
support vector machine (SVM)
artificial neural networks (ANN)
topic Supervised
unsupervised learning machines
support vector machine (SVM)
artificial neural networks (ANN)
description It is currently known that the high power of a drug does not fully determine its efficacy. Several properties must also be considered, including absorption, distribution, metabolism, excretion and toxicity [8]. These are the ADME-Tox properties, which are fundamental in the discovery of new effective and safe drugs. Since ignoring these properties is the main cause of failure in the development of new drugs, it is understandable that some techniques arise, such as machine learning, which apply some predictor variables as molecular characteristics to obtain models to determine some of these ADME-Tox properties. In silico models are booming because of the exorbitant expenses involved in discovering a new drug using traditional trial-and-error methods [2], and they have proven to be an effective approach to increase efficiency in drug discovery and development processes. The objective of this study is to analyze the best current machine learning techniques for predicting toxicity as an ADME-Tox property.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-29T21:00:17Z
dc.date.available.none.fl_str_mv 2021-01-29T21:00:17Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7802
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.procs.2020.03.093
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7802
https://doi.org/10.1016/j.procs.2020.03.093
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1 Clark AM, Dole K, Coulon-Spektor A, McNutt A, Grass G, Freundlich JS, et al. Open Source Bayesian Models. 1. Application to ADME/Tox and Drug Discovery Datasets Journal of Chemical Information and Modeling, 55 (6) (2015), pp. 1231-1245 Jun 22
2 Ekins S, Mestres J, Testa B In silico pharmacology for drug discovery: applications to targets and beyond British Journal of Pharmacology., 152 (1) (2007), pp. 21-37 Sep
3 Ekins S Progress in computational toxicology Journal of Pharmacological and Toxicological Methods., 69 (2) (2014), pp. 115-140 Mar
4 Hecht D Applications of machine learning and computational intelligence to drug discovery and development Drug Development Research., 72 (1) (2011), pp. 53-65 Feb
5 Hou T, Wang J, Li Y ADME Evaluation in Drug Discovery. 8. The Prediction of Human Intestinal Absorption by a Support Vector Machine Journal of Chemical Information and Modeling, 47 (6) (2007), pp. 2408-2415 Nov
6 International Multimedia Resource Center, «RAM vs. Hard Drive Memory, » 2018. [En línea]. Available: https://www.lehigh.edu/~inimr/computer-basics- tutorial/ramvsdiskspacehtm.htm. [Último acceso: 13 noviembre 2018].
7 Kanehisa Laboratories, «KEGG: Kyoto Encyclopedia of Genes and Genome,» 2018. [En línea]. Available: https://www.genome.jp/kegg/. [Último acceso: 25 07 2018].
8 United States Environmental Protection Agency, Appendix F. SMILES Notation Tutorial, Washington D.C., 2017.
9 United States Environmental Protection Agency, «SMILES Tutorial,» 21 febrero 2016. [En línea]. Available: https://archive.epa.gov/med/med_archive_03/web/html/smiles.html. [Último acceso: 26 Julio 2018].
10 Daylight Chemical Information Systems, «4. SMARTS - A Language for Describing Molecular Patterns, » 2008. [En línea]. Available: http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. [Último acceso: 26 Julio 2018].
11 Lantz B Machine learning with R: learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications, Packt Publ, Birmingham (2013)
12 Maltarollo VG, Gertrudes JC, Oliveira PR, Honorio KM Applying machine learning techniques for ADME-Tox prediction: a review Expert Opinion on Drug Metabolism & Toxicology., 11 (2) (2015), pp. 259-271 Feb
13 Shen J, Cheng F, Xu Y, Li W, Tang Y Estimation of ADME Properties with Substructure Pattern Recognition Journal of Chemical Information and Modeling., 50 (6) (2010), pp. 1034-1041 Jun 28
14 Bucci, N., Luna, M., Viloria, A., García, J.H., Parody, A., Varela, N., & López, L.A.B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham.
15 Kyoto Encyclopedia of Genes and Genomes, «KEGG Release Notes, » [En línea].
16 Kyoto Encyclopedia of Genes and Genomes, «KEGG release history, » 2018.
17 M. Linderman, J. Sorenson, L. Lee, G. Nolan Computational solutions to large-scale data management and analysis Nature Reviews Genetics, 11 (2010), pp. 647-657
18 L. Wang, X. Qung Xie Computational target fishing: what should chemogenomics researchers expect for the future of in silico drug design and discovery? Future Med Chem, 6 (3) (2014), pp. 247-249
19 Viloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J.P., Parody, A., Bent, D.E.S., & López, L.A.B. (2018, June). Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In International Conference on Data Mining and Big Data (pp. 304-313). Springer, Cham.
