Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium
Biochar was produced from the sawdust of the wood forest species Cedrella fissilis and later used as an adsorbent to remove atrazine herbicide from aqueous media. Biochar showed high thermal stability, an amorphous structure, and a highly irregular surface, mainly composed of carbon-containing bonds...
- Autores:
-
Hernandes, Paola T.
Dison S.P., Franco
georgin, jordana
P. G. Salau, Nina
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9184
- Acceso en línea:
- https://hdl.handle.net/11323/9184
https://doi.org/10.1016/j.jece.2022.107408
https://repositorio.cuc.edu.co/
- Palabra clave:
- Adsorption
Atrazine
Biochar
Pesticides
River water
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_ad40289be0262fbf8ef75daab7e4f990 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9184 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium |
title |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium |
spellingShingle |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium Adsorption Atrazine Biochar Pesticides River water |
title_short |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium |
title_full |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium |
title_fullStr |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium |
title_full_unstemmed |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium |
title_sort |
Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium |
dc.creator.fl_str_mv |
Hernandes, Paola T. Dison S.P., Franco georgin, jordana P. G. Salau, Nina Dotto, Guilherme Luiz |
dc.contributor.author.spa.fl_str_mv |
Hernandes, Paola T. Dison S.P., Franco georgin, jordana P. G. Salau, Nina Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Adsorption Atrazine Biochar Pesticides River water |
topic |
Adsorption Atrazine Biochar Pesticides River water |
description |
Biochar was produced from the sawdust of the wood forest species Cedrella fissilis and later used as an adsorbent to remove atrazine herbicide from aqueous media. Biochar showed high thermal stability, an amorphous structure, and a highly irregular surface, mainly composed of carbon-containing bonds. The isothermal curves confirmed that the increase in temperature favored the adsorption of the herbicide. The Langmuir model best suited the experimental equilibrium data, with the maximum adsorption capacity of 7.68 mg g-1 at 328 K. The thermodynamic parameters confirmed a spontaneous process of an endothermic nature governed by physical interactions (interactions of van der Waals and hydrogen bonds). Kinetic studies showed that equilibrium was reached within 180 min. The linear driving force model (LDF) showed good statistical adjustment to the experimental data, where it was observed that the diffusion coefficient increased with the concentration of adsorbate. Biochar can be reused in up to three cycles. Finally, the adsorbent showed good efficiency in real water samples from rivers contaminated with atrazine, with 76.58% and 71.29% removal. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-05-23T12:55:14Z |
dc.date.available.none.fl_str_mv |
2022-05-23T12:55:14Z 2024 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2213-3437 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9184 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.jece.2022.107408 |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.jece.2022.107408 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2213-3437 10.1016/j.jece.2022.107408 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9184 https://doi.org/10.1016/j.jece.2022.107408 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Environmental Chemical Engineering |
dc.relation.references.spa.fl_str_mv |
[1] T.B. Hayes, A. Collins, M. Lee, M. Mendoza, N. Noriega, A.A. Stuart, A. Vonk, Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 5476–5480, https://doi.org/10.1073/pnas.082121499. [2] J.P. Lasserre, F. Fack, D. Revets, S. Planchon, J. Renaut, L. Hoffmann, A.C. Gutleb, C.P. Muller, T. Bohn, Effects of the endocrine disruptors atrazine and PCB 153 on the protein expression of MCF-7 human cells, J. Proteome Res. 8 (2009) 5485–5496, https://doi.org/10.1021/pr900480f. [3] S. Rostami, S. Jafari, Z. Moeini, M. Jaskulak, L. Keshtgar, A. Badeenezhad, A. Azhdarpoor, M. Rostami, K. Zorena, M. Dehghani, Current methods and technologies for degradation of atrazine in contaminated soil and water: a review, Environ. Technol. Innov. 24 (2021), 102019, https://doi.org/10.1016/j.eti.2021.102019. [4] M. Shirmardi, N. Alavi, E.C. Lima, A. Takdastan, A.H. Mahvi, A.A. Babaei, Removal of atrazine as an organic micro-pollutant from aqueous solutions: a comparative study, Process Saf. Environ. Prot. 103 (2016) 23–35, https://doi.org/10.1016/j. psep.2016.06.014. [5] M. Graymore, F. Stagnitti, G. Allinson, Impacts of atrazine in aquatic ecosystems, Environ. Int. 26 (2001) 483–495, https://doi.org/10.1016/S0160-4120(01)00031-9. [6] G.W. Stratton, Effects of the herbicide atrazine and its degradation products, alone and in combination, on phototrophic microorganisms, Arch. Environ. Contam. Toxicol. 