Neural networks for the web services classification

This article introduces a n-gram-based approach to automatic classification of Web services using a multilayer perceptron-type artificial neural network. Web services contain information that is useful for achieving a classification based on its functionality. The approach relies on word n-grams ext...

Full description

Autores:
silva d, jesus g
Senior Naveda, Alexa
Solórzano Movilla, José
Niebles Núñez, William
Hernández Palma, Hugo
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5959
Acceso en línea:
https://hdl.handle.net/11323/5959
https://repositorio.cuc.edu.co/
Palabra clave:
Neural networks
Web services
Artificial neural network
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_ad29b00dbb16fbe97b19771ed3bd21f5
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5959
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Neural networks for the web services classification
title Neural networks for the web services classification
spellingShingle Neural networks for the web services classification
Neural networks
Web services
Artificial neural network
title_short Neural networks for the web services classification
title_full Neural networks for the web services classification
title_fullStr Neural networks for the web services classification
title_full_unstemmed Neural networks for the web services classification
title_sort Neural networks for the web services classification
dc.creator.fl_str_mv silva d, jesus g
Senior Naveda, Alexa
Solórzano Movilla, José
Niebles Núñez, William
Hernández Palma, Hugo
dc.contributor.author.spa.fl_str_mv silva d, jesus g
Senior Naveda, Alexa
Solórzano Movilla, José
Niebles Núñez, William
Hernández Palma, Hugo
dc.subject.spa.fl_str_mv Neural networks
Web services
Artificial neural network
topic Neural networks
Web services
Artificial neural network
description This article introduces a n-gram-based approach to automatic classification of Web services using a multilayer perceptron-type artificial neural network. Web services contain information that is useful for achieving a classification based on its functionality. The approach relies on word n-grams extracted from the web service description to determine its membership in a category. The experimentation carried out shows promising results, achieving a classification with a measure F=0.995 using unigrams (2-grams) of words (characteristics composed of a lexical unit) and a TF-IDF weight.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-01-30T13:47:46Z
dc.date.available.none.fl_str_mv 2020-01-30T13:47:46Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1742-6588
1742-6596
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5959
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1742-6588
1742-6596
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5959
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv 10.1088/1742-6596/1432/1/012076/pdf
dc.relation.references.spa.fl_str_mv [1] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang , Anand Ghalsas (2010) “Cloud computing — The business perspective”, Decision support systems, Volume 51, Issue 1, April 2011, Pages 176–189, Elsevier.
[2] Bifet, A., & De Francisci Morales, G. (2014). Big data stream learning with Samoa. Recuperado dehttps://www.researchgate.net/publication/282303881_Big_data_stream_learning_with_SAM OA.
[3] Mell, Grance. "The NIST definition of cloud computing." NIST Special Publication 800 – 145, 2011Valarie Zeithaml A, A. Parasuraman, Leonard L. Berry (1999.5). Total, quality Management services. Bogota: Diaz de Santos.
[4] Sitto, K., M. Presser, 2015. Field Guide to Hadoop. California: O’REILLY, 31-33 pp.
[5] Sosinsky, B., 2011. Cloud Computing Bible. Indiana: Wiley Publishing Inc., 3 pp.
[6] Bravo, M., Alvarado, M.: Similarity measures for substituting Web services. International Journal of Web Services Research, 7 (3), pp. 1–29 (2010).
[7] Chen, L., Zhang, Y., Song, Z.L., Miao, Z.: Automatic web services classification based on rough set theory. Journal of Central South University, 20, pp. 2708–2714 (2013).
[8] Pineda Lezama, O., & Gómez Dorta, R. (2017). Techniques of multivariate statistical analysis: An application for the Honduran banking sector. Innovare: Journal of Science and Technology, 5 (2), 61-75
[9] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham
[10] Zhu, Fang et al. "IBM Cloud Computing Powering a Smarter Planet", Libro Cloud Computing, Volumen 599.51/2009, Páginas 621- 625.
[11] Mohanty, R., Ravi, V., Patra, M.R.: Web-services classification using intelligent techniques. Expert Systems with Applications, 37(7), pp. 5484–5490 (2010).
[12] L. Thames and D. Schaefer, “Softwaredefined Cloud Manufacturing for Industry 4.0,” Procedía CIRP, vol. 52, p p .12-17, 2016.
[13] Amelec Viloria, Dionicio Neira-Rodado, Omar Bonerge Pineda Lezama. Recovery of scientific data using Intelligent Distributed Data Warehouse. ANT/EDI40 2019: 1249-1254.
[14] Schweidel, D. A., & Knox, G. (2013). Incorporating direct marketing activity into latent attrition models. Marke¬ting Science, 31(3), pp. 471-487.
[15] Setnes, M., & Kaymak, U. (2001). Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing. Fuzzy Systems, IEEE Transactions on, 9(1), pp. 153-163.
[16] Amelec Viloria, Omar Bonerge Pineda Lezama. Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs. ANT/EDI40 2019: 1201-1206
[17] Nisa, R., Qamar, U.: A text mining based approach for web service classification. Information Systems and e-Business Management, pp. 1–18 (2014).
[18] Wu, J., Chen, L., Zheng, Z., Lyu, M. R., Wu, Z.: Clustering web services to facilitate service discovery. Knowledge and information systems, 38(1), pp. 207–229 (2014) [22] Alderson, J. (2015). A markerless motion capture technique for sport performance analysis and injury prevention: Toward a big data, machine learning future. Journal of Science and Medicine in Sport, 19, e79. doi: 10.1016/j.jsams.2015.12.192.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Physics: Conference Series
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/cb38c6f0-c348-4e55-affa-39fb2a978b3e/download
https://repositorio.cuc.edu.co/bitstreams/6e2ef58c-2fbc-4cd7-8b50-7e1c1a232c85/download
https://repositorio.cuc.edu.co/bitstreams/834d1efe-c104-4977-bf5f-9dacab667f1a/download
https://repositorio.cuc.edu.co/bitstreams/e8835173-f8a4-4c03-b96b-0776c94932b5/download
https://repositorio.cuc.edu.co/bitstreams/51b9765d-80e7-4edb-ba71-d6b58280f1e0/download
https://repositorio.cuc.edu.co/bitstreams/ed146990-418e-4fdf-8b8d-345bdc9a5274/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
54582ce3c9b064afa0874f8197484ea7
bad4a55240ebe2374aa8d2c7fa4d7f15
42fd4ad1e89814f5e4a476b409eb708c
d617e6dca5e75e2cd4662e7568f734c2
fb5384e9879e1b33da489969dc271f58
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760836693196800
spelling silva d, jesus gSenior Naveda, AlexaSolórzano Movilla, JoséNiebles Núñez, WilliamHernández Palma, Hugo2020-01-30T13:47:46Z2020-01-30T13:47:46Z20201742-65881742-6596https://hdl.handle.net/11323/5959Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This article introduces a n-gram-based approach to automatic classification of Web services using a multilayer perceptron-type artificial neural network. Web services contain information that is useful for achieving a classification based on its functionality. The approach relies on word n-grams extracted from the web service description to determine its membership in a category. The experimentation carried out shows promising results, achieving a classification with a measure F=0.995 using unigrams (2-grams) of words (characteristics composed of a lexical unit) and a TF-IDF weight.silva d, jesus g-will be generated-orcid-0000-0003-3555-9149-600Senior Naveda, AlexaSolórzano Movilla, JoséNiebles Núñez, WilliamHernández Palma, HugoengJournal of Physics: Conference Series10.1088/1742-6596/1432/1/012076/pdf[1] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang , Anand Ghalsas (2010) “Cloud computing — The business perspective”, Decision support systems, Volume 51, Issue 1, April 2011, Pages 176–189, Elsevier.[2] Bifet, A., & De Francisci Morales, G. (2014). Big data stream learning with Samoa. Recuperado dehttps://www.researchgate.net/publication/282303881_Big_data_stream_learning_with_SAM OA.[3] Mell, Grance. "The NIST definition of cloud computing." NIST Special Publication 800 – 145, 2011Valarie Zeithaml A, A. Parasuraman, Leonard L. Berry (1999.5). Total, quality Management services. Bogota: Diaz de Santos.[4] Sitto, K., M. Presser, 2015. Field Guide to Hadoop. California: O’REILLY, 31-33 pp.[5] Sosinsky, B., 2011. Cloud Computing Bible. Indiana: Wiley Publishing Inc., 3 pp.[6] Bravo, M., Alvarado, M.: Similarity measures for substituting Web services. International Journal of Web Services Research, 7 (3), pp. 1–29 (2010).[7] Chen, L., Zhang, Y., Song, Z.L., Miao, Z.: Automatic web services classification based on rough set theory. Journal of Central South University, 20, pp. 2708–2714 (2013).[8] Pineda Lezama, O., & Gómez Dorta, R. (2017). Techniques of multivariate statistical analysis: An application for the Honduran banking sector. Innovare: Journal of Science and Technology, 5 (2), 61-75[9] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham[10] Zhu, Fang et al. "IBM Cloud Computing Powering a Smarter Planet", Libro Cloud Computing, Volumen 599.51/2009, Páginas 621- 625.[11] Mohanty, R., Ravi, V., Patra, M.R.: Web-services classification using intelligent techniques. Expert Systems with Applications, 37(7), pp. 5484–5490 (2010).[12] L. Thames and D. Schaefer, “Softwaredefined Cloud Manufacturing for Industry 4.0,” Procedía CIRP, vol. 52, p p .12-17, 2016.[13] Amelec Viloria, Dionicio Neira-Rodado, Omar Bonerge Pineda Lezama. Recovery of scientific data using Intelligent Distributed Data Warehouse. ANT/EDI40 2019: 1249-1254.[14] Schweidel, D. A., & Knox, G. (2013). Incorporating direct marketing activity into latent attrition models. Marke¬ting Science, 31(3), pp. 471-487.[15] Setnes, M., & Kaymak, U. (2001). Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing. Fuzzy Systems, IEEE Transactions on, 9(1), pp. 153-163.[16] Amelec Viloria, Omar Bonerge Pineda Lezama. Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs. ANT/EDI40 2019: 1201-1206[17] Nisa, R., Qamar, U.: A text mining based approach for web service classification. Information Systems and e-Business Management, pp. 1–18 (2014).[18] Wu, J., Chen, L., Zheng, Z., Lyu, M. R., Wu, Z.: Clustering web services to facilitate service discovery. Knowledge and information systems, 38(1), pp. 207–229 (2014) [22] Alderson, J. (2015). A markerless motion capture technique for sport performance analysis and injury prevention: Toward a big data, machine learning future. Journal of Science and Medicine in Sport, 19, e79. doi: 10.1016/j.jsams.2015.12.192.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Neural networksWeb servicesArtificial neural networkNeural networks for the web services classificationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/cb38c6f0-c348-4e55-affa-39fb2a978b3e/download8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALNeural Networks for the Web Services Classification.pdfNeural Networks for the Web Services Classification.pdfapplication/pdf680723https://repositorio.cuc.edu.co/bitstreams/6e2ef58c-2fbc-4cd7-8b50-7e1c1a232c85/download54582ce3c9b064afa0874f8197484ea7MD51Neural Networks for the Web Services Classification.pdfNeural Networks for the Web Services Classification.pdfapplication/pdf1539626https://repositorio.cuc.edu.co/bitstreams/834d1efe-c104-4977-bf5f-9dacab667f1a/downloadbad4a55240ebe2374aa8d2c7fa4d7f15MD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/e8835173-f8a4-4c03-b96b-0776c94932b5/download42fd4ad1e89814f5e4a476b409eb708cMD52THUMBNAILNeural Networks for the Web Services Classification.pdf.jpgNeural Networks for the Web Services Classification.pdf.jpgimage/jpeg26967https://repositorio.cuc.edu.co/bitstreams/51b9765d-80e7-4edb-ba71-d6b58280f1e0/downloadd617e6dca5e75e2cd4662e7568f734c2MD55TEXTNeural Networks for the Web Services Classification.pdf.txtNeural Networks for the Web Services Classification.pdf.txttext/plain21782https://repositorio.cuc.edu.co/bitstreams/ed146990-418e-4fdf-8b8d-345bdc9a5274/downloadfb5384e9879e1b33da489969dc271f58MD5711323/5959oai:repositorio.cuc.edu.co:11323/59592024-09-17 14:08:10.933http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=