20 J. Swamidass†, P. Baldi Mathematical Correction for Fingerprint Similarity Measures to Improve Chemical Retrieval Journal of Chemical Information and Modeling, 47 (1) (2006), pp. 952-964
21 S. Arif, J. Holliday, P. Willett Comparison of chemical similarity measures using different numbers of query structures Journal of Information Science, 39 (1) (2013), pp. 1-8
22 Gamero, W.M., Ramírez, M.C., Parody, A., Viloria, A., López, M.H.A., & Kamatkar, S.J. (2018, June). Concentrations and size distributions of fungal bioaerosols in a municipal landfill. In International Conference on Data Mining and Big Data (pp. 244-253). Springer, Cham.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050920305317#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/28f27a18-7f9e-49ac-8e1d-9f97fb301063/download
https://repositorio.cuc.edu.co/bitstreams/3c181af7-633e-4577-9557-10efc98c598e/download
https://repositorio.cuc.edu.co/bitstreams/378dd5f9-70a6-4f7c-8b39-edec3852a5a1/download
https://repositorio.cuc.edu.co/bitstreams/f00007da-7c5b-41ac-8a13-fc1d833be15d/download
https://repositorio.cuc.edu.co/bitstreams/d5e148cc-7cdc-40c7-8ae4-c1a9ae569231/download
bitstream.checksum.fl_str_mv 56955ee69d5c4ea4ec05226bfb6f2f6b
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
e6e7e52d4dcb7c3b456f3b6a0b195c7e
24b287b8172d8944fbaf23dbc15cff78
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166843382104064
spelling Borrero, Luz AdrianaSanchez Guette, LilibethLopez, EnriquePineda, OmarBUELVAS CASTRO, EDGARDO MANUEL2021-01-29T21:00:17Z2021-01-29T21:00:17Z2020https://hdl.handle.net/11323/7802https://doi.org/10.1016/j.procs.2020.03.093Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/It is currently known that the high power of a drug does not fully determine its efficacy. Several properties must also be considered, including absorption, distribution, metabolism, excretion and toxicity [8]. These are the ADME-Tox properties, which are fundamental in the discovery of new effective and safe drugs. Since ignoring these properties is the main cause of failure in the development of new drugs, it is understandable that some techniques arise, such as machine learning, which apply some predictor variables as molecular characteristics to obtain models to determine some of these ADME-Tox properties. In silico models are booming because of the exorbitant expenses involved in discovering a new drug using traditional trial-and-error methods [2], and they have proven to be an effective approach to increase efficiency in drug discovery and development processes. The objective of this study is to analyze the best current machine learning techniques for predicting toxicity as an ADME-Tox property.Borrero, Luz AdrianaSanchez Guette, LilibethLopez, EnriquePineda, Omar-will be generated-orcid-0000-0002-8239-3906-600BUELVAS CASTRO, EDGARDO MANUEL-will be generated-orcid-0000-0002-3097-1997-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050920305317#!Supervisedunsupervised learning machinessupport vector machine (SVM)artificial neural networks (ANN)Predicting toxicity properties through machine learningArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1 Clark AM, Dole K, Coulon-Spektor A, McNutt A, Grass G, Freundlich JS, et al. Open Source Bayesian Models. 1. Application to ADME/Tox and Drug Discovery Datasets Journal of Chemical Information and Modeling, 55 (6) (2015), pp. 1231-1245 Jun 222 Ekins S, Mestres J, Testa B In silico pharmacology for drug discovery: applications to targets and beyond British Journal of Pharmacology., 152 (1) (2007), pp. 21-37 Sep3 Ekins S Progress in computational toxicology Journal of Pharmacological and Toxicological Methods., 69 (2) (2014), pp. 115-140 Mar4 Hecht D Applications of machine learning and computational intelligence to drug discovery and development Drug Development Research., 72 (1) (2011), pp. 53-65 Feb5 Hou T, Wang J, Li Y ADME Evaluation in Drug Discovery. 