13 (1984) 35–42, https://doi.org/10.1007/BF01055644. [7] Z. Shamsollahi, A. Partovinia, Recent advances on pollutants removal by rice husk as a bio-based adsorbent: a critical review, J. Environ. Manag. 246 (2019) 314–323, https://doi.org/10.1016/j.jenvman.2019.05.145. [8] S. Sun, J. Zhu, Z. Zheng, J. Li, M. Gan, Biosynthesis of β-cyclodextrin modified Schwertmannite and the application in heavy metals adsorption, Powder Technol. 342 (2019) 181–192, https://doi.org/10.1016/j.powtec.2018.09.072. [9] H. Pang, Z. Diao, X. Wang, Y. Ma, S. Yu, H. Zhu, Z. Chen, B. Hu, J. Chen, X. Wang, Adsorptive and reductive removal of U(VI) by Dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater, Chem. Eng. J. 366 (2019) 368–377, https://doi.org/10.1016/j.cej.2019.02.098. [10] J. Qu, Y. Yuan, Q. Meng, G. Zhang, F. Deng, L. Wang, Y. Tao, Z. Jiang, Y. Zhang, Simultaneously enhanced removal and stepwise recovery of atrazine and Pb(II) from water using β–cyclodextrin functionalized cellulose: characterization, adsorptive performance and mechanism exploration, J. Hazard. Mater. 400 (2020), 123142, https://doi.org/10.1016/j.jhazmat.2020.123142. [11] L. Wu, B. Li, M. Liu, Influence of aromatic structure and substitution of carboxyl groups of aromatic acids on their sorption to biochars, Chemosphere 210 (2018) 239–246, https://doi.org/10.1016/j.chemosphere.2018.07.003. [12] Y. Dai, N. Zhang, C. Xing, Q. Cui, Q. Sun, The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review, Chemosphere 223 (2019) 12–27, https://doi.org/10.1016/j.chemosphere.2019.01.161. [13] J.S. Lazarotto, K. da Boit Martinello, J. Georgin, D.S.P. Franco, M.S. Netto, D.G. A. Piccilli, L.F.O. Silva, E.C. Lima, G.L. Dotto, Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide, J. Environ. Chem. Eng. 9 (2021), https://doi.org/10.1016/j.jece.2021.106843. [14] Y.L. Salomon, ´ J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, D. Pinto, M.L.S. Oliveira, G.L. Dotto, Adsorption of atrazine herbicide from wáter by Diospyros kaki fruit waste activated carbon, J. Mol. Liq. (2021), https://doi.org/10.1016/j.molliq.2021.117990. [15] H.M. Mohd Noor Hazrin, A. Lim, C. Li, J.J. Chew, J. Sunarso, Adsorption of 2,4- dichlorophenoxyacetic acid onto oil palm trunk-derived activated carbon: isotherm and kinetic studies at acidic, ambient condition, Mater. Today Proc. (2021) 1–6, https://doi.org/10.1016/j.matpr.2021.09.461. [16] K. Rambabu, J. Alyammahi, G. Bharath, A. Thanigaivelan, N. Sivarajasekar, F. Banat, Nano-activated carbon derived from date palm coir waste for efficient sequestration of noxious 2,4-dichlorophenoxyacetic acid herbicide, Chemosphere 282 (2021), 131103, https://doi.org/10.1016/j.chemosphere.2021.131103. [17] A. Pandiarajan, R. Kamaraj, S.S.S. Vasudevan, S.S.S. Vasudevan, OPAC (Orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: adsorption isotherm, kinetic modelling and thermodynamic studies, Bioresour. Technol. 261 (2018) 329–341, https://doi.org/10.1016/j.biortech.2018.04.005. [18] X. Wei, Z. Wu, Z. Wu, B.C. Ye, Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems, Powder Technol. 329 (2018) 207–216, https://doi.org/10.1016/j.powtec.2018.01.060. [20] L. Sellaoui, L.F.O. Silva, M. Badawi, J. Ali, N. Favarin, G.L. Dotto, A. Erto, Z. Chen, Adsorption of ketoprofen and 2- nitrophenol on activated carbon prepared from winery wastes: a combined experimental and theoretical study, J. Mol. Liq. 333 (2021), https://doi.org/10.1016/j.molliq.2021.115906. [21] L. Sellaoui, F. Dhaouadi, Z. Li, T.R.S. Cadaval, A.V. Igansi, L.A.A. Pinto, G.L. Dotto, A. Bonilla-Petriciolet, D. Pinto, Z. Chen, Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film, J. Environ. Chem. Eng. 9 (2021), 105516, https://doi.org/10.1016/j.jece.2021.105516. [22] H. Xue, X. Wang, Q. Xu, F. Dhaouadi, L. Sellaoui, M.K. Seliem, A. Ben Lamine, H. Belmabrouk, A. Bajahzar, A. Bonilla-Petriciolet, Z. Li, Q. Li, Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: a comparative study by experimental and advanced modeling analysis, Chem. Eng. J. 430 (2022), https://doi.org/10.1016/j.cej.2021.132801. [23] X. Wei, Z.Z.Z.Z. Wu, Z.Z.Z.Z. Wu, B.C. Ye, Adsorption behaviors of atrazine and Cr (III) onto different activated carbons in single and co-solute systems, Powder Technol. 329 (2018) 207–216, https://doi.org/10.1016/j.powtec.2018.01.060. [24] J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, G.L. Dotto, Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins, Environ. Sci. Pollut. Res. 28 (2021) 36453–36463, https://doi.org/10.1007/s11356-021-12813-0. [25] J. Georgin, D.S.P.P.D.S.P.D.S.P. Franco, P. Grassi, D. Tonato, D.G.A.A.D.G. A. Piccilli, L. Meili, G.L.G.L.G.L.G.L.G.L. Dotto, Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents, Environ. Sci. Pollut. Res. 26 (2019) 19207–19219, https://doi.org/10.1007/s11356-019-05321-9. [26] H. Freundlich, Über die adsorption in losungen, ¨ Z. Phys. Chem. 57U (1907), https://doi.org/10.1515/zpch-1907-5723. [27] M.M. Dubinin, V.A. Astakhov, B.P. Bering, V.A. Gordeeva, M.M. Dubinin, L. I. Efimova, V.V. Serpinskii, Development of concepts of the volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents - communication 4. Differential heats and entropies of adsorption, Bull. Acad. Sci. USSR Div. Chem. Sci. 20 (1971) 17–22, https://doi.org/10.1007/BF00849310. [28] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403, https://doi.org/10.1021/ja02242a004. [29] E.C. ´ Lima, M.H. Dehghani, A. Guleria, F. Sher, R.R. Karri, G.L. Dotto, H.N. Tran, Adsorption: fundamental aspects and applications of adsorption for effluent treatment, in: M. Hadi Dehghani, R. Karri, E. Lima (Eds.), Green Technol. Defluoridation Water, Elsevier, 2021, pp. 41–88, https://doi.org/10.1016/b978-0-323-85768-0.00004-x. [30] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Pirajan, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048. [31] E. Glueckauf, Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography, Trans. Faraday Soc. 51 (1955) 1540–1551, https://doi.org/10.1039/TF9555101540. [32] D. Rehrah, R.R. Bansode, O. Hassan, M. Ahmedna, Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment, J. Anal. Appl. Pyrolysis 118 (2016) 42–53, https://doi.org/10.1016/j.jaap.2015.12.022. [33] M. Sbizzaro, S. C´esar Sampaio, R. Rinaldo dos Reis, F. de Assis Beraldi, D. Medina Rosa, C. Maria Branco de Freitas Maia, C. Saramago de Carvalho Marques dos Santos Cordovil, C. Tillvitz do Nascimento, E. Antonio da Silva, C. Eduardo Borba, Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems, J. Mol. Liq. 343 (2021), 117667, https://doi.org/10.1016/j.molliq.2021.117667. [34] R. Goswami, J. Shim, S. Deka, D. Kumari, R. Kataki, M. Kumar, Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures, Ecol. Eng. 97 (2016) 444–451, https://doi.org/10.1016/j.ecoleng.2016.10.007. [35] D. Xia, F. Tan, C. Zhang, X. Jiang, Z. Chen, H. Li, Y. Zheng, Q. Li, Y. Wang, ZnCl 2 -activated biochar from biogas residue facilitates aqueous As(III) removal, Appl. Surf. Sci. 377 (2016) 361–369, https://doi.org/10.1016/j.apsusc.2016.03.109. [36] A. Cougnaud, C. Faur, P. Le Cloirec, Removal of pesticides from aqueous solution: quantitative relationship between activated carbon characteristics and adsorption properties, Environ. Technol. 26 (2005) 857–866, https://doi.org/10.1080/09593332608618497. [37] C. Zhao, J. Ma, Z. Li, H. Xia, H. Liu, Y. Yang, Highly enhanced adsorption performance of tetracycline antibiotics on KOH-activated biochar derived from reed plants, RSC Adv. 10 (2020) 5066–5076, https://doi.org/10.1039/c9ra09208k. [38] M. Luo, H. Lin, Y. He, Y. Zhang, The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil, Sci. Total Environ. 717 (2020), 137014, https://doi.org/10.1016/j.scitotenv.2020.137014. [39] C. Lammirato, A. Miltner, M. Kaestner, Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger, Soil Biol. Biochem. 43 (2011) 1936–1942, https://doi.org/10.1016/j.soilbio.2011.05.021. [40] Z. Li, Y. Jin, T. Chen, F. Tang, J. Cai, J. Ma, Trimethylchlorosilane modified activated carbon for the adsorption of VOCs at high humidity, Sep. Purif. Technol. 272 (2021), 118659, https://doi.org/10.1016/j.seppur.2021.118659. [41] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014-1117. [42] C.C. Hollister, J.J. Bisogni, J. Lehmann, Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover ( Zea mays L.) and oak wood ( Quercus spp.), J. Environ. Qual. 42 (2013) 137–144, https://doi.org/10.2134/jeq2012.0033. [43] M. Ahmad, S.S. Lee, X. Dou, D. Mohan, J.K. Sung, J.E. Yang, Y.S. Ok, Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water, Bioresour. Technol. 118 (2012) 536–544, https://doi.org/10.1016/j.biortech.2012.05.042. [44] P. Peng, Y.H. Lang, X.M. Wang, Adsorption behavior and mechanism of pentachlorophenol on reed biochars: PH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms, Ecol. Eng. 90 (2016) 225–233, https://doi.org/10.1016/j.ecoleng.2016.01.039. [45] Z. Mahdi, A. El Hanandeh, Q. Yu, Influence of pyrolysis conditions on Surface characteristics and methylene blue adsorption of biochar derived from date seed biomass, Waste Biomass Valoriz. 8 (2017) 2061–2073, https://doi.org/10.1007/s12649-016-9714-y. [46] B. Zhao, D. O’Connor, J. Zhang, T. Peng, Z. Shen, D.C.W.W. Tsang, D. Hou, Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar, J. Clean. Prod. 174 (2018) 977–987, https://doi.org/10.1016/j.jclepro.2017.11.013. [47] M. Keiluweit, P.S. Nico, M.G. Johnson, M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon(Biochar), Environ. Sci. Technol. 44 (2010) 1247–1253, https://doi.org/10.1021/es9031419. [48] L. Meili, P.V.S. Lins, M.T. Costa, R.L. Almeida, A.K.S. Abud, J.I. Soletti, G.L. Dotto, E.H. Tanabe, L. Sellaoui, S.H.V. Carvalho, A. Erto, Adsorption of methylene blue on agroindustrial wastes: experimental investigation and phenomenological modelling, Prog. Biophys. Mol. Biol. 141 (2019) 60–71, https://doi.org/10.1016/j.pbiomolbio.2018.07.011. [49] J. Zhou, W. Zhu, J. Yu, H. Zhang, Y. Zhang, X. Lin, X. Luo, Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide, Appl. Surf. Sci. 435 (2018) 920–927, https://doi.org/10.1016/j.apsusc.2017.11.108. [51] S. Salvestrini, P. Sagliano, P. Iovino, S. Capasso, C. Colella, Atrazine adsorption by acid-activated zeolite-rich tuffs, Appl. Clay Sci. 49 (2010) 330–335, https://doi.org/10.1016/j.clay.2010.04.008. [52] J. Llado, ´ C. Lao-Luque, B. Ruiz, E. Fuente, M. Sol´e-Sardans, A.D. Dorado, Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics, Process Saf. Environ. Prot. 95 (2015) 51–59, https://doi.org/10.1016/j.psep.2015.02.013. [53] E.M. Cuerda-Correa, J.R. Domínguez-Vargas, F.J. Olivares-Marín, J.B. de Heredia, On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water, J. Hazard. Mater. 177 (2010) 1046–1053, https://doi.org/10.1016/j.jhazmat.2010.01.026. [54] A. Alahabadi, G. Moussavi, Preparation, characterization and atrazine adsorption potential of mesoporous carbonate-induced activated biochar (CAB) from Calligonum Comosum biomass: parametric experiments and kinetics, equilibrium and thermodynamic modeling, J. Mol. Liq. 242 (2017) 40–52, https://doi.org/10.1016/j.molliq.2017.06.116. [55] M.B. Chabalala, M.Z. Al-Abri, B.B. Mamba, E.N. Nxumalo, Mechanistic aspects for the enhanced adsorption of bromophenol blue and atrazine over cyclodextrin modified polyacrylonitrile nanofiber membranes, Chem. Eng. Res. Des. 169 (2021) 19–32, https://doi.org/10.1016/j.cherd.2021.02.010. [56] Y. Cao, S. Jiang, Y. Zhang, J. Xu, L. Qiu, L. Wang, Investigation into adsorption characteristics and mechanism of atrazine on nano-MgO modified fallen leaf biochar, J. Environ. Chem. Eng. 9 (2021), 105727, https://doi.org/10.1016/j.jece.2021.105727. [57] E.A. Allam, A.S.M. Ali, R.M. Elsharkawy, M.E. Mahmoud, Framework of nano metal oxides N-NiO@N-Fe3O4@N-ZnO for adsorptive removal of atrazine and bisphenol-A from wastewater: kinetic and adsorption studies, Environ. Nanotechnol. Monit. Manag. 16 (2021), 100481, https://doi.org/10.1016/j.enmm.2021.100481. [58] M. Bayati, M. Numaan, A. Kadhem, Z. Salahshoor, S. Qasim, H. Deng, J. Lin, Z. Yan, C.H. Lin, M. Fidalgo De Cortalezzi, Adsorption of atrazine by laser induced graphitic material: an efficient, scalable and green alternative for pollution abatement, J. Environ. Chem. Eng. 8 (2020), 104407, https://doi.org/10.1016/j.jece.2020.104407. [59] L. Yue, C.J. Ge, D. Feng, H. Yu, H. Deng, B. Fu, Adsorption–desorption behavior of atrazine on agricultural soils in China, J. Environ. Sci. 57 (2017) 180–189, https://doi.org/10.1016/j.jes.2016.11.002. [60] X. Wei, Z. Wu, C. Du, Z. Wu, B.C. Ye, G. Cravotto, Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating, J. Taiwan Inst. Chem. Eng. 77 (2017) 257–262, https://doi.org/10.1016/j.jtice.2017.04.004. [61] H.P. Toledo-Jaldin, A. Blanco-Flores, V. Sanchez-Mendieta, O. Martín-Hernandez, Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions, Environ. Technol. 39 (2018) 2679–2690, https://doi.org/10.1080/09593330.2017.1365097. [62] F.M. Machado, C.P. Bergmann, T.H.M. Fernandes, E.C. Lima, B. Royer, T. Calvete, S.B. Fagan, Adsorption of Reactive Red M-2BE dye from water solutions by multiwalled carbon nanotubes and activated carbon, J. Hazard. Mater. 192 (2011) 1122–1131, https://doi.org/10.1016/j.jhazmat.2011.06.020. [63] J. Georgin, D.S.P. Franco, M. Schadeck Netto, D. Allasia, E.L. Foletto, L.F. S. Oliveira, G.L. Dotto, Transforming shrub waste into a high-efficiency adsorbent: application of Physalis peruvian chalice treated with strong acid to remove the 2,4- dichlorophenoxyacetic acid herbicide, J. Environ. Chem. Eng. 9 (2021), 104574, https://doi.org/10.1016/j.jece.2020.104574. [64] J. Georgin, D.S.P. Franco, M.S. Netto, Y.L.O. de Salomon, ´ D.G.A. Piccilli, E. L. Foletto, G.L. Dotto, Adsorption and mass transfer studies of methylene blue onto comminuted seedpods from Luehea divaricata and Inga laurina, Environ. Sci. Pollut. Res. (2021), https://doi.org/10.1007/s11356-020-11957-9. [65] D.S.P. Franco, J. Georgin, M.S. Netto, D. Allasia, M.L.S. Oliveira, E.L. Foletto, G. L. Dotto, Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species, J. Environ. Chem. Eng. 9 (2021), 105927, https://doi.org/10.1016/j.jece.2021.105927. [66] P.S. Thue, C.S. Umpierres, E.C. Lima, D.R. Lima, F.M. Machado, G.S. dos Reis, R. S. da Silva, F.A. Pavan, H.N. Tran, Single-step pyrolysis for producing magnetic activated carbon from tucum˜ a (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol, J. Hazard. Mater. 398 (2020), 122903, https://doi.org/10.1016/j.jhazmat.2020.122903. [67] C.R. Kennedy, S. Lin, E.N. Jacobsen, The cation–π interaction in small-molecule, Catal. Angew. Chem. Int. Ed. 55 (2016) 12596–12624, https://doi.org/10.1002/anie.201600547. |
dc.relation.citationendpage.spa.fl_str_mv |
10 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
3 |
dc.relation.citationvolume.spa.fl_str_mv |
10 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2022 Elsevier Ltd. All rights reserved. |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2022 Elsevier Ltd. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier BV |
dc.publisher.place.spa.fl_str_mv |
United Kingdom |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2213343722002810 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/57bd167a-ddb4-4249-9fc2-a4c590f29903/download https://repositorio.cuc.edu.co/bitstreams/96c39d4a-1e8e-429b-bc4f-973985a24bb6/download https://repositorio.cuc.edu.co/bitstreams/14f2ea41-8409-421a-a003-c7c5edabfc49/download https://repositorio.cuc.edu.co/bitstreams/313ea9c9-f17e-48e6-bad7-87c21d7215c3/download |
bitstream.checksum.fl_str_mv |
d163d2f01c3ac6286d3939bd2e465032 e30e9215131d99561d40d6b0abbe9bad 76dd4819b3c17964ed93734249f79735 4af3475caa8c91cfd3eae3245b7ed67f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760856887721984 |
spelling |
Hernandes, Paola T.Dison S.P., Francogeorgin, jordanaP. G. Salau, NinaDotto, Guilherme Luiz2022-05-23T12:55:14Z20242022-05-23T12:55:14Z20222213-3437https://hdl.handle.net/11323/9184https://doi.org/10.1016/j.jece.2022.10740810.1016/j.jece.2022.107408Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Biochar was produced from the sawdust of the wood forest species Cedrella fissilis and later used as an adsorbent to remove atrazine herbicide from aqueous media. Biochar showed high thermal stability, an amorphous structure, and a highly irregular surface, mainly composed of carbon-containing bonds. The isothermal curves confirmed that the increase in temperature favored the adsorption of the herbicide. The Langmuir model best suited the experimental equilibrium data, with the maximum adsorption capacity of 7.68 mg g-1 at 328 K. The thermodynamic parameters confirmed a spontaneous process of an endothermic nature governed by physical interactions (interactions of van der Waals and hydrogen bonds). Kinetic studies showed that equilibrium was reached within 180 min. The linear driving force model (LDF) showed good statistical adjustment to the experimental data, where it was observed that the diffusion coefficient increased with the concentration of adsorbate. Biochar can be reused in up to three cycles. Finally, the adsorbent showed good efficiency in real water samples from rivers contaminated with atrazine, with 76.58% and 71.29% removal.10 páginasapplication/pdfengElsevier BVUnited KingdomAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 Elsevier Ltd. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous mediumArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.sciencedirect.com/science/article/pii/S2213343722002810Journal of Environmental Chemical Engineering[1] T.B. Hayes, A. Collins, M. Lee, M. Mendoza, N. Noriega, A.A. Stuart, A. Vonk, Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 5476–5480, https://doi.org/10.1073/pnas.082121499.[2] J.P. Lasserre, F. Fack, D. Revets, S. Planchon, J. Renaut, L. Hoffmann, A.C. Gutleb, C.P. Muller, T. Bohn, Effects of the endocrine disruptors atrazine and PCB 153 on the protein expression of MCF-7 human cells, J. Proteome Res. 8 (2009) 5485–5496, https://doi.org/10.1021/pr900480f.[3] S. Rostami, S. Jafari, Z. Moeini, M. Jaskulak, L. Keshtgar, A. Badeenezhad, A. Azhdarpoor, M. Rostami, K. Zorena, M. Dehghani, Current methods and technologies for degradation of atrazine in contaminated soil and water: a review, Environ. Technol. Innov. 24 (2021), 102019, https://doi.org/10.1016/j.eti.2021.102019.[4] M. Shirmardi, N. Alavi, E.C. Lima, A. Takdastan, A.H. Mahvi, A.A. Babaei, Removal of atrazine as an organic micro-pollutant from aqueous solutions: a comparative study, Process Saf. Environ. Prot. 103 (2016) 23–35, https://doi.org/10.1016/j. psep.2016.06.014.[5] M. Graymore, F. Stagnitti, G. Allinson, Impacts of atrazine in aquatic ecosystems, Environ. Int. 26 (2001) 483–495, https://doi.org/10.1016/S0160-4120(01)00031-9.[6] G.W. Stratton, Effects of the herbicide atrazine and its degradation products, alone and in combination, on phototrophic microorganisms, Arch. Environ. Contam. Toxicol. 13 (1984) 35–42, https://doi.org/10.1007/BF01055644.[7] Z. Shamsollahi, A. Partovinia, Recent advances on pollutants removal by rice husk as a bio-based adsorbent: a critical review, J. Environ. Manag. 246 (2019) 314–323, https://doi.org/10.1016/j.jenvman.2019.05.145.[8] S. Sun, J. Zhu, Z. Zheng, J. Li, M. Gan, Biosynthesis of β-cyclodextrin modified Schwertmannite and the application in heavy metals adsorption, Powder Technol. 342 (2019) 181–192, https://doi.org/10.1016/j.powtec.2018.09.072.[9] H. Pang, Z. Diao, X. Wang, Y. Ma, S. Yu, H. Zhu, Z. Chen, B. Hu, J. Chen, X. Wang, Adsorptive and reductive removal of U(VI) by Dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater, Chem. Eng. J. 366 (2019) 368–377, https://doi.org/10.1016/j.cej.2019.02.098.[10] J. Qu, Y. Yuan, Q. Meng, G. Zhang, F. Deng, L. Wang, Y. Tao, Z. Jiang, Y. Zhang, Simultaneously enhanced removal and stepwise recovery of atrazine and Pb(II) from water using β–cyclodextrin functionalized cellulose: characterization, adsorptive performance and mechanism exploration, J. Hazard. Mater. 400 (2020), 123142, https://doi.org/10.1016/j.jhazmat.2020.123142.[11] L. Wu, B. Li, M. Liu, Influence of aromatic structure and substitution of carboxyl groups of aromatic acids on their sorption to biochars, Chemosphere 210 (2018) 239–246, https://doi.org/10.1016/j.chemosphere.2018.07.003.[12] Y. Dai, N. Zhang, C. Xing, Q. Cui, Q. Sun, The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review, Chemosphere 223 (2019) 12–27, https://doi.org/10.1016/j.chemosphere.2019.01.161.[13] J.S. Lazarotto, K. da Boit Martinello, J. Georgin, D.S.P. Franco, M.S. Netto, D.G. A. Piccilli, L.F.O. Silva, E.C. Lima, G.L. Dotto, Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide, J. Environ. Chem. Eng. 9 (2021), https://doi.org/10.1016/j.jece.2021.106843.[14] Y.L. Salomon, ´ J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, D. Pinto, M.L.S. Oliveira, G.L. Dotto, Adsorption of atrazine herbicide from wáter by Diospyros kaki fruit waste activated carbon, J. Mol. Liq. (2021), https://doi.org/10.1016/j.molliq.2021.117990.[15] H.M. Mohd Noor Hazrin, A. Lim, C. Li, J.J. Chew, J. Sunarso, Adsorption of 2,4- dichlorophenoxyacetic acid onto oil palm trunk-derived activated carbon: isotherm and kinetic studies at acidic, ambient condition, Mater. Today Proc. (2021) 1–6, https://doi.org/10.1016/j.matpr.2021.09.461.[16] K. Rambabu, J. Alyammahi, G. Bharath, A. Thanigaivelan, N. Sivarajasekar, F. Banat, Nano-activated carbon derived from date palm coir waste for efficient sequestration of noxious 2,4-dichlorophenoxyacetic acid herbicide, Chemosphere 282 (2021), 131103, https://doi.org/10.1016/j.chemosphere.2021.131103.[17] A. Pandiarajan, R. Kamaraj, S.S.S. Vasudevan, S.S.S. Vasudevan, OPAC (Orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: adsorption isotherm, kinetic modelling and thermodynamic studies, Bioresour. Technol. 261 (2018) 329–341, https://doi.org/10.1016/j.biortech.2018.04.005.[18] X. Wei, Z. Wu, Z. Wu, B.C. Ye, Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems, Powder Technol. 329 (2018) 207–216, https://doi.org/10.1016/j.powtec.2018.01.060.[20] L. Sellaoui, L.F.O. Silva, M. Badawi, J. Ali, N. Favarin, G.L. Dotto, A. Erto, Z. Chen, Adsorption of ketoprofen and 2- nitrophenol on activated carbon prepared from winery wastes: a combined experimental and theoretical study, J. Mol. Liq. 333 (2021), https://doi.org/10.1016/j.molliq.2021.115906.[21] L. Sellaoui, F. Dhaouadi, Z. Li, T.R.S. Cadaval, A.V. Igansi, L.A.A. Pinto, G.L. Dotto, A. Bonilla-Petriciolet, D. Pinto, Z. Chen, Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film, J. Environ. Chem. Eng. 9 (2021), 105516, https://doi.org/10.1016/j.jece.2021.105516.[22] H. Xue, X. Wang, Q. Xu, F. Dhaouadi, L. Sellaoui, M.K. Seliem, A. Ben Lamine, H. Belmabrouk, A. Bajahzar, A. Bonilla-Petriciolet, Z. Li, Q. Li, Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: a comparative study by experimental and advanced modeling analysis, Chem. Eng. J. 430 (2022), https://doi.org/10.1016/j.cej.2021.132801.[23] X. Wei, Z.Z.Z.Z. Wu, Z.Z.Z.Z. Wu, B.C. Ye, Adsorption behaviors of atrazine and Cr (III) onto different activated carbons in single and co-solute systems, Powder Technol. 329 (2018) 207–216, https://doi.org/10.1016/j.powtec.2018.01.060.[24] J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, G.L. Dotto, Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins, Environ. Sci. Pollut. Res. 28 (2021) 36453–36463, https://doi.org/10.1007/s11356-021-12813-0.[25] J. Georgin, D.S.P.P.D.S.P.D.S.P. Franco, P. Grassi, D. Tonato, D.G.A.A.D.G. A. Piccilli, L. Meili, G.L.G.L.G.L.G.L.G.L. Dotto, Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents, Environ. Sci. Pollut. Res. 26 (2019) 19207–19219, https://doi.org/10.1007/s11356-019-05321-9.[26] H. Freundlich, Über die adsorption in losungen, ¨ Z. Phys. Chem. 57U (1907), https://doi.org/10.1515/zpch-1907-5723.[27] M.M. Dubinin, V.A. Astakhov, B.P. Bering, V.A. Gordeeva, M.M. Dubinin, L. I. Efimova, V.V. Serpinskii, Development of concepts of the volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents - communication 4. Differential heats and entropies of adsorption, Bull. Acad. Sci. USSR Div. Chem. Sci. 20 (1971) 17–22, https://doi.org/10.1007/BF00849310.[28] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403, https://doi.org/10.1021/ja02242a004.[29] E.C. ´ Lima, M.H. Dehghani, A. Guleria, F. Sher, R.R. Karri, G.L. Dotto, H.N. Tran, Adsorption: fundamental aspects and applications of adsorption for effluent treatment, in: M. Hadi Dehghani, R. Karri, E. Lima (Eds.), Green Technol. Defluoridation Water, Elsevier, 2021, pp. 41–88, https://doi.org/10.1016/b978-0-323-85768-0.00004-x.[30] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Pirajan, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.[31] E. Glueckauf, Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography, Trans. Faraday Soc. 51 (1955) 1540–1551, https://doi.org/10.1039/TF9555101540.[32] D. Rehrah, R.R. Bansode, O. Hassan, M. Ahmedna, Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment, J. Anal. Appl. Pyrolysis 118 (2016) 42–53, https://doi.org/10.1016/j.jaap.2015.12.022.[33] M. Sbizzaro, S. C´esar Sampaio, R. Rinaldo dos Reis, F. de Assis Beraldi, D. Medina Rosa, C. Maria Branco de Freitas Maia, C. Saramago de Carvalho Marques dos Santos Cordovil, C. Tillvitz do Nascimento, E. Antonio da Silva, C. Eduardo Borba, Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems, J. Mol. Liq. 343 (2021), 117667, https://doi.org/10.1016/j.molliq.2021.117667.[34] R. Goswami, J. Shim, S. Deka, D. Kumari, R. Kataki, M. Kumar, Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures, Ecol. Eng. 97 (2016) 444–451, https://doi.org/10.1016/j.ecoleng.2016.10.007.[35] D. Xia, F. Tan, C. Zhang, X. Jiang, Z. Chen, H. Li, Y. Zheng, Q. Li, Y. Wang, ZnCl 2 -activated biochar from biogas residue facilitates aqueous As(III) removal, Appl. Surf. Sci. 377 (2016) 361–369, https://doi.org/10.1016/j.apsusc.2016.03.109.[36] A. Cougnaud, C. Faur, P. Le Cloirec, Removal of pesticides from aqueous solution: quantitative relationship between activated carbon characteristics and adsorption properties, Environ. Technol. 26 (2005) 857–866, https://doi.org/10.1080/09593332608618497.[37] C. Zhao, J. Ma, Z. Li, H. Xia, H. Liu, Y. Yang, Highly enhanced adsorption performance of tetracycline antibiotics on KOH-activated biochar derived from reed plants, RSC Adv. 10 (2020) 5066–5076, https://doi.org/10.1039/c9ra09208k.[38] M. Luo, H. Lin, Y. He, Y. Zhang, The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil, Sci. Total Environ. 717 (2020), 137014, https://doi.org/10.1016/j.scitotenv.2020.137014.[39] C. Lammirato, A. Miltner, M. Kaestner, Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger, Soil Biol. Biochem. 43 (2011) 1936–1942, https://doi.org/10.1016/j.soilbio.2011.05.021.[40] Z. Li, Y. Jin, T. Chen, F. Tang, J. Cai, J. Ma, Trimethylchlorosilane modified activated carbon for the adsorption of VOCs at high humidity, Sep. Purif. Technol. 272 (2021), 118659, https://doi.org/10.1016/j.seppur.2021.118659.[41] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014-1117.[42] C.C. Hollister, J.J. Bisogni, J. Lehmann, Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover ( Zea mays L.) and oak wood ( Quercus spp.), J. Environ. Qual. 42 (2013) 137–144, https://doi.org/10.2134/jeq2012.0033.[43] M. Ahmad, S.S. Lee, X. Dou, D. Mohan, J.K. Sung, J.E. Yang, Y.S. Ok, Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water, Bioresour. Technol. 118 (2012) 536–544, https://doi.org/10.1016/j.biortech.2012.05.042.[44] P. Peng, Y.H. Lang, X.M. Wang, Adsorption behavior and mechanism of pentachlorophenol on reed biochars: PH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms, Ecol. Eng. 90 (2016) 225–233, https://doi.org/10.1016/j.ecoleng.2016.01.039.[45] Z. Mahdi, A. El Hanandeh, Q. Yu, Influence of pyrolysis conditions on Surface characteristics and methylene blue adsorption of biochar derived from date seed biomass, Waste Biomass Valoriz. 8 (2017) 2061–2073, https://doi.org/10.1007/s12649-016-9714-y.[46] B. Zhao, D. O’Connor, J. Zhang, T. Peng, Z. Shen, D.C.W.W. Tsang, D. Hou, Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar, J. Clean. Prod. 174 (2018) 977–987, https://doi.org/10.1016/j.jclepro.2017.11.013.[47] M. Keiluweit, P.S. Nico, M.G. Johnson, M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon(Biochar), Environ. Sci. Technol. 44 (2010) 1247–1253, https://doi.org/10.1021/es9031419.[48] L. Meili, P.V.S. Lins, M.T. Costa, R.L. Almeida, A.K.S. Abud, J.I. Soletti, G.L. Dotto, E.H. Tanabe, L. Sellaoui, S.H.V. Carvalho, A. Erto, Adsorption of methylene blue on agroindustrial wastes: experimental investigation and phenomenological modelling, Prog. Biophys. Mol. Biol. 141 (2019) 60–71, https://doi.org/10.1016/j.pbiomolbio.2018.07.011.[49] J. Zhou, W. Zhu, J. Yu, H. Zhang, Y. Zhang, X. Lin, X. Luo, Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide, Appl. Surf. Sci. 435 (2018) 920–927, https://doi.org/10.1016/j.apsusc.2017.11.108.[51] S. Salvestrini, P. Sagliano, P. Iovino, S. Capasso, C. Colella, Atrazine adsorption by acid-activated zeolite-rich tuffs, Appl. Clay Sci. 49 (2010) 330–335, https://doi.org/10.1016/j.clay.2010.04.008.[52] J. Llado, ´ C. Lao-Luque, B. Ruiz, E. Fuente, M. Sol´e-Sardans, A.D. Dorado, Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics, Process Saf. Environ. Prot. 95 (2015) 51–59, https://doi.org/10.1016/j.psep.2015.02.013.[53] E.M. Cuerda-Correa, J.R. Domínguez-Vargas, F.J. Olivares-Marín, J.B. de Heredia, On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water, J. Hazard. Mater. 177 (2010) 1046–1053, https://doi.org/10.1016/j.jhazmat.2010.01.026.[54] A. Alahabadi, G. Moussavi, Preparation, characterization and atrazine adsorption potential of mesoporous carbonate-induced activated biochar (CAB) from Calligonum Comosum biomass: parametric experiments and kinetics, equilibrium and thermodynamic modeling, J. Mol. Liq. 242 (2017) 40–52, https://doi.org/10.1016/j.molliq.2017.06.116.[55] M.B. Chabalala, M.Z. Al-Abri, B.B. Mamba, E.N. Nxumalo, Mechanistic aspects for the enhanced adsorption of bromophenol blue and atrazine over cyclodextrin modified polyacrylonitrile nanofiber membranes, Chem. Eng. Res. Des. 169 (2021) 19–32, https://doi.org/10.1016/j.cherd.2021.02.010.[56] Y. Cao, S. Jiang, Y. Zhang, J. Xu, L. Qiu, L. Wang, Investigation into adsorption characteristics and mechanism of atrazine on nano-MgO modified fallen leaf biochar, J. Environ. Chem. Eng. 9 (2021), 105727, https://doi.org/10.1016/j.jece.2021.105727.[57] E.A. Allam, A.S.M. Ali, R.M. Elsharkawy, M.E. Mahmoud, Framework of nano metal oxides N-NiO@N-Fe3O4@N-ZnO for adsorptive removal of atrazine and bisphenol-A from wastewater: kinetic and adsorption studies, Environ. Nanotechnol. Monit. Manag. 16 (2021), 100481, https://doi.org/10.1016/j.enmm.2021.100481.[58] M. Bayati, M. Numaan, A. Kadhem, Z. Salahshoor, S. Qasim, H. Deng, J. Lin, Z. Yan, C.H. Lin, M. Fidalgo De Cortalezzi, Adsorption of atrazine by laser induced graphitic material: an efficient, scalable and green alternative for pollution abatement, J. Environ. Chem. Eng. 8 (2020), 104407, https://doi.org/10.1016/j.jece.2020.104407.[59] L. Yue, C.J. Ge, D. Feng, H. Yu, H. Deng, B. Fu, Adsorption–desorption behavior of atrazine on agricultural soils in China, J. Environ. Sci. 57 (2017) 180–189, https://doi.org/10.1016/j.jes.2016.11.002.[60] X. Wei, Z. Wu, C. Du, Z. Wu, B.C. Ye, G. Cravotto, Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating, J. Taiwan Inst. Chem. Eng. 77 (2017) 257–262, https://doi.org/10.1016/j.jtice.2017.04.004.[61] H.P. Toledo-Jaldin, A. Blanco-Flores, V. Sanchez-Mendieta, O. Martín-Hernandez, Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions, Environ. Technol. 39 (2018) 2679–2690, https://doi.org/10.1080/09593330.2017.1365097.[62] F.M. Machado, C.P. Bergmann, T.H.M. Fernandes, E.C. Lima, B. Royer, T. Calvete, S.B. Fagan, Adsorption of Reactive Red M-2BE dye from water solutions by multiwalled carbon nanotubes and activated carbon, J. Hazard. Mater. 192 (2011) 1122–1131, https://doi.org/10.1016/j.jhazmat.2011.06.020.[63] J. Georgin, D.S.P. Franco, M. Schadeck Netto, D. Allasia, E.L. Foletto, L.F. S. Oliveira, G.L. Dotto, Transforming shrub waste into a high-efficiency adsorbent: application of Physalis peruvian chalice treated with strong acid to remove the 2,4- dichlorophenoxyacetic acid herbicide, J. Environ. Chem. Eng. 9 (2021), 104574, https://doi.org/10.1016/j.jece.2020.104574.[64] J. Georgin, D.S.P. Franco, M.S. Netto, Y.L.O. de Salomon, ´ D.G.A. Piccilli, E. L. Foletto, G.L. Dotto, Adsorption and mass transfer studies of methylene blue onto comminuted seedpods from Luehea divaricata and Inga laurina, Environ. Sci. Pollut. Res. (2021), https://doi.org/10.1007/s11356-020-11957-9.[65] D.S.P. Franco, J. Georgin, M.S. Netto, D. Allasia, M.L.S. Oliveira, E.L. Foletto, G. L. Dotto, Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species, J. Environ. Chem. Eng. 9 (2021), 105927, https://doi.org/10.1016/j.jece.2021.105927.[66] P.S. Thue, C.S. Umpierres, E.C. Lima, D.R. Lima, F.M. Machado, G.S. dos Reis, R. S. da Silva, F.A. Pavan, H.N. Tran, Single-step pyrolysis for producing magnetic activated carbon from tucum˜ a (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propanolol, J. Hazard. Mater. 398 (2020), 122903, https://doi.org/10.1016/j.jhazmat.2020.122903.[67] C.R. Kennedy, S. Lin, E.N. Jacobsen, The cation–π interaction in small-molecule, Catal. Angew. Chem. Int. Ed. 55 (2016) 12596–12624, https://doi.org/10.1002/anie.201600547.101310AdsorptionAtrazineBiocharPesticidesRiver waterPublicationORIGINALInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium.pdfInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium.pdfapplication/pdf2943607https://repositorio.cuc.edu.co/bitstreams/57bd167a-ddb4-4249-9fc2-a4c590f29903/downloadd163d2f01c3ac6286d3939bd2e465032MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/96c39d4a-1e8e-429b-bc4f-973985a24bb6/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium.pdf.txtInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium.pdf.txttext/plain57537https://repositorio.cuc.edu.co/bitstreams/14f2ea41-8409-421a-a003-c7c5edabfc49/download76dd4819b3c17964ed93734249f79735MD53THUMBNAILInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium.pdf.jpgInvestigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium.pdf.jpgimage/jpeg15320https://repositorio.cuc.edu.co/bitstreams/313ea9c9-f17e-48e6-bad7-87c21d7215c3/download4af3475caa8c91cfd3eae3245b7ed67fMD5411323/9184oai:repositorio.cuc.edu.co:11323/91842024-09-17 14:11:57.704https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |