Neural networks for the web services classification
This article introduces a n-gram-based approach to automatic classification of Web services using a multilayer perceptron-type artificial neural network. Web services contain information that is useful for achieving a classification based on its functionality. The approach relies on word n-grams ext...
- Autores:
-
silva d, jesus g
Senior Naveda, Alexa
Solórzano Movilla, José
Niebles Núñez, William
Hernández Palma, Hugo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5959
- Acceso en línea:
- https://hdl.handle.net/11323/5959
https://repositorio.cuc.edu.co/
- Palabra clave:
- Neural networks
Web services
Artificial neural network
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_ad29b00dbb16fbe97b19771ed3bd21f5 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5959 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Neural networks for the web services classification |
title |
Neural networks for the web services classification |
spellingShingle |
Neural networks for the web services classification Neural networks Web services Artificial neural network |
title_short |
Neural networks for the web services classification |
title_full |
Neural networks for the web services classification |
title_fullStr |
Neural networks for the web services classification |
title_full_unstemmed |
Neural networks for the web services classification |
title_sort |
Neural networks for the web services classification |
dc.creator.fl_str_mv |
silva d, jesus g Senior Naveda, Alexa Solórzano Movilla, José Niebles Núñez, William Hernández Palma, Hugo |
dc.contributor.author.spa.fl_str_mv |
silva d, jesus g Senior Naveda, Alexa Solórzano Movilla, José Niebles Núñez, William Hernández Palma, Hugo |
dc.subject.spa.fl_str_mv |
Neural networks Web services Artificial neural network |
topic |
Neural networks Web services Artificial neural network |
description |
This article introduces a n-gram-based approach to automatic classification of Web services using a multilayer perceptron-type artificial neural network. Web services contain information that is useful for achieving a classification based on its functionality. The approach relies on word n-grams extracted from the web service description to determine its membership in a category. The experimentation carried out shows promising results, achieving a classification with a measure F=0.995 using unigrams (2-grams) of words (characteristics composed of a lexical unit) and a TF-IDF weight. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-01-30T13:47:46Z |
dc.date.available.none.fl_str_mv |
2020-01-30T13:47:46Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1742-6588 1742-6596 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5959 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1742-6588 1742-6596 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5959 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
10.1088/1742-6596/1432/1/012076/pdf |
dc.relation.references.spa.fl_str_mv |
[1] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang , Anand Ghalsas (2010) “Cloud computing — The business perspective”, Decision support systems, Volume 51, Issue 1, April 2011, Pages 176–189, Elsevier. [2] Bifet, A., & De Francisci Morales, G. (2014). Big data stream learning with Samoa. Recuperado dehttps://www.researchgate.net/publication/282303881_Big_data_stream_learning_with_SAM OA. [3] Mell, Grance. "The NIST definition of cloud computing." NIST Special Publication 800 – 145, 2011Valarie Zeithaml A, A. Parasuraman, Leonard L. Berry (1999.5). Total, quality Management services. Bogota: Diaz de Santos. [4] Sitto, K., M. Presser, 2015. Field Guide to Hadoop. California: O’REILLY, 31-33 pp. [5] Sosinsky, B., 2011. Cloud Computing Bible. Indiana: Wiley Publishing Inc., 3 pp. [6] Bravo, M., Alvarado, M.: Similarity measures for substituting Web services. International Journal of Web Services Research, 7 (3), pp. 1–29 (2010). [7] Chen, L., Zhang, Y., Song, Z.L., Miao, Z.: Automatic web services classification based on rough set theory. Journal of Central South University, 20, pp. 2708–2714 (2013). [8] Pineda Lezama, O., & Gómez