8. The Prediction of Human Intestinal Absorption by a Support Vector Machine Journal of Chemical Information and Modeling, 47 (6) (2007), pp. 2408-2415 Nov6 International Multimedia Resource Center, «RAM vs. Hard Drive Memory, » 2018. [En línea]. Available: https://www.lehigh.edu/~inimr/computer-basics- tutorial/ramvsdiskspacehtm.htm. [Último acceso: 13 noviembre 2018].7 Kanehisa Laboratories, «KEGG: Kyoto Encyclopedia of Genes and Genome,» 2018. [En línea]. Available: https://www.genome.jp/kegg/. [Último acceso: 25 07 2018].8 United States Environmental Protection Agency, Appendix F. SMILES Notation Tutorial, Washington D.C., 2017.9 United States Environmental Protection Agency, «SMILES Tutorial,» 21 febrero 2016. [En línea]. Available: https://archive.epa.gov/med/med_archive_03/web/html/smiles.html. [Último acceso: 26 Julio 2018].10 Daylight Chemical Information Systems, «4. SMARTS - A Language for Describing Molecular Patterns, » 2008. [En línea]. Available: http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. [Último acceso: 26 Julio 2018].11 Lantz B Machine learning with R: learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications, Packt Publ, Birmingham (2013)12 Maltarollo VG, Gertrudes JC, Oliveira PR, Honorio KM Applying machine learning techniques for ADME-Tox prediction: a review Expert Opinion on Drug Metabolism & Toxicology., 11 (2) (2015), pp. 259-271 Feb13 Shen J, Cheng F, Xu Y, Li W, Tang Y Estimation of ADME Properties with Substructure Pattern Recognition Journal of Chemical Information and Modeling., 50 (6) (2010), pp. 1034-1041 Jun 2814 Bucci, N., Luna, M., Viloria, A., García, J.H., Parody, A., Varela, N., & López, L.A.B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham.15 Kyoto Encyclopedia of Genes and Genomes, «KEGG Release Notes, » [En línea].16 Kyoto Encyclopedia of Genes and Genomes, «KEGG release history, » 2018.17 M. Linderman, J. Sorenson, L. Lee, G. Nolan Computational solutions to large-scale data management and analysis Nature Reviews Genetics, 11 (2010), pp. 647-65718 L. Wang, X. Qung Xie Computational target fishing: what should chemogenomics researchers expect for the future of in silico drug design and discovery? Future Med Chem, 6 (3) (2014), pp. 247-24919 Viloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J.P., Parody, A., Bent, D.E.S., & López, L.A.B. (2018, June). Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In International Conference on Data Mining and Big Data (pp. 304-313). Springer, Cham.20 J. Swamidass†, P. Baldi Mathematical Correction for Fingerprint Similarity Measures to Improve Chemical Retrieval Journal of Chemical Information and Modeling, 47 (1) (2006), pp. 952-96421 S. Arif, J. Holliday, P. Willett Comparison of chemical similarity measures using different numbers of query structures Journal of Information Science, 39 (1) (2013), pp. 1-822 Gamero, W.M., Ramírez, M.C., Parody, A., Viloria, A., López, M.H.A., & Kamatkar, S.J. (2018, June). Concentrations and size distributions of fungal bioaerosols in a municipal landfill. In International Conference on Data Mining and Big Data (pp. 244-253). Springer, Cham.PublicationORIGINALPredicting toxicity properties through machine learning.pdfPredicting toxicity properties through machine learning.pdfapplication/pdf97522https://repositorio.cuc.edu.co/bitstreams/28f27a18-7f9e-49ac-8e1d-9f97fb301063/download56955ee69d5c4ea4ec05226bfb6f2f6bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/3c181af7-633e-4577-9557-10efc98c598e/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/378dd5f9-70a6-4f7c-8b39-edec3852a5a1/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILPredicting toxicity properties through machine learning.pdf.jpgPredicting toxicity properties through machine learning.pdf.jpgimage/jpeg35457https://repositorio.cuc.edu.co/bitstreams/f00007da-7c5b-41ac-8a13-fc1d833be15d/downloade6e7e52d4dcb7c3b456f3b6a0b195c7eMD54TEXTPredicting toxicity properties through machine learning.pdf.txtPredicting toxicity properties through machine learning.pdf.txttext/plain1346https://repositorio.cuc.edu.co/bitstreams/d5e148cc-7cdc-40c7-8ae4-c1a9ae569231/download24b287b8172d8944fbaf23dbc15cff78MD5511323/7802oai:repositorio.cuc.edu.co:11323/78022024-09-17 14:17:02.423http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==