Dorta, R. (2017). Techniques of multivariate statistical analysis: An application for the Honduran banking sector. Innovare: Journal of Science and Technology, 5 (2), 61-75 [9] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [10] Zhu, Fang et al. "IBM Cloud Computing Powering a Smarter Planet", Libro Cloud Computing, Volumen 599.51/2009, Páginas 621- 625. [11] Mohanty, R., Ravi, V., Patra, M.R.: Web-services classification using intelligent techniques. Expert Systems with Applications, 37(7), pp. 5484–5490 (2010). [12] L. Thames and D. Schaefer, “Softwaredefined Cloud Manufacturing for Industry 4.0,” Procedía CIRP, vol. 52, p p .12-17, 2016. [13] Amelec Viloria, Dionicio Neira-Rodado, Omar Bonerge Pineda Lezama. Recovery of scientific data using Intelligent Distributed Data Warehouse. ANT/EDI40 2019: 1249-1254. [14] Schweidel, D. A., & Knox, G. (2013). Incorporating direct marketing activity into latent attrition models. Marke¬ting Science, 31(3), pp. 471-487. [15] Setnes, M., & Kaymak, U. (2001). Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing. Fuzzy Systems, IEEE Transactions on, 9(1), pp. 153-163. [16] Amelec Viloria, Omar Bonerge Pineda Lezama. Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs. ANT/EDI40 2019: 1201-1206 [17] Nisa, R., Qamar, U.: A text mining based approach for web service classification. Information Systems and e-Business Management, pp. 1–18 (2014). [18] Wu, J., Chen, L., Zheng, Z., Lyu, M. R., Wu, Z.: Clustering web services to facilitate service discovery. Knowledge and information systems, 38(1), pp. 207–229 (2014) [22] Alderson, J. (2015). A markerless motion capture technique for sport performance analysis and injury prevention: Toward a big data, machine learning future. Journal of Science and Medicine in Sport, 19, e79. doi: 10.1016/j.jsams.2015.12.192. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Journal of Physics: Conference Series |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/cb38c6f0-c348-4e55-affa-39fb2a978b3e/download https://repositorio.cuc.edu.co/bitstreams/6e2ef58c-2fbc-4cd7-8b50-7e1c1a232c85/download https://repositorio.cuc.edu.co/bitstreams/834d1efe-c104-4977-bf5f-9dacab667f1a/download https://repositorio.cuc.edu.co/bitstreams/e8835173-f8a4-4c03-b96b-0776c94932b5/download https://repositorio.cuc.edu.co/bitstreams/51b9765d-80e7-4edb-ba71-d6b58280f1e0/download https://repositorio.cuc.edu.co/bitstreams/ed146990-418e-4fdf-8b8d-345bdc9a5274/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 54582ce3c9b064afa0874f8197484ea7 bad4a55240ebe2374aa8d2c7fa4d7f15 42fd4ad1e89814f5e4a476b409eb708c d617e6dca5e75e2cd4662e7568f734c2 fb5384e9879e1b33da489969dc271f58 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760836693196800 |
spelling |
silva d, jesus gSenior Naveda, AlexaSolórzano Movilla, JoséNiebles Núñez, WilliamHernández Palma, Hugo2020-01-30T13:47:46Z2020-01-30T13:47:46Z20201742-65881742-6596https://hdl.handle.net/11323/5959Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This article introduces a n-gram-based approach to automatic classification of Web services using a multilayer perceptron-type artificial neural network. Web services contain information that is useful for achieving a classification based on its functionality. The approach relies on word n-grams extracted from the web service description to determine its membership in a category. The experimentation carried out shows promising results, achieving a classification with a measure F=0.995 using unigrams (2-grams) of words (characteristics composed of a lexical unit) and a TF-IDF weight.silva d, jesus g-will be generated-orcid-0000-0003-3555-9149-600Senior Naveda, AlexaSolórzano Movilla, JoséNiebles Núñez, WilliamHernández Palma, HugoengJournal of Physics: Conference Series10.1088/1742-6596/1432/1/012076/pdf[1] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang , Anand Ghalsas (2010) “Cloud computing — The business perspective”, Decision support systems, Volume 51, Issue 1, April 2011, Pages 176–189, Elsevier.[2] Bifet, A., & De Francisci Morales, G. (2014). Big data stream learning with Samoa. Recuperado dehttps://www.researchgate.net/publication/282303881_Big_data_stream_learning_with_SAM OA.[3] Mell, Grance. "The NIST definition of cloud computing." NIST Special Publication 800 – 145, 2011Valarie Zeithaml A, A. Parasuraman, Leonard L. Berry (1999.5). Total, quality Management services. Bogota: Diaz de Santos.[4] Sitto, K., M. Presser, 2015. Field Guide to Hadoop. California: O’REILLY, 31-33 pp.[5] Sosinsky, B., 2011. Cloud Computing Bible. Indiana: Wiley Publishing Inc., 3 pp.[6] Bravo, M., Alvarado, M.: Similarity measures for substituting Web services. International Journal of Web Services Research, 7 (3), pp. 1–29 (2010).[7] Chen, L., Zhang, Y., Song, Z.L., Miao, Z.: Automatic web services classification based on rough set theory. Journal of Central South University, 20, pp. 2708–2714 (2013).[8] Pineda Lezama, O., & Gómez Dorta, R. (2017). Techniques of multivariate statistical analysis: An application for the Honduran banking sector. Innovare: Journal of Science and Technology, 5 (2), 61-75[9] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham[10] Zhu, Fang et al. "IBM Cloud Computing Powering a Smarter Planet", Libro Cloud Computing, Volumen 599.51/2009, Páginas 621- 625.[11] Mohanty, R., Ravi, V., Patra, M.R.: Web-services classification using intelligent techniques. Expert Systems with Applications, 37(7), pp. 5484–5490 (2010).[12] L. Thames and D. Schaefer, “Softwaredefined Cloud Manufacturing for Industry 4.0,” Procedía CIRP, vol. 52, p p .12-17, 2016.[13] Amelec Viloria, Dionicio Neira-Rodado, Omar Bonerge Pineda Lezama. Recovery of scientific data using Intelligent Distributed Data Warehouse. ANT/EDI40 2019: 1249-1254.[14] Schweidel, D. A., & Knox, G. (2013). Incorporating direct marketing activity into latent attrition models. Marke¬ting Science, 31(3), pp. 471-487.[15] Setnes, M., & Kaymak, U. (2001). Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing. Fuzzy Systems, IEEE Transactions on, 9(1), pp. 153-163.[16] Amelec Viloria, Omar Bonerge Pineda Lezama. Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs. ANT/EDI40 2019: 1201-1206[17] Nisa, R., Qamar, U.: A text mining based approach for web service classification. Information Systems and e-Business Management, pp. 1–18 (2014).[18] Wu, J., Chen, L., Zheng, Z., Lyu, M. R., Wu, Z.: Clustering web services to facilitate service discovery. Knowledge and information systems, 38(1), pp. 207–229 (2014) [22] Alderson, J. (2015). A markerless motion capture technique for sport performance analysis and injury prevention: Toward a big data, machine learning future. Journal of Science and Medicine in Sport, 19, e79. doi: 10.1016/j.jsams.2015.12.192.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Neural networksWeb servicesArtificial neural networkNeural networks for the web services classificationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/cb38c6f0-c348-4e55-affa-39fb2a978b3e/download8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALNeural Networks for the Web Services Classification.pdfNeural Networks for the Web Services Classification.pdfapplication/pdf680723https://repositorio.cuc.edu.co/bitstreams/6e2ef58c-2fbc-4cd7-8b50-7e1c1a232c85/download54582ce3c9b064afa0874f8197484ea7MD51Neural Networks for the Web Services Classification.pdfNeural Networks for the Web Services Classification.pdfapplication/pdf1539626https://repositorio.cuc.edu.co/bitstreams/834d1efe-c104-4977-bf5f-9dacab667f1a/downloadbad4a55240ebe2374aa8d2c7fa4d7f15MD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/e8835173-f8a4-4c03-b96b-0776c94932b5/download42fd4ad1e89814f5e4a476b409eb708cMD52THUMBNAILNeural Networks for the Web Services Classification.pdf.jpgNeural Networks for the Web Services Classification.pdf.jpgimage/jpeg26967https://repositorio.cuc.edu.co/bitstreams/51b9765d-80e7-4edb-ba71-d6b58280f1e0/downloadd617e6dca5e75e2cd4662e7568f734c2MD55TEXTNeural Networks for the Web Services Classification.pdf.txtNeural Networks for the Web Services Classification.pdf.txttext/plain21782https://repositorio.cuc.edu.co/bitstreams/ed146990-418e-4fdf-8b8d-345bdc9a5274/downloadfb5384e9879e1b33da489969dc271f58MD5711323/5959oai:repositorio.cuc.edu.co:11323/59592024-09-17 14:08:10.933http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |